
Design of Dependable Computing Systems

Design of Dependable
Computing Systems

by

Jean-Claude Geffroy
Gilles Motet
Institut National des Sciences Appliquies,
Toulouse, France

SPRINGER-SCIENCE+BUSINESS MEDIA. B.Y.

A c.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 978-90-481-5941-3 ISBN 978-94-015-9884-2 (eBook)
DOI 10.1007/978-94-015-9884-2

Translated from the Russian language by Irene Aleksanova.

Revised and translated version of Linear Programming by F.P. Vasilyev and A. Yu. Ivanitskiy,
published in the Russian language by Factorial, Moscow, 1998

Printed an acid-free paper

AII Rights Reserved
© 2002 Springer Science+Business Media Dordrecht
Originally published by Kluwer Academic Publishers in 2002
Softcover reprint of the hardcover 1 st edition 2002
No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage and
retrieval system, without written permission from the copyright owner.

Contents

Preface xv

CHAPTER 1. INTRODUCTORY ELEMENTS: DEPENDABILITY ISSUES 1

1.1 Quality 1
1.1.1 Quality Needs of Computer Systems 1
1.1.2 Quality Attributes 2

1.2 Dependability 3
1.2.1 Product Failures and their Consequences 3
1.2.2 Failure Causes 4
1.2.3 Taking Faults into Account 7
1.2.4 Definitions of Dependability 9

1.3 Means of Dependability 10
1.3.1 Evolution 10
1.3.2 Means 13

1.4 Summary 13

FIRST PART. DESTRUCTIVE MECHANISMS 15

CHAPTER 2. GENERAL CONTEXT 17

2.1 Application Context 17
2.2 Life Cyde 21

2.2.1 Principles 21
2.2.2 Specification 22
2.2.3 Design 24
2.2.4 Production 28
2.2.5 Operation 29

v

VI Contents

2.3 Product Model 29
2.3.1 Product Structure and Functioning 30
2.3.2 Hierarchy 31
2.3.3 Examples 32
2.3.4 Refinement Process and Primitive Components 33

2.4 Logical Part of a Drinks Distributor 34
2.4.1 Specifications 35
2.4.2 Design 36
2.4.3 Production 38
2.4.4 Operation 38

CHAPTER 3. FAllURES AND FAULTS 39

3.1 Failures 39
3.1.1 Definition 39
3.1.2 Characterization of Failures 42

3.2 Faults 44
3.2.1 Difficulties in Identifying the Causes of a Failure 44
3.2.2 Fault Characterization 45
3.2.3 Fault Origin 46
3.2.4 Nature of the Fault 48

3.3 Faults Occurring in the Life Cyc1e 51
3.3.1 Specification and Design Faults 52
3.3.2 Production Faults 56
3.3.3 Operational Faults 58

3.4 Examples of Functional Faults Altering a Drinks Distributor 60
3.4.1 Description of the Product 60
3.4.2 Faults Due to Functional Specifications 61
3.4.3 Faults Due to Technological Constraints 61
3.4.4 Design Faults 62

3.5 Interests and Limits of Fault Classes 63
3.5.1 Simplified Classification 63
3.5.2 Limitations of the Classification 65
3.5.3 Proteetion Against Faults and their Effects 65

3.6 Exercises 66

CHAPTER 4. FAULTS AND THEIR EFFECTS 69

4.1 Internal Effects 69
4.1.1 Fault 69
4.1.2 Error 71
4.1.3 Error Propagation 73
4.1.4 Latency 75

4.2 External Effects: Consequences 77
4.2.1 External Consequences of Faults 77
4.2.2 Inertia of the Functional Environment 80

Contents vii

4.2.3 Completeness and Compatibility 80
4.2.4 Influence of the Functional Environment: Emergence 82

4.3 Conc1usion on the Effects of Faults 83
4.4 Exercises 85

CHAPTER 5. FAULT AND ERROR MODELS 89

5.1 Definitions 89
5.1.1 Structural and Behavioral Properties 89
5.1.2 Structural Properties 90
5.1.3 Behavioral Properties 91

5.2 Significant Fault and Error Models 92
5.2.1 Faults and Errors at Different Representation Levels 92
5.2.2 Hardware FaultlError Models 94
5.2.3 Software Fault and Error Models 101

5.3 Fault and Error Model Assessment 105
5.3.1 Assessment Criteria 105
5.3.2 Relations Between FaultlError Models and Failures 107

5.4 Analysis of Two Simple Examples 109
5.4.1 First example: an Hardware Full Adder 109
5.4.2 Second Example: a Software Average Function 111

5.5 Exercises 115

SECOND PART. PROTECTIVE MECHANISMS 119

CHAPTER 6. TOWARDS THE MASTERING OF FAULTS AND THEIR EFFECTS 121

6.1 Three Approaches 121
6.2 Fault Prevention 123

6.2.1 During the Specification 123
6.2.2 During the Design 124
6.2.3 During the Production 124
6.2.4 During the Operation 125

6.3 Fault Removal 127
6.3.1 General Notions 127
6.3.2 During Specification and Design 129
6.3.3 During the Production 133
6.3.4 During the Operation 134

6.4 Fault Tolerance 135
6.4.1 Failure Prevention by Masking 136
6.4.2 Error Detection and Correction 136
6.4.3 Fail-Safe Techniques 137
6.4.4 Resulting Fault Tolerance Classes 138

6.5 Dependability Means and Assessment 138
6.6 Conc1usion 140

Vlll Contents

CHAPTER 7. DEPENDABILITY ASSESSMENT 141

7.1 Quantitati ve and Qualitative Assessment 141
7.1.1 Quantitative Assessment 141
7.1.2 Qualitative Assessment 143
7.1.3 Synthesis 143

7.2 Reliability 145
7.2.1 General Characteristics of the Reliability of Electronic

Systems 145
7.2.2 Reliability Models 146
7.2.3 Failure Rate Estimation 148
7.2.4 Reliability Evolution 148

7.3 Testability 149
7.4 Maintainability 150

7.4.1 Maintenance 150
7.4.2 Maintainability 152
7.4.3 Reliability and Maintainability 153

7.5 Availability 154
7.6 Safety 155
7.7 Security 157
7.8 Synthesis of the Main Criteria 157
7.9 Quantitative Analysis Tools at System Level 159

7.9.1 Fault Simulation 159
7.9.2 Reliability Block Diagrams 160
7.9.3 Non-Deterministic State Graph Models 162

7.10 Inductive Qualitative Assessment: Failure Mode
and Effect Analysis 164
7.10.1 Principles 164
7.10.2 Means 166
7.10.3 FMECA 167

7.11 Deductive Qualitative Assessment: Fault Tree Method 168
7.11.1 Principles 168
7.11.2 Software Example 169
7.11.3 UseoftheFTM 171

7.12 Exercises 171

CHAPTER8. REDUNDANCY

8.1 Functional and Structural Redundancy
8.1.1 Linguistic Redundancy
8.1.2 Redundancy of Computer Systems

8.2 Functional Redundancy
8.2.1 Static Functional Domains
8.2.2 Dynamic Functional Domains
8.2.3 Generalization of Functional Redundancy

175

176
176
177
179
180
182
185

Contents ix

8.2.4 Redundancy and Module Composition 186
8.3 Structural Redundancy 187

8.3.1 Definition and illustration 187
8.3.2 Active and Passive Redundancy 188
8.3.3 Separable Redundancy 193
8.3.4 Summary of the Various Redundancy Forms 195

8.4 Exercises 195

THIRD PART. FAULT AVOIDANCE MEANS 199

CHAPTER 9. AVOIDANCEOFFuNCTIONALFAULTSDURING
SPECIFICA TION 201

9.1 Introduction 201
9.1.1 Specification Phase 201
9.1.2 Validation and Verification 202

9.2 Fault Prevention During the Requirement Expression 204
9.2.1 Introduction 204
9.2.2 Help in the Capturing of Needs 204
9.2.3 Expression Aid 205
9.2.4 Evaluation of a Method 207

9.3 Fault A voidance During the Specification Phase 209
9.3.1 Fault Prevention: Valid Method 209
9.3.2 Fault Removal: Verification of the Specifications 211

9.4 Review Techniques 214
9.4.1 Principles 214
9.4.2 Walkthrough 215
9.4.3 Inspection 215

9.5 Exercise 217

CHAPTER 10. AVOIDANCE OF FUNCTIONAL FAULTS DURING DESIGN 219

10.1 Principles 219
10.2 Prevention by Design Model Choice 222
10.3 Prevention by Design Process Choice 223

10.3.1 General Considerations 223
10.3.2 Design Guide 224
10.3.3 Expression Guide 225

10.4 Fault Removal 229
10.4.1 Verification with the Specifications 229
10.4.2 Fault Removal without Specifications 238

10.5 Functional Test 240
10.5.1 Input Sequence 240
10.5.2 Output Sequence 243
10.5.3 Functional Diagnosis 245
10.5.4 Analysis of an Arithmetic Unit 247

x Contents

10.6 Formal Proof Methods 248
10.6.1 Inductive Approach and Symbolic Execution 248
10.6.2 Deductive Approach and FfM 251

10.7 Exercises 253

CHAPTER 11. PREVENTION OF TECHNOLOGICAL FAULTS 257

11.1 Parameters of the Prevention of Technological Faults 257
11.1.1 Hardware Technology 258
11.1.2 Software Technology 258
11.1.3 Prevention of Technological Faults 260

11.2 Action on the Product 261
11.2.1 Hardware Technology 261
11.2.2 Software Technology 265

11.3 Action on the Environment 272
11.3.1 Hardware Technology 272
11.3.2 Software Technology 273

11.4 Exercises 276

CHAPTER 12. REMOVAL OFTECHNOLOGICAL FAULTS 279

12.1 Off-Line Testing 279
12.1.1 Context of Off-Line Testing 280
12.1.2 Different Kinds ofTests and Testers 281

12.2 Logical Testing 288
12.2.1 Logical Testers. 288
12.2.2 Test Parameters 291
12.2.3 Production Testing 292
12.2.4 Maintenance Testing 296

12.3 Principles of Logical Test Generation 302
12.3.1 Logical Testing 302
12.3.2 Determination of Input Vectors Testing a Fault 307
12.3.3 Fault Grading 307
12.3.4 Test Pattern Generation of Combinational Systems 314
12.3.5 Test of Sequential Systems 316

12.4 Exercises 320

CHAPTER 13. STRUCTURAL TESTING METHODS 323

13.1 Generation of Logical Test by a Gate Level Structural
Approach 323

13.2 Test Generation for a Given Error 325
13.2.1 Principles of the Method 325
13.2.2 Activation and Backward Propagation 326
13.2.3 Forward Propagation 327
13.2.4 lustification 329
13.2.5 Complete Study of a Small Circuit 329

Contents xi

13.2.6 Test of Structured Circuits 332
13.3 Determination of the FaultslErrors Detected by a Given Test

Vector 333
13.3.1 Principles of the Method 333
13.3.2 Study of a Small Circuit 335

13.4 Diagnosis of a Test Sequence 336
13.4.1 General Problem of the Diagnosis 336
13.4.2 Study of a Srnall Circuit 337

13.5 Influence of Passive Redundancy on Detection and Diagnosis 339
13.6 Detection Test without Error Model. Application to Software 340

13.6.1 The Problem of Structural Test without Error Model 340
13.6.2 Statement Test 342
13.6.3 Branch & Path Test 343
13.6.4 Condition & Decision Test 345
13.6.5 Finite State Machine Identification 346

13.7 Diagnosis without Fault Models 346
13.7.1 Principles 346
13.7.2 Highlight the Erroneous Situations 347
13.7.3 Elaborate the Hypotheses 349
13.7.4 Confmn the Hypotheses 350
13.7.5 Verify the Hypotheses 350

13.8 Mutation Test Methods 351
13.8.1 Principles and Pertinence of Mutation Methods 351
13.8.2 Mutation Testing Technique 352

13.9 Exercises 354

CHAPTER 14. DESIGN FOR TESTABILITY 361

14.1 Introduction 361
14.1.1 Test Complexity 361
14.1.2 General Principles ofDesign ForTestability 362

14.2 Ad Hoc Approach to DFT 367
14.2.1 Guidelines 367
14.2.2 Instrumentation: Data Recording 373
14.2.3 Exception Mechanisms: Error Propagation 374

14.3 Design of Systems Having Short Test Sequences 377
14.3.1 lllustration on Electronic Products 377
14.3.2 lllustration on Software Applications 379

14.4 Built-In Test (BIT) 380
14.4.1 Introduction 380
14.4.2 TheFIT PLA 380
14.4.3 Scan Design and LSSD 383
14.4.4 Boundary Scan 385
14.4.5 Discussion about BIT Evolution 387

xii Contents

14.5 Built-In Self-Test (BIST) 388
14.5.1 Principles 388
14.5.2 Test Sequence Generation and Signature Analysis 389

14.6 Towards On-Line Testing 392
14.6.1 To Place the Tester in the Application Site 392
14.6.2 In-situ Maintenance Operation 392
14.6.3 Integration ofthe Tester to the Product's Activity 393

14.7 Exercises 393

FOURTH PART. FAULT TOLERANCE MEANS 397

CHAPTER 15. ERROR DETECTING AND CORRECTING CODES 399

15.1 General Context 399
15.1.1 Error Model 399
15.1.2 Redundant Coding 402
15.1.3 Application to Error Detection and Correction 403
15.1.4 Limitations of our Study 404

15.2 Definitions 405
15.2.1 Separable and Non-Separable Codes 405
15.2.2 Hamming Distance 406
15.2.3 Redundancy and Efficiency 408

15.3 Parity Check Codes 409
15.3.1 Single Parity Code 409
15.3.2 Multiple Parity Codes 409

15.4 Unidirectional Codes 416
15.4.1 M-out-of-n Codes 417
15.4.2 Two-Rail Codes 418
15.4.3 Berger Codes 418

15.5 Arithmetic Codes 419
15.5.1 Limitations ofthe Hamming Distance 419
15.5.2 Residual Codes 420

15.6 Application of EDC Codes to Different Classes of Systems 422
15.7 Exercises 423

CHAPTER 16. ON-UNE TESTING 427

16.1 Two Approaches of On-Line Testing 427
16.2 Discontinuous Testing 428

16.2.1 Extemal Tester 428
16.2.2 Test Performed by One of the Regulators 430
16.2.3 Test Distributed Between the Regulators 430
16.2.4 Precautions 432

16.3 Continuous Testing: Self-Testing 433
16.3.1 Principles 433
16.3.2 Use ofFunctional Redundancy 436

Contents xiii

16.3.3 U se of Structural Redundancy 441
16.4 Exercises 447

CHAPTER 17. FAlL-SAFE SYSTEMS 451

17.1 Risk and Safety 452
17.1.1 Seriousness Classes 452
17.1.2 Risk and Safety Classes 453
17.1.3 Fail-Safe Systems 456

17.2 Fail-Safe Techniques 457
17.2.1 Intrinsic Safety 457
17.2.2 Safety by Structural Redundancy 459
17.2.3 Self-Testing Systems and Fail-Safe Systems 465
17.2.4 Fail-Safe Applications 466

17.3 Exercises 467

CHAPTER 18. FAULT-TOLERANT SYSTEMS 469

18.1 Introduction 469
18.1.1 Aims 469
18.1.2 From Error Detection Towards Fault Tolerance 470

18.2 N-Versions 472
18.2.1 Principles 472
18.2.2 Realization of the Duplicates and the Voter 473
18.2.3 Performance Analysis 475

18.3 Backward Recovery 476
18.3.1 Principles and Use 476
18.3.2 Recovery Cache 478
18.3.3 Recovery Points 479

18.4 Forward Recovery 482
18.4.1 Principles 482
18.4.2 Recovery Blocks 482
18.4.3 Termination Mode 483

18.5 Comparison 485
18.5.1 Similarities 485
18.5.2 Differences 487
18.5.3 Use of Multiple Techniques 490

18.6 Impact on the Design 493
18.7 Some Application Domains 496

18.7.1 Watchdog and Reset 496
18.7.2 Avionics Systems 496
18.7.3 Data Storage 498
18.7.4 Data Transmission 503

18.8 Exercises 508

xiv

CHAPTER 19. CONCLUSIONS

19.1 Needs and Impairments
19.1.1 Dependability Needs
19.1.2 Dependability Impairments

19.2 Protective Means
19.2.1 Fault Prevention
19.2.2 Fault Removal
19.2.3 Fault Tolerance

19.3 Dependability Assessment
19.3.1 Quantitative Approaches
19.3.2 Qualitative Approaches

19.4 Choice of Methods

Appendix A. Error Detecting and Correcting Codes

Appendix B. Reliability Block Diagrams

Appendix C. Testing Features of a Microprocessor

Appendix D. Study of a Software Product

Appendix E. Answer to the Exercises

Glossary

References

Index

Contents

511

512
512
513
516
516
517
519
520
520
524
525

527

529

535

539

543

605

651

657

Preface

This book analyzes the causes of failures in computing systems, their
consequences, as weIl as the existing solutions to manage them. The domain
is tackled in a progressive and educational manner with two objectives:

1. The mastering of the basics of dependability domain at system level, that
is to say independently ofthe technology used (hardware or software) and
of the domain of application.

2. The understanding of the fundamental techniques available to prevent, to
remove, to tolerate, and to forecast faults in hardware and software
technologies.

The first objective leads to the presentation of the general problem, the
fault models and degradation mechanisms wh ich are at the origin of the
failures, and finally the methods and techniques which permit the faults to be
prevented, removed or tolerated. This study concerns logical systems in
general, independently of the hardware and software technologies put in
place. This knowledge is indispensable for two reasons:

• A large part of a product' s development is independent of the
technological means (expression of requirements, specification and most
of the design stage). Very often, the development team does not possess
this basic knowledge; hence, the dependability requirements are
considered uniquely during the technological implementation. Such an
approach is expensive and inefficient. Indeed, the removal of a
preliminary design fault can be very difficult (if possible) if this fault is
detected during the product's final testing.

xv

XVI Preface

• The specific dependability techniques applied at technological level
(hardware, software) are often issued from general common principles. It
is useful to understand these principles in order to better understand and
apply the techniques.

To achieve the second objective, we approach the main techniques
associated with the two technologies involved in the creation of a computing
system: the hardware and the software. The joint study of these two
technologies is indispensable. As a matter of fact, what is the interest of
having sophisticated methods dedicated to software if the microprocessor or
the memory fails? What is the use of having sophisticated methods dedicated
to hardware if the control or supervision program does not function
properly? The originality of our approach resides in this dual vision of
systems.

Different, complementary and sometimes even antagonistic, these two
facets are both necessary to manage real industrial projects. The knowledge
of their particularities is indispensable: for example, the characteristics of
certain faults are specific to one of these technologies. Thus, specific
techniques have been developed. In addition, it is necessary to master jointly
these two technologies. For example, the technique of the replication of the
hardware/software control system of the first flight of Ariane V launcher was
weIl adapted to the tolerance of a hardware fault occurring in one module.
When such event occurs, the replicate module takes control of the faulty
module. Unfortunately, the presence of a fault in the software could not be
tolerated with this technique, as the resumption of execution by the second
module affected by the same fault provoked the same failure!

Of course, knowledge on dependability is absolutely necessary to
develop critical systems, as their failures can have dramatic consequences.
This knowledge is, according to us, necessary today for all engineers
involved in computerized system development projects, whether destined for
control, supervision, human - machine interaction, communication, or data
processing in general. Indeed, in our technological world, failures are less
and less accepted by the users, even in the case of simple applications such
as a text processing. Consequently, dependability science is rapidly
developing, proposing new methods, techniques and tools in both hardware
and software domains. Our objective is to provide the reader with a basic
knowledge of dependability notions and techniques. This will naturally be
useful to students, but it mayaiso interest specialists of specific methods, in
order to place their knowledge in the general context of the means offered by
the domain of dependability.

Therefore, this book addresses a large public, inc1uding undergraduate
and post-graduate students, researchers, as weIl as technicians, engineers or

Preface XVll

managers involved in the development or maintenance of computing
systems. Providing the basics of dependability principles, models, methods
and applications, this book should allow the reader to then approach
successfully, in specialized books, the more technical aspects on particular
means of preventing, removing and tolerating faults. Many examples and
exercises (with their correction) illustrate the principles and methods
presented.

Organization of the Book

This book is organized into 19 chapters structured into four parts: the
Destructive Mechanisms, the Protective Mechanisms, the Fault Avoidance
Means, and the Fault Tolerance Means. A fifth part, not detailed hereafter,
contains several technical appendices, the detailed solutions of the exercises
proposed in the chapters, a glossary of all technical keywords, and a list of
bibliographical references.

First Part. Destructive Mechanisms
A good understanding of mechanisms which we qualify as destructive,

that is to say at the origin of failures, is fundamental in order to choose the
appropriate antagonistic mechanisms, which we qualify as protective. This
first part therefore introduces the main issues of dependability and explains
the basic notions and definitions of destructive mechanisms: faults, errors,
faHures, and external consequences. This part is organized into four
chapters:

Chap 2.
Chap 3.
Chap 4.

General Context
Failures and Faults
Faults and their Effects

Chap 5. Fault and Error Models

Second Part. Protective Mechanisms
The second part tackles protective mechanisms, that is to say

mechanisms aiming at preventing faHure occurrences. In a first chapter, the
three approaches to fault prevention, fault removal, and fault tolerance are
analyzed, and the principal methods and techniques are organized into
several groups according to the level of redundancy they imply. Then, the
dependability assessment methods are introduced. First, the quantitative
approaches are presented; they aim at defining measurements of the reliance
which can be placed in the services provided by the system. Several
evaluation criteria of dependability are explained: reliability, testability,
maintainability, availability, and safety. Secondly, qualitative approaches are
presented; they handle specific failures to assess their cause and effects.

xviii Preface

Redundancy plays a large role in dependability. This notion is necessary in
order to master protection techniques and is therefore analyzed, introducing
various functional and structural forms. This second part is organized into
three chapters:

Chap 6. Towards the Mastering of Faults and their Effects
Chap 7. Dependability Assessment
Chap 8. Redundancy

Third Part. Fault Avoidance Means

In this part, the principal groups of techniques and methods to prevent
and remove faults are studied and compared. These means concern the
specification and design steps as weIl as the technological implementation.
Their aim is to avoid the presence of faults in the delivered product. These
techniques make use of the principles defined in the second part.

This part is organized into 6 chapters:

Chap 9. A voidance of Functional Faults During Specification
Chap 10. Avoidance of Functional Faults During Design
Chap 11. Prevention of Technological Faults
Chap 12, Removal of Technological Faults
Chap 13. Structural Testing Methods
Chap 14. Design For Testability

Fourth Part. Fault Tolerance Means

In this part, we consider techniques and methods useful to develop fault
tolerant systems. This subject is introduced progressively. Firstly, we
ex amine specific techniques used to detect and to correct errors on data.
Then, we present the general techniques to detect errors 'on-line', that is to
say, at run-time. Afterwards, we study error handling techniques, to avoid
catastrophic failures (Fail-Safe systems), and finally to avoid all failures
(Fault-Tolerant systems).

This part is organized into 5 chapters:

Chap 15. Error Detecting and Correcting Codes
Chap 16. On-Line Testing
Chap 17. Fail-Safe Systems
Chap 18. Fault-Tolerant Systems

FinaIly, Chapter 19 conc1udes the book, providing an overview of its
contents and correlating the various aspects of dependability.

Note. The keywords or fundamental expressions are marked in bold and
italic characters the first time they are defined, or when they are developed.

Preface xix

All these keywords are then collected in the Glossary, in the fifth part of the
book.

Acknowledgements
This book results from many years of teaching and research activities in

hardware and software Computer Sciences, as professors at the Institut
National des Sciences Appliquees of Toulouse (INSAT). We would like to
thank the colleagues and the students of the department of Electrical
Engineering and Computer Sciences of INSA T who helped us in the
pedagogical aspects of the book. This work also gained from the research
conducted at the LESIA laboratory with academic and industrial partners.
Many examples are issued from these collaborations.

We also would like to acknowledge the Inter-Editions publisher who
allowed us to integrate in this book, elements previously presented in a book
we wrote in French in 1998.

FIRST PART

DESTRUCTIVE MECHANISMS

This part aims at dismantling the destructive mechanisms which
hamper the correct functioning of a product in the context of its
application. Frequently named impairments, these mechanisms involve a
succession of events: faults - errors - failures and their extemal
consequences on the application.

First of all, in Chapter 2 we consider the general context of the life
cyc1e of an electronic manufactured product implemented by hardware
and/or software technologies. Then, in Chapter 3 we observe that the
behavior of a product can be altered by failures; we identify the different
possible causes of these problems, called faults, inside the product or in its
environment. In Chapter 4, we analyze and formalize the effects of these
faults inside the product (errors) and then outside the product (extemal
consequences). Finally, in Chapter 5, we present the principal fault and
error models, focusing on hardware and software technologies.

The principles and concepts associated with destructive mechanisms
rely on the definitions and standards of the international scientific
community. The terms and their definitions introduced in this part come
from studies unifying the basic notions from hardware and software
domains. The vocabulary results mainly from the following references:
the ISO 8402 standard "Quality Management and Quality Assurance -
Vocabulary", and the two books "Dependability. Basic Concepts and
Terminology" by J-c. Laprie et Al editors (Springer-Verlag, 1992) and
"Safeware. System Safety and Computers" by N. Leveson (Addison
Wesley, 1995).

All the problems raised in this part will be answered in the second part
of this book which examine protective mechanisms, called dependability
means. The most significant practical techniques associated with these
protective mechanisms will be detailed in the third part (fault avoidance
means) and the fourth part (fault tolerance means).

15

Chapter 1

Introductory Elements: Dependability Issues

1.1 QUALITY

1.1.1 Quality Needs of Computer Systems

The growth of the technical and scientific knowledge in our society
stimulates the growth of new manufactured products, reducing the costs and
delays of design and production, and improving the global quality of our life.
Moreover, the consumers who demand more and more services encourage
this innovation. The sophistication of automobiles is a good example of this
evolution: assisted braking and grip, reduced gas consumption by a better
optimization of engine performance, road navigation and choice of optimal
routes, etc. What is more, the knowledge and behavior of consumers is
becoming increasingly demanding about prices, of course, but equally
regarding the quality of services provided by the chosen products. This
notion of quality associated with manufacturing goods is progressively
becoming more refined and standardized. It is now imposed on all designers
and manufacturers as an essential factor in the success of their products.
Therefore, the ISO 8402 standard defines quality as:

The totality of characteristics of an entity that bear
on its ability to satisfy stated and implied needs.

These needs to be satisfied inc1ude new services which are offered to the
users, but also a better guarantee of the correctness of existing services. In
particular, the demand for quality is justified by the rapid and continuous
growth of the responsibilities wh ich man entrusts to manufactured products,
and more particularly to computing systems. Für example, the piloting of

1

J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

2 Chapter 1

aircrafts is progressively transferred from a human pilot to an assistance
system, and then to an automatie piloting system. The quality of such
systems, in terms of correctness guarantee, is obviously as vital to the air
companies buying the aircrafts as to the passengers using them. The use of
computing systems for control and supervision is overflowing the specifie
areas for whieh its use was traditionally reserved, such as the manufacturing,
rail and air transportation, aerospace, nudear and military industries. It is
now progressively being used in all sectors of our society. Here we quote a
few examples in order to show the wide variety of these domains.

• Agrieulture and rearing: irrigation, treatment, conditioning, cattle feeding
and incubating apparatuses, etc.

• Towns and cities: automatic management, control and signaling used by
cash dispensers, public transportations such as buses and the subway,
automobile traffic, car parks, etc.

• Communications: telephones, radio, television, local and global
computing networks such as the Internet, GPS (Global Positioning
System), etc.

• Medieal domain: measuring and analysis equipment, ambulatory and
prosthesis apparatuses, cardiac stimulators and 'on-line' following of
illnesses, etc.

• Automotive electronics industry: ABS (Antilock Braking System),
suspension systems, computerized ignition, fuel injection, route guiding,
dash board computers, etc.

• And even in Our hornes: lifts, electrical household equipment, hi-fis,
computer games, domestic alarm systems, etc.

1.1.2 Quality Attributes

The growth of responsibilities entrusted in such electronic products
requires an increasing of their correctness, because of the consequences that
can result from anomalies occurring during their functioning. The general
meaning of 'quality of a manufactured product' covers many other aspects,
both internal and external to the product. Widely varied features such as the
price, performance, manufacturing time, weight, consumption, ergonomics,
reliability, safety, are considered as criteria external to the system. They
come both from the dient' s point of view (for example, an airline company
which buys and uses an airplane) and the user's point of view (for example,
the pilot or the passengers).

1. Introductory Elements: Dependability lssues 3

Other features such as modularity, readability and changeability (the
facility with which a product' s design can be modified) are considered as
criteria internal to the product. They concern the features relative to the
development of a product and not to the services it provides. If the internal
quality of a product is an important need for the manufacturer, this will only
indirect1y affect the users. For example, a badly structured design (poor
internal quality) can still result in a product which operates perfectly well.
However, this could make ultimate modifications of functionality difficult,
and therefore increase the costs and delays of these modifications, or even
increase the risks of obtaining a failing system (poor external quality).

In this book, we are mainly interested in external quality. More
precisely, our presentation focuses on functional quality, that is to say the
adequacy of the function actually provided by a product with the function
expected by its user. The function characterizes the behavior of a product
placed in interaction with other systems (industrial processes, human
operators, etc.). This notion is to be disassociated from the other non
functional features of a product. For example, the color and shape of a
telephone do not affect the telephone function which is to establish
communication between users.

1.2 DEPENDABILITY

1.2.1 Product Failures and their Consequences

Experience reveals that non-desired behaviors of products can occur
whilst being used. These products show a temporary or permanent alteration
of the function they are meant to carry out. This divergence is calledfailure.
The occurrence of failures seems to be an unavoidable situation. Each one is
confronted daily, sometimes harshly, with the relentless law of 'growing
entropy', a law of physical sciences which seems to govern the universe.
This law, which tends to disorganize what one already finds difficult to
organize, has been formulated several times: the law of maximum trouble,
also called the law of 'buttered toast' (which always lands on the buttered
side down!), and alternatively known as Murphy's Law, which essentially
says that when several possibilities exist it is always the worst which
happens! All structured systems, such as natural biological systems and
manufactured artificial products, have a tendency to rnalfunction, because
they have been badly structured or because their condition is deteriorating.
Being structured systems, computing systems are also subjected to this law.

Due to the fact that responsibilities are delegated to computing systems,
their failure can have regrettable and even tragic consequences. The media

4 Chapter 1

regularly reports on catastrophes affecting industrial, aerospace, avionics and
rail transport systems. Firstly, we can take as example, the opening of
Denver airport which was delayed for several months due to a failure in the
luggage management system. A second example is the delay of the Ariane V
project due to a control problem which had resulted in the failure of the
rocket' s first flight. Other examples inc1ude the recall of numerous cars by
many of the major constructors due to potential anomalies of electronic
systems. We also have in rnind the failure of aspace probe sent to Mars due
to problems of non-homogeneity of measuring units (inch and cm). Finally,
several patients were killed by failures of medical systems used for
cancer treatments.

The transfer of responsibilities to computers and the fatalities due to their
malfunctioning are two antagonistic facts. If econornic reasons urge for the
development of computing systems, their malfunctioning has to be avoided.
In order to achieve this, we must first of all possess a good understanding of
failure causes.

1.2.2 Failure Causes

1.2.2.1 Fault Notion

An electronic product is generally used in interaction with other products
and human beings, which constitute itsJunctional environment. For example,
an electronic regulator controls the rotation speed of an engine used by a
human operator to manufacture parts. The whole set of these partners
(product and functional environment) is placed in a non-functional
environment characterized, for example, by temperature and hurnidity.

The user generally notices the failure of a product during its operation, in
the context of the application. All causes of failures are known asJaults.

When a failure occurs, one first needs to find the origin of the
malfunctioning. For instance, a failure of an engine's control system can be
due to a breakdown affecting the electronic regulator (the product). The
functional environment of the product can also cause failures. For example,
the engine controlled by the previously mentioned regulator can itself have
broken down or have been badly used by the human operator. Finally, the
non-functional environment can provoke an application failure as well. For
example, the use of an electronic system in an environment with a
temperature which is too high or subject to radiation can provoke a
deterioration in the technological means used to manufacture the product,
and therefore can cause a failure.

The distinction between the notion of Jai/ure which qualifies an effect
(the product does not provide the expected service) and the notion ofJault is

1. Introductory Elements: Dependability Issues 5

important. First of all, if the failure is attached to the operation of the
product, the fault could have been introduced at different stages of its life
cycle. Moreover, whereas the failure is associated with the product, the fault
can be attributed to the product itself, to the human operator, or to other
externalobjects.

Several fault classifications are possible, according to the stage at which
the fault occurs (when), the actual object affected (where) or the agent who
is at the origin of this fault (who). We note lastly that it is often very difficult
to identify precisely the exact cause of the failure: the precise nature of the
problem, the moment it occurred, the object affected. This fault notion is
therefore relative to the means of investigation used.

1.2.2.2 When

All products come from a more or less complex process which
transforms a need into a usable product. The succession of the various stages
of the life of a product is known as a life cycle, starting from expressing a
need which is effectively the birth of the product, to the end of the mission.
The most significant stages of this cycle are:

• the requirement expression which describes the expectations of potential
clients: for example, the creation of a landing system without visibility is
motivated by the need to ensure the continuity of the air transport service;

• the specification which defines the functionality of the product to be
created: for example, the specification of a landing system without
visibility expresses the relationships between the data elements provided
by the environment via the sensors (radar, altimeter, gyroscope, etc.), and
the orders transmitted to the actuators (engines,jacks, etc.);

• the design and the realization which lead to a solution proposed to handle
a problem stated at the preceding stage, and to refine it until an
expression using hardware and software technology is obtained: for
example, an automatic landing system will be created as a software
executed on a hardware platform using one or more electronic boards;

• the production, or manufacturing, which consists in reproducing the first
product in several copies before they are put on the market;

• and finally the useful life, or operation, providing services to the user of
the product.

Unfortunately, during each stage, faults can be introduced by the diverse
intervening human beings or by the tools or technologies they use. In
addition, these various and diverse faults have a tendency to accumulate,
making their handling even more difficult, and hence the failure risk higher.

6 Chapter 1

1.2.2.3 Where

In this book, faults are c1assified according to the product which is at the
center of our investigations. We define three fault categories:

• the interna I faults, attached to the product, which are divided into two
sub-groups:

~ the functional faults, or creation faults, cOInmitted by humans or by
their tools during the stages of specification, design/realization and
production; for example, a software designer has badly translated the
design model features by means of programming language statements;

~ the technological faults, also called breakdowns, affecting the
execution means: for example, an internal connection in an agemg
electronic circuit has been cut off;

• the external faults, or disturbanees, ansmg from the product's
environment; for example, a heavy ion modifies a value '0' into a value
'1' in a memory of a control system embedded in a satellite.

1.2.2.4 Who

Humans constitute a fundamental source of faults. First of all , as a
product user (for example a pilot of a vehic1e), the human operator is reputed
for committing faults. Numerous catastrophes have been or are still caused
by human faults. The media reports cases affecting air, rail and automobile
control, and energy distribution systems. Secondly, as product designer or
manufacturer, humans introduce faults into systems.

In order to remedy these faults, it is necessary to introduce methods and
tools intended to assist (to guide and check) or simply substitute the humans.
For instance, a compiler automatically translates the statements of a source
program into a set of instructions of an executable pro gram. In the same
way, CAD (Computer Aided Design) tools make the electronic circuit design
easier, and consequently more dependable. However, let us note that these
means are themselves issued from a human activity of creation. Thus, used
methods and tools can also be affected by faults. Moreover, the product
designer, again a human, can also commit faults by badly handling correct
methods and design tools which he/she disposes of.

Finally, even if all these preceding factors of human faults have been
mastered, the hardware equipment which processes the software application
is still subjected to degradation phenomena: natural component ageing or
external aggression due to high temperature, electromagnetic fields or space
radiation. These perturbations affect the hardware platform, producing faults
during the operation of the product.

1. Introductory Elements: Dependability lssues 7

1.2.2.5 Fault Analysis

Whatever its origin, a fault is often difficult to predict and identify. It can
be studied in probabilistic terms, using experimental data issued from
already manufactured products and statistical laws, such as the probability
that an electrical component is affected by a single breakdown (a stuck-at, a
short-circuit, etc.). Faults can also be analyzed by examining their effects. A
fault leads to a failure damaging the service delivered by a product according
to a transformation mechanism which creates internal errors and propagates
these errors to the outputs (by contamination) through the internal structure
of the product. It is not always easy to analyze this mechanism. When
someone uses a product in a particular environment, it is difficult to precise
if the failure results from unacceptable characteristics of the environment
(excessive temperature or high radiation, etc.) or because the product is
incapable of supporting such an environment. Finally, the cumulative
character of faults again complicates the analysis: several quite different
faults produced at different stages of the life cycle can lead to a same failure.

Faults, errors and failures constitute dependability impairments which
must be weIl understood. The previous comments do not imply that the fight
against faults and their effects is lost from the start. Of course, it is a difficult
challenge, and several parameters can cancel out the efforts made to handle
faults. Numerous protection methods and techniques exist, but they have to
be employed together with competence and in the appropriate manner. These
means are regrouped in the scientific discipline known as dependability.

1.2.3 Taking Faults into Account

The destructive phenomena due to faults and their effects cannot be
ignored. System designers, manufacturers and users should be totally aware
of this reality and take on their responsibilities. This implies integrating the
fault notion at the very first stages of specification and design, then all
throughout the product's lifetime.

For a long time, the approach considered in industrial projects consisted
first of all in designing and creating a product from essentially functional
specifications, then integrating dependability criteria at the end of the
project. This approach is undesirable for two fundamental reasons: it is
expensive and inefficient.

First, this approach is expensive because faults are not considered as soon
as they are introduced. Their handling becomes more and more expensive
during the following stages. In particular, if they are not corrected
accordingly, they can lead to failures long after the product' s
commercialization. This impedes the product' s appeal. The strongly

8 Chapter 1

increasing character of this financial phenomenon is often quoted. Millions
of euros and dollars are wasted by the loss of expensive systems (such as the
probes sent to Mars), the cost of testing and repair, and the consecutive loss
of the market and of c1ients trust (for example, due to vehic1es being called
back by car manufacturers).

This approach, which consists in considering aposteriori the
dependability requirements, is inefficient because the good functional,
methodological, and structural choices avoiding or reducing the appearance
of failures, should be made right from the very beginning of the life cyc1e. In
addition, all late fault elimination is more difficult. We estimate that in the
electronic industry, the cost of fault correction increases by a factor of 10 at
each stage of production: for example, component manufacturing, insertion
of components on printed boards, assembling boards on racks, etc.

The only suitable approach consists in taking all the product' s parameters
into account from the very first specification stages: the functional
parameters (product behavior) as weIl as the non-functional parameters
wh ich are relevant to the dependability. In particular, this implies being
familiar with the environment in which the product is immerged: the
functional environment with which it communicates (this could be a process
or a human interlocutor), and with the non-functional environment
(temperature, humidity, vibrations, etc.).

The principal handicap of such an approach is, of course, the additional
constraints wh ich are made obvious early on. These constraints increase the
cost in the short term and are difficult to express in many projects. We
should note that often the economic excuse results from a false ca1culation:
as we have already emphasized, on a medium or long term basis, the cost of
a badly studied product from a dependability point of view could turn out to
be exorbitant.

A primary reason that incites engineers to postpone the treatment of
faults until the end of their project is due to the fact that they badly manage
this aspect. The traditional training schemes mainly lead students to propose
solutions to problems, asking the trainer to respond to the question:

ls the solution 1 am proposing correct?

Furthermore, designers, like their employers, often measure the results of
their work according to the quantity of the product provided and not to its
quality. For example, during software programrning step, it is easy to
measure the engineer' s productivity by the number of lines of code
produced. In this case, the time taken to avoid the introduction of faults into
the pro gram whether immediately or in the future (by its readability feature
for example) is not taken into consideration. And as long as this activity is
considered as lost time, no progress will be made.

1. Introductory Elements: Dependability lssues 9

Finally, the designer has a tendency to hide the existence of faults and the
time he/she spent to avoid and to correct them, as this is considered as
embarrassing (notion of professional negligence).

1.2.4 Definitions of Dependability

Two points of view are concerned by the definition of the dependability
notion:

• dependability as attributes of systems,

• dependability as a science.

Due to the role and responsibilities attached to them, computing systems
have to be characterized by their capacity to deliver the services for which
they have been designed. They should not fail. This ability is expressed by
attributes defining dependability of these systems.

To obtain this result, that is the actual ability not to fail, engineers
developing these products have to use protective means throughout the
whole development cycle. These methods, techniques and tools will be
regrouped in a scientific domain also known as dependability.

1.2.4.1 Product Dependability

The dependability of a product has to be considered as one of its
specification attributes, as weH as the purely functional or economic
requirements. The now classic definition given by J-c. Laprie describes the
large scope of this term but also its precise objectives:

Dependability is that property of a computer system such that
reliance can justifiably be placed on the service it delivers.

The service delivered by the product corresponds to the function which it
perforrns during its operation.

Several scientific criteria allow the trust placed in a product to be
justified, such as the reliability, the availability, the maintainability, the
testability, the safety and the security. These criteria are caHed dependability
attributes.

Reliability is attached to the study and the evaluation of the aptitude of a
product to ensure its mission in a specified environment. This criterion is
therefore concerned by the durability of the service delivered over time.
Maintainability and testability attributes concern products on which it is
possible to act in order: i) to avoid the introduction of faults, ii) when faults
occurs, to detect, to localize and to correct them. Safety is specific to
dangerous effects of failing products. A vailability measures the aptitude of a
product to function correctly, by integrating protection mechanisms

10 Chapter 1

(maintenance or tolerance). This criterion only differs from the reliability
criterion when these protective mechanisms are used. Finally, security
groups together confidentiality (non-occurrence of unauthorized disclosure
of information) and integrity (non-occurrence of improper alterations of
information). This last security criterion is not considered in this book.

The obtaining of dependable products implies capabilities, means and
tools which act on certain ofthe product's attributes. This has given birth to
a relatively new discipline which involves the analysis and the prevention of
product failures. This discipline has led to new design· and production
methods, which, when joined to the improvement of the technology used for
the realization, allow the creation of new products which have better
dependability.

1.2.4.2 Dependability Science

As a science, dependability proposes a global approach to study and
design products which provide a 'justified trust' in the service they deliver.
This approach attempts to unify the two processes which, on one hand
guarantees the achievement of a product which functions correctly and, on
the other hand, guarantees that the product will function correctly during its
whole active life in the environment in which it is being used.

Implied in several activities, such as the design, the production, and the
operation, dependability is a very active discipline which gives place to
scientific studies in many research laboratories and which leads to numerous
industrial applications. This theme can be qualified as orthogonal, as it is
used in many different domains:

• hardware and software systems considered in this book, but also the
mechanical systems, for example, redundancy techniques such as the
spare wheel of a car or the duplication of abraking system,

• biological systems, as nature offers an impressive range of efficient
redundancy techniques, like for example the duplication of numerous
organs (lungs, kidneys, etc.), which improve human dependability,

• or else socio-economic systems.

1.3 MEANS OF DEPENDABILITY

1.3.1 Evolution

Needs for dependability are not new. As soon as humans began to
manufacture weapons and tools with stone, wood and bone, they quickly
understood the need to produce solid and durable objects. The financial and

1. introductory Elements: Dependability lssues 11

commercial needs appeared later on. This notion of reliability was structured
into a scientific discipline even later according to the historic scale. The
current explosion of digital electronics and its applications to computing
have extended and amplified studies on reliability. Today, techniques allow
the products to survive Ion ger (high reliability) in isolated andlor aggressive
environments. The aerospace and nuclear domains have greatly contributed
to this development. To simplify, historic evolution reveals three main steps:

• technological improvement,

• mastering the development process,

• managing extern al relationships.

1.3.1.1 Technological Improvement

This is the first step towards the improvement of dependability. This
concerns the implementation means and aims at mastering the technological
faults. In the 1950s, at the beginning of computer systems, the first logical
electronic components used (relays, then vacuum tubes, and then elementary
transistors) had a very short average lifetime: the famous computer ENIAC
(Electronic Numerical Integrator And Computer) of the 40's had 18800
vacuum tubes, 6000 switches, 10 thousands of passive components and
offered an average life time of half an hour! Throughout successive
technological generations, SSI, LSI, VLSI, etc., the MOS integrated circuits
(pMOS, then nMOS, and finally CMOS) became more and more complex,
and economical. At the same time, their performance and their reliability
increased in a spectacular manner.

1.3.1.2 Mastering the Development Process

The continuous improvement of the reliability of physical components
has allowed developing products more and more complex in quantitative
terms (number of elementary components and of offered services) and also
qualitative terms (sophistication of the provided services). However, the
mastering of their specification, design and production stages is becoming
increasingly difficult, implying the possible occurrence of numerous faults.
Since the development of the very first computing systems, a lot of time has
been spent trying to find out how to master the effects of creation faults. In
order to mask or detect and correct errors coming from the product' s
operation, redundancy techniques were proposed, implying more hardware
andlor more software. This approach was first used in the transmissions
domain with error detecting and correcting codes, to stamp out the effects of
the parasitic aggressions that disrupt the media of transmission.

12 Chapter 1

Afterwards, certain error detecting and correcting codes defined for
transmissions were adapted and implemented into computer units such as
storage units. The new needs for logical and/or arithmetic treatment circuits
in aerospace projects, industrial command-controls, and communications,
have led to specific new redundant hardware and software techniques.

Following this, other complementary techniques have been introduced to
limit the creation of faults. Their first objective is to master the product
during its creation by using verification methods of intermediate models.
Thus, a formal product specification allows the immediate detection (without
waiting until the final stage of implementing the product) of cases of
inconsistency or incompleteness which unavoidably result in product
failures. Then, noticing that the creation faults are issued from the creation
activity, the mastering of the development process itself was investigated.
For example, in the software domain, the use of a programrning style
constrains the manner of programrning and aims at avoiding certain types of
faults induced by the difficulty in creating and modifying the program under
development.

1.3.1.3 Managing External Relationships

Finally, interest has been extended to the externat faults associated with
the interactions between the product and its environment. Nowadays, these
faults are in greater and greater, as digital systems have more and more
external (with their environment: processes, users, etc.) and internal (other
digital systems) relationships. For example, the task of regulating airplane
engines is included in the flight control software, which itself is integrated
into an avionics system. The relationships between systems have become
more complex than just an inclusion. Systems interact between themselves
and have to cooperate in order to fulfill a more global mission. For example,
by placing intelligence in the form of software and electronics in a sensor,
this device is transformed into a system which dialogues with the control
system to inform it of certain events, whereas before it was purely a slave.
Numerous faults can also result now from the interaction of the product with
the human user, due to the complexity of these interactions.

The environment mayaiso disturb the system operation, due to non
functional aggressions: temperature, heavy ion, electromagnetic fields, etc.
moreover, the products are often themselves the source of disruptions of
other systems. Far example, a mobile phone produces electromagnetic waves
which can disrupt avionics systems. For this reason the use of these
telephones is banned during flights.

1. Introductory Elements: Dependability Issues 13

1.3.2 Means

The means offered by dependability science are numerous and varied.
The related methods and their associated tools are traditionally organized
into four groups: fault prevention, fault removal, fault tolerance and fault
forecasting.

• Fault Prevention aims at reducing the creation or appearance of faults
during the life cyc1e of a product.

• Fault Removal aims at detecting and eliminating existing faults.

• Fault Tolerance aims at guaranteeing the service provided by the product
despite the presence or appearance of faults.

• Fault Forecasting aims at estimating the presence of faults (number and
seriousness).

These four c1asses of means are complemeritary and should be considered
jointly during the development of a product. For example, the
implementation of tolerance techniques to handle faults in operation is not
efficient if fault prevention and removal techniques have not been applied
during the development process. Indeed, the tolerance mechanisms assume
certain hypotheses on the faults tolerated. For instance, replicated modules
tolerate hardware faults due to ageing, as such faults are supposed to concern
one module only at the same time. On the contrary, a design fault can infect
all the modules, making this technique inefficient. Consequently, this design
fault has to be prevented or removed before operation. In the same manner,
the means of fault removal suppose the prior use of fault prevention
techniques. Effectively, fault elimination requires their detection and then
their localization. These operations are expensive in technological means
and in time. They become impractical if the number of faults treated is high.

In addition, prevention, removal, and tolerance techniques have to be
applied efficiently and pertinently, as they are very expensive. Let us take
for example the techniques of fault removal. Certain electronics industries
estimate that 50% of the manufacturing cost is due to the development and
the application of test sequences aimed at detecting faults. In the software
domain, specialists say that 30% of the development cost is implied by the
checking means of the developed applications.

1.4 SUMMARY

Introduced in the preceding sections, the main characteristics of the
dependability of computing systems are surnmarized in Figure 1.1. They are
structured into three groups:

14 Chapter J

• Jmpairments which involve faults and their progressive transformation
and propagation through the product structure as errors and faHures, and
finally their external consequences on the mission.

• Attributes which provide designers and users with criteria (reliability,
availability, maintainability/testability, safety, security) allowing to
specify the expected dependability and to estimate the actual
dependability of a product thanks to fault forecasting tools.

• Means used by the developers in order to provide the final product with
the required dependability level; these techniques are organized into four
sub-groups: fault prevention, fault removal, fault tolerance, and fault
forecasting.

• Faults

Impairments • Errors
• Failures
• External consequences

• Reliability

• Availabillty
Attributes • MaintainabiJityl

Testability

• Safety
• Security

• Fault Prevention

Means • Fault Removal

• Fault Tolerance

• Fault Forecasting

Figure 1.1. Dependability characteristics

The organization of the book is based on these groups. A first part deals
with the impairments and analyzes all basic notions of destructive
mechanisms. A second part provides the reader with aglobai overview of the
protective means that can be used to increase the dependability of a product,
and the attributes used to measure this dependability. A technical chapter is
dedicated to redundancy which plays a major role in all protective
techniques. Parts three and fourth aim at mastering the most important
techniques of fault avoidance and fault tolerance means.

Chapter 2

General Context

In this chapter, we define a general context in which the dependability
concepts can easily be introduced. We consider hardware and software
products, created and designed for applications embedded in a given
environment. This general scheme corresponds to a wide and significant
range of real situations. In section 2.1, we firstly present the product in the
final context of its application. Then, in section 2.2, we note the principal
stages which led from the initial requirements to an operational application,
according to a simple linear life cyc1e. We follow this life cyc1e in section
2.3 by tackling the modeling of a product as a system. To finish, in section
2.4, a simple example of a drinks distributor illustrates the notions presented.

2.1 APPLICATION CONTEXT

The c1ass of applications considered is represented by Figure 2.1. We
distinguish three parts:

• The product is a physical entity destined to satisfy a need of one or
several users. The products considered in this book are implemented by
hardware and software technologies.

• The user is the grouping of entities interacting functionally with the
product via its inputs/outputs. The user is also called the functional
environment. A user mayaiso be another product such as an industrial
process (e.g. an engine) or a human operator using the product.

• The product-user couple is immersed in the non-functional environment
often simply called environment. This notion refers to external entities

17

J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

18 Chapter 2

which have an impact on the product's behavior without direct action on
its inputs. It is defined by a set of non-functional parameters such as
temperature, humidity, vibrations etc.

Figure 2.1. Application dass

An application domain typical of this model concerns the process control,
which associates a regulator (the product) with a user constituted of a
process (the system controlled by the regulator) and a human operator. We
remark that the process, functional partner of the product, is very often itself
a manufactured system (e.g., an engine or an electric heating system).

Only the product is the object of our interest in this book, relatively to the
dependability. However, the product dependability also depends on the user
and the non-functional environment. Take for example an automobile ABS
system. The product is an electronic regulator destined to satisfy a need: to
avoid the blocking of the wheels when the braking is too strong. This
regulator interacts with the user composed of two elements: the driver and a
physical device constituted by the hydraulic braking system. The process
sends the speed of the wheel' s rotation to the regulator which then computes
the control signals to be sent to the braking system. The non-functional
environment is defined by a large number of parameters characterizing the
vehicle, the road, etc. For instance, the non-functional environment may take
into account electromagnetic radiation coming from diverse external sources
(radar, mobile telephone, engine, electrical atmospherics parasite, etc.) as
they may act on the electronic product.

Integrated into its environment, the product must ensure a mission which
specifies the product' s objective, Le. the function to be performed and its
duration.

• The function defines what the product is intended for and justifies its
existence; it expresses the interaction with the user to whom the product
is connected, that is to say the relation between the inputs and outputs of
the product.

2. General Context 19

• The duration or operational lifetime of the mission varies according to
the application: this can be a few seconds (missile flight), hours (airplane
flight), months (space mission) or years (industrial regulation system).

For example, an ABS system can be defined as a function which reduces
the pressure of the hydraulic braking system by a given amount via actuators
when the speed of the wheel' s rotation is inferior to a certain value
depending on the vehicle's speed.

We call delivered service the product's real behavior when placed in its
applicative environment Thus, the function is the desired service when the
delivered service corresponds to the one effectively obtained.

Product Examples
The following examples and their variants described afterwards will

illustrate the notions and techniques introduced in the following chapters.

Temperature Regulator. The first product is a boiler controller. For
example, it is constituted of a micro-controller which executes a regulation
program. The controller receives sampled information about the temperature
of the heated recipient. It then elaborates the reactions on the heating system
by using an algorithm which takes into account a behavioral model of the
recipient. These reactions act on an electro-valve controlling the combustible
flow. The significant elements are:

Product: Regulator + temperature sensor + electro-valve.

User: Heated recipient + heating combustible + the human operator who
fixes the regulation instructions (desired temperature).

Non-functional environment: external temperature, corrosive gases,
pressure, etc.

Drinks distributor. The drinks distributor has electromechanical and
electronic parts. For example, the distributor is made up of an automaton for
the choice of drinks, another one managing the money, and a third one for
the drink' s distribution. The functional environment includes the user as well
as the service for supplying water, coffee cups, etc. We note that one can
have a different point of view about this application by considering that the
product is the purely logical part of the distributor (a set of interconnected
automata) and that the functional environment includes the user, the
electromechanical parts and the management of the fluids, ingredients, and
so on. In this case, the objects are defined in the following way:

Product: the logical electronic part of the control system (Programmable
Logic Controller - PLC -, micro-controller running a program, Field
Programmable Gate Array - FPGA -, etc.).

20 Chapter 2

- User: the process which inc1udes the electromechanical parts and the
constituents of the drinks (cups, water, drink doses), and the human who
uses the machine.

We can note that such a system makes a second human intervene: the
operator responsible for recuperating the money and supplying the machine
with drink doses. The product also has to interact with this user.

Arithmetic and Logic Unit. An Arithmetic and Logic Unit is a product
interacting with a human operator (such as a pocket ca1culator) and/or an
electronic process (circuit embedded in a computer). Both constitute the
functional environment of the product. The non-functional environment can
be characterized by the temperature which has important effects on
electronic components. In particular, if this temperature is too high, the
service delivered can be different from the expected function.

Stack. A stack is a product which stores data. It can write words in
sequential order and read them in the reverse order of their writing. This
memory unit is very useful in computing; it can be implemented either as a
hardware component (specific electronic circuit) or a software product
(offering the functions to write and read). We will consider two significant
applications:

• the management of subprograms calls using a software stack to back-up
the local variables and the calling subprogram return address,

• an interrupt management system to back-up the current application
context (the values of some internal registers) when an interrupt occurs,
to restore this context when the interrupt handler execution is completed.

In the first case, the functional environment is the executable pro gram
which calls the write (PUSH) and read (POP) functions.

In the second case, the environment is an electronic circuit which
provokes the back-up (respectively recovery) of the context by PUSH orders
(respectively POP orders) at the initialization of an interrupt treatment
(respectively during its conc1usion).

Industrial robot. As illustrated by Figure 2.2, an industrial robot is made up
of several objects belonging to two parts:

• the product called the controller, which can be a control pro gram running
on a hardware platform,

• the user inc1uding the robot, the tools it uses (machine tool), the pieces it
treats (manufacturing and assembly) and the human operator.

Other humans can also interact with this product: the maintenance agent
and the instructor responsible for the training of the robot.

2. General Context 21

Figure 2.2. Industrial robot

2.2 LIFECYCLE

2.2.1 Principles

As already pointed out in the introductory chapter, the failures which
affect a product' s mission arise from the faults which appear all throughout
the life of this product. It is therefore necessary to first identify clearly the
stages of the life cycle of a product in order to analyze the type of faults
associated with them and then to apply the appropriate protective
mechanisms.

Life cycle starts with the expression of a need, which defines the
expectations of the future product' s users. It gives an answer to the following
question: why do they have a need for a product? This need is formalized by
the requirements which justify the creation of a product. They are
determined from future users by means of requirement capture techniques.
This stage is not considered in our book. We start therefore the development
of a product from its given requirements.

In order to facilitate our study, we consider a simplified cycle which has
four phases (also called stages or steps here), as illustrated by Figure 2.3:

• the specijication (or establishing of an initial contract) which defines the
product to be created by the expression of specijications,

• the design which transforms the specifications into a system which is a
priori an abstraction without physical reality,

• the production (also called manufacturing or implementation) which
finally transforms the system into areal product using hardware andlor
software technologies,

22 Chapter 2

• the operation (or useful life or utilization or exploitation) which
integrates the product into a given environment to execute a mission.

Requirements D~igned System Product

Figure 2.3. Simplified Life Cycle

The development process (or development or creation process) of a
product groups together all the operations necessary to obtain the final
product. So, in the general framework of our linear life cycle, this process
regroups the three phases: specification, design and production.

Other development process models break up or combine these phases.
For example, the spiral cycle iterates the preceding phases by progressively
taking into consideration diverse aspects of the requirements. However,
these models do not question our explanations regarding to destructive and
repair mechanisms that will be studied for each phase.

2.2.2 Specification

Written and signed by the dient (the person who has proposed the
project), the designer (the person who creates the product based on the needs
expressed by the client), and sometimes the user (this word implies here the
human who represents the functional environment of the future product), the
specijication formalizes the characteristics of the product to be created.
Figure 2.4 symbolizes this relationship between the three partners.

SpecJflcst10ns
. mission
. dependability attributes

Figure 2.4. Initial Contract

2. General Context 23

From an expression of the requirements, generally written in natural
language, this initial phase of the project establishes the formal or non
formal specifications constituting a contract. This contract defines two
points:

• the mission, also calledjunctional characteristics, of the product, that is
to say the function or service to be delivered by the product and the
duration of its operation,

• non-functional characteristics, dealing with product dependability
requirements (according to attributes such as reliability, availability or
safety) and constraints (such as temperature or radiation) of the non
functional environment of the future product.

The specifications indude the formal definition of the relationships
between the product and its environment (functional and non-functional). In
particular, the role assigned to the product and the constraints of the
environment for wh ich this role is desired must be defined. For example, the
contract defining a program can have to specify the constraints on its
executive environment in order to guarantee a good functioning. If a user
acquires a workstation which integrates this software, other constraints are
expressed (the temperature of the room, etc.) to guarantee a good functioning
of the hardware. Too often, non-functional environment parameters are
missing or incomplete, leading to numerous ulterior problems.

In addition, the expected trust in the service delivered by a product, that
is its dependability requirements, has to be quantified in terms of a set of
attributes the values of which have to be specified. The effective values will
then be established at the end of the development process. For example, we
will specify the reliability of a certain circuit with a probability lower than
10-5 that the product will have a failure during a mission defined for 1000
hours. Then, this requirement will have to be compared with the estimated
reliability of the final produced circuit.

Let us note that the two aspects of the non-functional characteristics are
correlated. For instance, the mean time to first failure (reliability metrics) of
an electronic component is strongly correlated with the environmental
temperature. A required value for the mean time to first failure will not be
guaranteed if the temperature is too high!

In numerous cases, the dient and the user are the same physical person.
Sometimes, the dient is also the designer. However, these three partners
(dient, designer and user) will be voluntarily distinguished here because
they correspond to different and sometimes antagonistic points of view. This
is the case conceming the notion of service delivered which corresponds to a
user vision of the functioning of a product. This vision has however to be
accepted and understood in the same way by the three partners.

24 Chapter 2

Unfortunately, very often the contract is not a formal notion implying the
three partners: for most industrial products, the user who buys a product has
not participated in the contract which has been established by the client (who
imagined the product) and the designer (who created the product).

2.2.3 Design

2.2.3.1 Introduction

Design is a process transforming the specifications into a system which
constitutes an abstraction of the future product. What distinguishes the
modeling from the product itself is either its incapacity to execute itself
(being a simple description), or the fact that it does not take into account the
available execution means involved during the operational phase. For
example, it is possible to represent and to simulate an application carrying
out several tasks on a mono-processor without taking into account the
distributed aspect of the execution means (the final product has to operate on
a multi-processor network).

The product is rarely obtained directly from the specifications at one go.
lt results most often from a succession of linked stages, the number and the
nature of which depend on the type of product considered and on the chosen
design process. Each stage leads to the description of the system by a model.
Thus, the more complex is the behavior described by the specifications, the
more numerous are the stages to be carrled out. Actually, each stage refines
the results of the analysis of the previous stage (from a general design
towards a detailed design). In addition, this refinement process depends on
the implantation technologies chosen according to performance criteria
(which may favors electronics) or maintainability (which may lead to the
development of a software model) or others.

Sometimes, a step of realization pro vi ding a model of the product
concludes the design phase. This step produces a model which takes the
features of the execution technology into account. This could provide, for
example, an executable program when software technology is employed, or
a CMOS technology circuit for a hardware implantation. This step is
integrated into the design phase in order to facilitate our study. lt should be
noted that this inclusion is justified, as the last phases of design using
technological means are often automated. For example, a pro gram written in
a programming language is a model for which the implementation, that is to
say the executable code, is obtained thanks to a compiler.

We are now going to succinctly present the processes of design used for
hardware (section 2.2.3.2) and then software (section 2.2.3.3) systems, and
to finally conclude on their similarities (section 2.2.3.4).

2. General Context 25

2.2.3.2 Hardware Design

The design process of an electronic circuit can be organized into three
successive levels implying different models and methods (Figure 2.5).

- --- -- --

I Behavioral I

Structural
· FunctionaJ HDL
• Logic
• Electronic

."

Technological
. Symbolic layout
. Masks

Figure 2.5. Creation steps of an integrated circuit

• The behaviorallevel (or system level) expresses the global functioning of
a product without any knowledge of its structure. For example, the used
model can be a finite state machine or a set of input/output sequences. If
no formal specification has already been provided, this level generally
involves a first stage of formalization of the system.

• The structurallevel, on the contrary, is supported by a structural model:
the system is structured into interconnected entities called modules. Here
we can distinguish three intermediary levels:

~ The functional hardware oriented level HDL (Hardware Description
Level), such as VHDL (VHSIC Hardware Description Language, a
IEEE 1076.1 industry-standard) and Verilog, which are the principal
languages used nowadays in the industry); this level uses reference
hardware modules (Arithmetic & Logic Unit, registers, counters,
memories etc.);

~ The logic level, which reveals the system as a structure of
intereonneeted elementary logical modules: gates (AND, OR, NAND,
NOR, XOR, ete.), flip-flops and various logic networks; the resulting
strueture appears as a netlist of intereonneeted eomponents;

26 Chapter 2

~ The electronic level, which employs transistors (switching elements)
organized into networks (static and dynamic logical networks, etc.).

• The technological level (also called layout level) expresses the physical
reality of the integrated circuit in the form of a layout, that is to say a
topology of severallayers. For example, the MOS technology uses P & N
diffusion weHs, poly silicon gates, metall, metal 2, etc. This level breaks
itself down into two sub-levels:

~ The symbolic level where the different technological layers are
represented by color lines, such as William's c1assical N-MOS stick
diagram pop~arized by the Mead & Conway' s book: green =
diffusion, yellow = ionic implantation, red = polysilicon, blue = metal.

~ The mask design level which expresses the real topology of the
different masks necessary to the production of the integrated circuit.

In the case of an electronic system with supply circuits and other
components associated with the electronics (sensors, actuators, magnetic or
optical disks, signal couplers, etc.), the design involves the preceding levels
(behavioral, functional, structural, technological) for each electronic part, but
also carries out integration and assembly stages, leading to several PCBs
(Printed Circuit Boards) interconnected by various connection devices.

2.2.3.3 Software Design

As for hardware systems, the behavioral model of a software system is
formalized if this has not already been carried out during the specification
stage. Following this, a structuring of the system by breaking it down into
sub-systems is established (preliminary design), then refined (detailed
design). According to the type of product, the control relationships between
the sub-systems are:

• Sequential relationships: sub-systems offering services called for in
sequence, eventually in a repetitive (loop) or conditioned (if
then ... else ...) manner,

• Parallel relationships: sub-systems are cooperative and/or competitive in
an independent way (parallelism) or being constrained by precedence
relationships (synchronization).

The design process is reiterated on each sub-system. The different
expression models, resulting from each design stage, are expressed by
notations (for example HOOD, UML or programming languages).

This work finishes by a programming stage which transforms the last
design model into a prograrn. This operation is made easier due to the
automatic generation of a part of the source code by development tools.

2. General Context 27

Finally, the executable program is obtained using a compiler and a linker.
It makes use of the services offered by the execution means: a
microprocessor interprets the basic processing services and an operating
system offers more abstract management services (management of
inputs/outputs, tasks, etc.).

2.2.3.4 Similarities

The presentations, carrying out separately the two implementation
technologies in the two preceding sections, show a sirnilarity in the process
and the means used. Three design levels are implied: behavioral level,
structurallevel and technologicallevel.

• First of all, a behaviorallevel of the description of the product formalizes
the specification in both cases). The models used are the same: automata,
Petri Nets, StateCharts, etc. This modeling allows the designer to
understand what the product needs to do, and to detect information lacks
and inconsistencies. For example, in the case of a Petri Nets model, the
designer can detect certain undesirable deadlock situations. It should be
noted that this work needs to be carried out during the specification stage.
This is sometimes impossible when the contract is written in natural
language.

• The structural level is also present in both cases. The module (or
component) notion represents the break down of a system into
interconnected sub-systems according to links of type 'is composed of
(composition relationships) and 'calls to' (service relationships). At the
beginning, these modules are abstract elements, and then they are
materialized at a logical level (HDL modules or subprograms) to
progressively reach the technological level (transistor networks or
programrning language statements).

• The technological level concerns the 'materialization' of the design
modeling to obtain an executable system. In the case of software, this
involves the translation of the features of the programming language
used. Two sub-levels exist jointly for the two technologies:

~ The symbolic level which gives an abstract view of the execution
means. We have already quoted the example of the stick diagram in
electronics. We can also quote the abstract machine associated with
the software programrning language. For example, the use of
subprograms implies the use of a stack which allows the storage of
return addresses by the caller (stack machine).

28 Chapter 2

~ The physical level which implements the concepts of the previous
abstract view. For example, according to the hardware used, the
abstract notion of stack necessary for the management of subprograms
will be directly offered by the microprocessor (PUSH and POP
instructions) or should be simulated by software features (stack
implemented as an array and a 'top of the stack' pointer). In electronic
technology, the integration means from the layout level to an
integrated circuit implies numerous phases which depend greatly on
the technological processes used.

To conc1ude, it should be noted that in numerous cases the first design
process phases are independent of the final implementation means (software
or hardware). Several phases of the c1assicalfunctional approaches (SA-RT)
or, more recent object approaches (UML), can be applied both to hardware
and software products.

2.2.4 Production

The production stage ensures the physical realization of a manufactured
product having already been designed. Industrial constraints such as
standardization, productivity and quality influence this phase. The actual
means are very varied according to whether we are creating electronic,
mechanical, electromechanical or even software equipment.

In the case of electronic systems, it would involve buying and/or
manufacturing passive or active components (Standard components, ASIC,
or Full Custom Integrated Circuits) or even circuits integrating severallevels
of functionality and power (like the System-On-Silicon - SOS), placing them
on printed circuits, interconnecting the cards by diverse connection means,
mounting these cards in racks, conditioning and packaging the final product.
The system obtained at the end of the design phase will probably be a little
bit modified in order to satisfy these production constraints. For example, if
a system model is too complex to be economically designed by a unique
integrated circuit, it is necessary to break it down into interconnected sub
modules, wh ich adds a supplementary stage. The reuse of available
components can also modify the result.

In the case of software, the implementation and adaptation of the product
(a program) in its final context must take into account the executive
environment: hardware platform (microprocessor, input/output unit, etc.) and
operating system (real-time kerneI, drivers, etc.). Frequently, this activity has
been handled at the last stage of the design. The production of the software is
essentially the copying of files onto varied media supports (ROM memory,

2. General Context 29

CD ROM, etc.) or even the transmission of data onto a distribution network
(specialized lines, local network, Internet, etc.).

2.2.5 Operation

U seful stage in the life cyc1e of a manufactured product, the operation of
the product is the outcome of the creation stages. The product is placed in
interaction with the user in order to execute the defined mission in its final
environment. The use duration is generally longer than the creation stages. It
implies relationships with humans (users, and maintenance agents).

The repairable products integrate another stage linked to the operational
phase. Actions processed on the product structure during its useful life are
named by the generic term of maintenance. The first goal of this stage is to
proceed to the operations of fault detection and removal necessary to reach
the satisfaction of dependability requirements (preventive and corrective
maintenance). ISO 8204 defines corrective actions as actions taken to
eliminate the causes of an existing non-conformity, defect or other
undesirable situation in order to prevent recurrence. In addition, economic
competition leads to the adding of supplementary functionalities or to the
improvement of the product's qualitative execution performances,
ergonomic properties, etc. of existing functionality. Hence, the specification
may be modified, leading to the design of a new version of the initial system
and an adaptation of the production process (evolutive maintenance).

From the product's designer's point of view, the maintenance phase is
very important although often underestimated. In effect, numerous products
have a creation wh ich lasts 3 to 5 years and a life duration of 20 to 50 years
(it is the case of avionics products). This means that the maintenance costs
charged to the designer can often be as expensive as development costs of
the first version of the product.

2.3 PRODUCT MODEL

During the specification and design stages, the product is represented as a
system by using different modeling tools also often called languages (when
their semantics is formally defined) or notations (when their semantics is not
formal). For instance, Petri nets, FSM (Finite State Machines), Ada and C
languages are modeling tools. Elements of a modeling tool are called
features.

A model is one instantiation (one use) of a modeling tool to express a
specific system.

30 Chapter 2

A system is a set of components or sub-systems that act together as a
wh oIe to achieve a given mission, that is to say a givenfunction for a
given duration.

The system reveals structural aspects and functional aspects introduced in
the following seetion.

2.3.1 Product Structure and Functioning

As introduced in section 2.2, most designs of complex products lead to
models structured into sub-systems called components interconnected by
logicallinks. We come back to this notion in order to precise its meaning at
a system level, independently from hardware and software aspects.

IA component, also known as a module or as a sub-system, is an entity
of a system which carries out a precise function.

The abstraction level of this notion is relative: a component is for
example apart of an integrated circuit, a complete integrated circuit, a board,
a subprogram, a task or package, but also a computer or a network server. In
fact, a cQmponent is a system considered as apart of another system.

The logical links between the modules are of a very variable nature:
electrical wires carrying logical signals (levels or pulses), media transporting
messages, call mechanisms for subprograms with parameters passing or
synchronization protocols for tasks in software, etc.

The modeling which defines a system as a set of connected components
is the structure of the system.

As a module is a sub-system, the function which is associated with it is
specified with a classic behavioral model such as a 'logical expression' or a
'finite-state machine'. As for a system, the module's external interface has to
be defined by input and output variables. Its behavior also has to be clarified
as the module is reactive: it reacts to the application of new input values by
provoking an internal evolution, leading perhaps to new output values.

A module's behavior is defined by attributes which characterize it at the
considered level of abstraction. If we take the example of an elevator, the
position of the cage is one of the attributes wh ich can be useful when
identifying its behavior. The values taken by these attributes define the state
wh ich is a characteristic property of a module at a given moment. For
example, the states of the attribute cage position could be 'ground floor',
'first floor', . . . , 'twelfth floor'. Another attribute could be the movement
having three states: 'up', 'down' and ' stop'.

The behavioral model is therefore expressed by the changes of state of
these attributes. For example, a pro gram' s internal variable can be assigned

2. General Context 31

by values defined by a type. The actual value evolves during the running of
the program, which illustrates the notion of state evolution. A circuit using
several flip-flops circuits provides another example. The state of this circuit
is therefore characterized by the binary configuration of these flip-flops
(each one switched 'on' or 'off') which evolves with time.

The global model of a system structured into interconnected modules is
called structured-functional model because it defines a system by its
structure (the modules and their links) and the behavior of its components.
This is illustrated by Figure 2.6 and is found as much in hardware systems as
in software systems.

System
' ~.";O" '-"'- \j M12 .'

I-~ MI
'.< "0,;

M3 ---+ ~ ,<-.&. Input .);.~ . Output --.. • ~ Ii' :~ :'o-::} .'\
~a ~ " "

e .i;" ? ' ... ~:\
" '. "

/~ M2
.,

:.. ",'1','\:

Figure 2.6. Product structuring

2.3.2 Hierarchy

In a hierarchical structure, a 'father' module breaks down into
interconnected 'children' modules, wh ich can themselves be broken down in
a recursive manner until reaching 'leaf' modules which do not have children.
As shown by Figure 2.6, the product breaks down into two children: Ml2
and M3 coupled by two links. Ml2 breaks down into two interconnected
children: MI and M2. Hence, the system is organized according to a tree
structure, the leaves of wh ich are non-structured modules. This hierarchy
makes three levels appear: the global system, the modules Ml2 and M3, then
finally the modules MI and M2. Looking at this hierarchy therefore reveals
three interconnected modules: MI, M2 and M3.

This is a compositional hierarchy because the system can be uniquely
represented by the leaves of the tree. The intermediate model M 12 is only
present in order to give an abstract view of apart of the product. A second
hierarchy, called use hierarchy, can be defined. It reveals the service
relationships linking the components. For example, MI uses M2 in order to
provide a result sent to M3.

32 Chapter 2

Let us consider two software examples illustrating these two hierarchy
types. An Ada procedure may declare local procedures defining a
compositional hierarchy. An Ada program may use external functions (such
as input/output services), defining a use hierarchy.

The hierarchy notion leads us to express the relativity of what has been
defined as 'product', 'users' at the beginning of this chapter. Let us consider
the system shown in Figure 2.7: a controller is coupled to a process in a
given non-functional environment. The controller product is structured as a
regulation program (RP) running on a hardware platform (micro-controller
and interfaces). According to the design level, we will consider as product
the complete controller or the regulation software only.

I rg.1 ~ --.!
Non-Functional ,

Figure 2.7. Insertion of a product into a control system

2.3.3 Examples

Example 2.1. Regulator

A temperature regulation system has been designed by means of three
modules interconnected by logical Buses: an arithmetic and logic unit
(ALU), a control unit, and a memory. The control unit takes its instructions
and data from the memory and uses the ALU in order to calculate the control
signals sent to the process. This product is an illustration of the structure of
Figure 2.6: Mi2 is constituted of the control unit (Mi) and the ALU (M2),
and M3 is the memory. This is a compositional hierarchy.

Example 2.2. Software

The structuring notion applies also to software: a pro gram calls
subprograms which call other subprograms, etc. The calls are correlated by
relationships:

• sequential (we execute Athen B),

• conditional (if .. then . . else ..),

2. General Context 33

• repetitive (for and while) .

Hence, these modules are linked and they exchange data (variables).
As for hardware systems, software programs reveal structure and

hierarchy. Figure 2.8 illustrates a compositional hierarchy corresponding to
the following program:

begin

Ai

B(X) i

while C(X) loop
D(X) i

end loop i
E(X) i

endi

The link (1) represents the stream of control (B starts its execution after A
has signaled its completion). The link (2) adds a stream of data representing
the variable X. We should note that the component C' corresponds to a
modeling of the statement 'while' in the programming language. This
integrates the component C and the selection of the relationship (3 or 5)
activated according to the Boolean result of the evaluation of C' .

Begin
System

End

x

Figure 2.8 Structural model of a program

2.3.4 Refinement Process and Primitive Components

As mentioned in the previous seetion, the function of each module
constituting the system is generally translated by a structure of sub-systems.
The functioning of each of these sub-systems is therefore specified. This
process is reiterated going down until reaching its 'primitive' components
(that is to say which are not broken down). The transformation of a product
behavior into a structure is obtained by successive stages leading to a
hierarchy of modules. The intermediate modules have a specific behavior

34 Chapter 2

which is put into work by the child modules. The modules at the lowest
levels also have a behavior which is meant to be available.

We only consider systems whose behavior can be represented by discrete
models which are the most used in computing. We put them into opposition
to continuous models which are often those of the controlled processes. For
example, the temperature or the speed of an engine may vary continuously.

Example 2.3. A software behavioral model

In section 2.3.3, we showed that a program constitutes a system's
structured model. The bodies of primitive sub-systems (not broken down)
express a behavioral model. This model has attributes such as the parameters
and local or global variables of a subprogram. For example,

procedure Push(X in Element} is
begin

Top : = Top + 1 i
Stack (Top) := Xi

end PUShi

where Top and Stack are two variables external to this procedure
(global variables).

These two variables can take different values which define the states of
the behavior of Push. Thus, if Top is inc1uded in the range [0 ... 100], this
variable then introduces 101 states. The behavior of the statement Top : =
Top + 1 i is then described as astate change associated with the states of
the variable Top. Thus, the execution of the procedure can be modeled as
state changing.

2.4 LOGICAL PART OF A DRINKS DISTRIBUTOR

To conc1ude this chapter, we consider a simplified version of a drinks
distributor. It has the following objects:

- User: the person who uses the distributor and the maintenance agent,

- Client: the person who launches the project of the distributor (who is
probably the distributor dealer),

- Designer: the person who creates the distributor.

In this section, we provide an overview of the different stages of the life
cyc1e of this product. Beforehand, let us examine the c1ient' sexpression 0/
requirements. It could be to eam money by selling drinks or to allow users to
quench their thirst. The choice between these two needs is not insignificant,

2. General Context 35

since in the first case, a method of paying has to be specified and designed.
In addition, the possibility of obtaining a drink without paying is therefore a
failure of the product, which is not the case if the second need is considered.

2.4.1 Specifications

The specification defines the inputs and outputs of the system (interface)
and their relationships (behavior). This last behavioral model must contain
the checking that the chosen drink is available, and that the means for drink
distribution (cup, liquid, sugar, spoon, etc.) functions correct1y. The chosen
drink should only be delivered if the user pays the asked amount. A cancel
button allows the distribution process to be stopped (if the drink has not
already been released) and the money to be given back.

We assume here that only one type of drink is delivered (Drink-Delivery)
and that only one type of coins is accepted (Coin). The drink is served as
soon as one presses on the Selection button and the change money is given
back (Change-Return) . If aselection is cancelled (Cancel), the money is then
given back (Change-Return). The maintenance agent collects the money (by
the cornmand Collect-Coins which leads to the distribution of the money
Money-Lejt) and fill up the doses of drinks (Add-Doses).
This global definition has to be formalized by expressing: the product's
interface with the user (see Figure 2.9), and its expected behavior, here
described by an automaton (see Figure 2.10).

Coin -+
Selection -+ Drinks

Cancel -+ Distributor

Drink-Delivery

Change-return

Money-Ieft Add-doses -+
Collect-Coins -+
~----------~~~~----

Figure 2.9. The Interface of a drinks distributor

This is obviously a specification model and not a design model, as it does
not describe the means of putting the automaton into action and other
necessary operations such as the addition of entered coins, the ca1culation of
the money to give back, as weIl as the ways of detecting the introduction of
coins, cancellation, the distribution of the chosen drink, the adding of doses,
or even the money collecting by the maintenance agent. On the automaton in
Figure 2.10, Sum stores the money introduced by the user, Total is the
accumulation of money entered in the machine, Amount is the price of the
drink and Stock is the number of available doses of drinks.

36 Chapter 2

The behavioral specification expresses that the selection of a drink for a
sum inferior to the amount required does not have an effect on its behavior.
The user can then add more money or cancel. On the contrary, this situation
could have been interpreted as having an effect equivalent to a cancellation.
This example therefore illustrates the importance of the specification stage
wh ich implies choices which then influence the way of using the machine
and which therefore necessitate a discussion with the c1ient. In defining
'correct functioning', the specification will also be the fundamental way to
state whether the product is failing or not when being used .

2.4.2

• Selection AND
(Sum ~ Amount)

Design

Figure 2.10. Behavior of a drinks distributor

The formal behavioral description has been provided in the previous
stage. The structural modeling has to reveal interconnected modules.
Numerous refining choices are possible. Figure 2.11 proposes a structure
which makes two modules appear: a money device which manages the
money, and a drink delivery module which manages the supplies.

The 'Money Manager' module accumulates the change provided, gives
back this money when a valid cancellation is carried out and finally renders
all the money contained when a demand is made by the maintenance agent in
charge of the exploitation of the machine.

2. General Context 37

The 'Drink Delivery' module makes the drink available when the drink
has been selected and when the drink is 'selectable', i.e. when a sufficient
sum of money has been received. This last point justifies the link Selectable
Drink between the modules 'Money Manager' and 'Drink Delivery'.

Coin- f-to Change-return (M)
Money

Cancel - f+ Manager Money-Left (A)

Collecl-Co;ns - f+ Seledllble

Deüvereh

-Drink ..
Selection Drink

Add-Doses (N)
Dellvery -+ Drink-Delivuy

Figure 2.11. Structure of the distributor

In addition, when the drink has been served, the signal Delivered-Drink
is se nt to the module 'Money Manager' before it gives the change back.
Then, each of these modules has to be studied separately and first of all its
behavior specified, for example, by using an automaton or an algorithm.

We reach therefore the technological level concerning the execution
means: hardware and software. The software will indeed be supported by
electronic devices (rnicro-controUer for example) and will have to
communicate with mechanical devices (detection of the introduction of a
coin for example) thanks to other electronic components (an interrupt se nt to
the rnicro-controller for example).

We will not refine this design here. However, we should note that the
software part of the design requires two types of studies:

• At the symbolic level, giving an abstract view of the means: for instance,
the two modules 'Money Manager' and 'Drink Delivery' will be
implemented by associating a task with each module and by expressing
their sequencing in relation to external events (Coin introduced, pressing
on the Cancel button) and their synchronization (for example by
Delivered-Drink signal).

• At the physicallevel, implementing the concepts of the preceding abstract
view: for example, the occurrence of the Cancel event could be
implemented by means of an interrupt se nt to the rnicro-controller which

38 Chapter 2

supports the execution of the software associated with the part which
manages the money.

In the case of a uniquely hardware design, each module will be
transformed into a specific integrated circuit. The communication between
these two physical modules is ensured by a protocol based on the signals
Selectable-Drink and Delivered-Drink.

This example shows again the number of choices that the engineer has to
do, when designing a product.

2.4.3 Production

Inevitable adaptations of the product obtained at the end of the design
stage will be necessary to comply with production constraints and standards.
The production introduces specific notions such as the cost of the used
materials (in particular the electronic components, but also the royalties on
executive software or the graphical environments if such tools are used), the
assembly duration, time to deliver the product, and finally the yield of the
production line. It is dear that these constraints have to be considered a
priori as criteria intervening in the design choices. The production concems
nonetheless specific capabilities. Thus, just as the engineer has dialogued
with the dient during the establishing of specifications, he/she has to do it
with the people in charge of production during the design stages. The dient
intervenes again at this stage to establish the standard documents of
assembly and use.

2.4.4 Operation

The final use requires certain complementary means and actions, such as
the product' s physical installation on the site of operation and the
information and the training of the users when the product is more complex
than a drinks distributor. It is necessary to resolve certain specific problems
such as the connection to an electric power network and the distribution of
water necessary to make the drinks.

Finally, it is necessary to define a maintenance policy in order to get the
money, add drink doses, and to detect and repair all eventual functional
anomalies, and also to improve the product performance and functionality.

Chapter 3

Failures and Faults

In this chapter, we begin the study of impairments to the dependability of
a product with the analysis of failures and faults. From the observation of
anomalies in the behavior of a product during its use, we define in section
3.1 the notion of failure relative to changes in the delivered service. In
section 3.2, we identify and c1assify the various causes of failures, known as
faults, according to several criteria. In section 3.3 we then explore the life
cyc1e of hardware and software products, looking for the diverse faults
which can appear. Some faults will be analyzed using the example of a
drinks distributor in section 3.4. We conc1ude in section 3.5, providing a
c1assification of faults, and assessing its interests and its limitations.

3.1 FAlLURES

3.1.1 Definition

As stated in the introduction, experience shows that a certain number of
issues can appear during the useful life of any product, just as weH an
automobile, as a television or a drink distributor. Functioning anomalies of a
product are observed during its use in its application context. Figure 3.1
shows some examples of incorrect behavior of drink distributors.

Firstly, we reckon a product presents a failure during its use if the
delivered service does not conform to its requirements. This notion of failure
is however ambiguous, as an expression of needs can lead to diverse
interpretations, that is to say to diverse expectations of the service to be
provided by the product. The expectations of people intervening (c1ient, user,

39

J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

40 Chapter 3

designer or manufacturer) can vary somewhat. A dient' s or user' s point of
view in terms of requirements is not necessarily the same as that of the
designer or the manufacturer!

User
Point of Vlew

• No spoon/cup is delivered with the coffee
• Tbe delivered drink does not

correspond to the selection
• Change is no longer retumed

• Coffee is too sweet or too bitter
• It is too much expensive
• 2Sc coins are no longer accepted

Figure 3.1. The distributor does not function correctly

A user of a drinks distributor, can effectively reckon the service he/she
expects is not given because the spoon or the cup does not fall into place, or
the machine takes the money and does not give back change, or else the
coffee does not have enough sugar or is too bitter or even that it is too
expensive. The manufacturer of the machine can have a different opinion,
refusing as failures the last three cases (Figure 3.1). Moreover, the
requirements interpreted by one of the partners of the initial contract can
evolve as time goes on: the user tastes evolve.

What could be said about a distributor which only accepts t.4$ coins,
whilst still providing a p leasant drink? From the dient' s point of view, the
system responds to a need: to gain money honestly. Moreover, it does not
satisfy the user who only has a Y2$ coin; this distributor does not respond to
hislher needs at this time. This point of view may be acceptable if the three
partners participated effectively in the initial contract. We often meet
different situations for which the designer-dient couple defines a product
responding to a need, the user adhering to the contract latter on. This is the
case with the majority of consumer goods: the user of a television did not
participate in the contract wh ich led to the design of the appliance!

We therefore understand that such adefinition of failure is often subject
to conflicts between the partners: this is a usual problem of user-seIler
relationships in everyday life, and all of us have had this experience.

This source of conflict is elirninated as soon as the service that has to be
delivered is expressed in a complete and dear way, and if all the partners
accept its definition. The needs are then translated in the form of contractual
service delivery, established during the specification stage. The needs to be

3. Failures and Faults 41

considered integrate at the same time those of the dient ("earn money from
its product", "low maintenance costs", "reduced appliance costs", etc.), those
of the future users ("be able to use all types of coins", etc.), and those of the
designer and the manufacturer ("fairly high price in order to cover the costs
implied by the product study", etc.). The specification makes appear not only
functional aspects interesting to the user (use of the distributor), the dient
and the designer (large stocks of coffee in the machine in order to reduce the
refilling operations), but also non-functional aspects demanded by the user
(for example the aesthetic appearance) or by the dient (price of the
distributor).

The first definition of a failure wh ich will be retained afterwards in this
book is the one proposed by J-c. Laprie in, "Dependability. Basic Concepts
and Terminology", Springer Verlag, 1992:

I Afailure occurs when the delivered service no longer
complies with the specifications.

We should note that the notion of mission, which is the first aspect of the
specification, integrates both functional aspects (what the product is intended
for) and the length of its mission. In addition, the specifications define
constraints on the non-functional environment.

These points appear in the definition provided by N. Leveson in
"Safeware" , Addison-Wesley, 1995:

A failure is the non-peljormance or inability of the system or
component to peljorm its intended function for a specified time
under specified environmental conditions.

Requirements _. Specifications
(junction / constraints)

Figure 3.2. Failure definition

Thus, the failure sterns from a comparison between the delivered service
and the product' s functional specifications as represented in Figure 3.2,
assuming the respects for non-functional constraints on the environment
during the specified operationallifetime.

42 Chapter 3

3.1.2 Characterization of Failures

The failures which can affect a product are various, and present multiple
aspects. In this section, we introduce characteristics which are independent
from the functionality of the product or the technology used. We could thus
seek to develop general ways to treat the causes of failure in each class.
These classes are often called failure modes. They represent abstract
viewpoints on failures, independently of the particular system function.

We qualify the failures by three parameters apriori independent; each
one can take two exclusive values:

• static opposed to dynamic,

• persistent opposed to temporary,

• consistent opposed to inconsistent.

Most ofthe system's behaviors reveal two aspects: a function elaborating
the outputs from the inputs, and temporal constraints associated with the
occurrence of outputs. This corresponds to the classic notion of static and
dynamic response of a system. A statie failure, also called a value failure,
provokes a false result. The provided data are erroneous. Adynamie failure,
also called here a timing failure, provokes a transient response which is
incorrect, either too fast or too slow.

Consider a screen displaying information in a car. The displaying of
wrong data illustrates a static failure. If the displaying task produces data
whose values are correct but delayed, a dynamic failure occurs. For instance,
data on the screen must be refreshed every 1150 second whereas some of
them are displayed after 1/10 second.

A product' s mission takes place during a certain period. The second
parameter corresponds thus to an observation of the product' s behavior
during time. A persistent failure alters the product' s functioning for an
important duration in comparison to the duration of the mission or definitely
after a certain time. For example, let us consider a product regulating the
temperature of a balloon. A systematic bad regulation due to a blockage of
the electro-valve acting on the heating device is an example of persistent
failure. On the contrary, a temporary failure presents a bad behavior at a
certain moment during a short time. An erroneous control error of the
electro-valve which appears at a given moment of the mission and will never
happen again is an example of temporary failure.

The notion of consistency or inconsistency 0 a failure is relative to its
extern al perception by several users. A eonsistentfailure is perceived in the
same way by all users. The failure is said to be an ineonsistentfailure in the
opposite case. For example, several users of an office network complain

3. Failures and Faults 43

about not being able to access a printer from their workstation, whilst other
users have no problem whatsoever. Inconsistent failures are also called
Byzantine failures.

Figure 3.3 shows some examples of failures of the drinks distributor.
Note that a failure can be static, temporary and consistent at the same time!

Static The selection of coffee is
no longer possible

Dynamic The machine is too slow

Persistent The machine has not been
working since yesterday

Temporary The machine sometimes refuses
to function, in a random way

Consistent All the users have the same opinion
about the bad functioning of the
machine (e.g. it does not give
sugar to anyone)

Inconsistent So me users only are unsatisfied

Static + Temporary + Consistent:

The distribution of coffee is not possible for any user
each moming between 08.00 to 09.00

Figure 3.3. Examples of failures of the distributor

Other items can also be used to qualify some failures :

• stopping failure when the product's activity is perceived as no longer
evolving, a constant value being delivered to the user,

• omission failure which is a particular case of the preceding definition
when no values are delivered,

• crash failure which is a persistent omission failure (the system is
definitely blocked).

Another way of classifying failures consists in considering the
seriousness of their consequences on the application (user or environment).
Actually, these consequences on the mission can greatly vary according to
the application domains. We distinguish three main categories of failures:

• benign failures wh ich can be ignored,

• serious failures which lead to a change in the mission with a certain cost,

• catastrophic failures (also referred to as accidents) wh ich are not
acceptable and stop the mission.

44 Chapter 3

In the ease of a temperature regulation system, the regulation ean be
badly assured (deerease of the produetion, the mission therefore not being
stopped) or not assured (the mission is endangered with a loss of produetion,
even a risk of aecident). These consequenees are known as external; they
will be analyzed in Chapter 4.

3.2 FAULTS

Failures arise from a large number of eauses whieh are informally named
as faults. We find also in technical literature the terms defect for hardware
teehnology and bug for software teehnology.

I Afault is an adjudged or hypothesized eause of a failure.

Even if fault seems to be a fuzzy notion, some important eharaeteristies
can be brought out.

3.2.1 Difficulties in Identifying the Causes of a Failure

The identification of a failure' s eause (or eauses as there eould be
several) is a diffieult operation whieh requires important investigation
means. Its eomplexity depends on the level of knowledge and observation
that the analyzer has on the produet, its funetional and non-funetional
environment, but also on the proeess which has transformed a speeifieation
into a produet.

Aeeording to the degree of aceuraey of the observation, one ean, by
refining the analysis, come back to very long ehain of eausalities, sometimes
without significanee. For example, the eause of a failure of a hardware
produet could be found at the level of an integrated eireuit or in a eertain
logical network of this integrated eireuit or again a eertain MOS transistor in
the logical network and so on. Moreover, this refinement analysis ean reveal
potential multiple sourees that are sometimes eontradietory and the diagnosis
of whieh is impossible or without interest. For example, if the previous MOS
transistor is the cause of the failure, this is perhaps because it was abruptly
bloeked (this is then a hardware fault) or because the designer ineorreetly
dimensioned this transistor (this is then a different fault: a human fault). The
initial eause ean be due to the entropie hazard (e.g. eomponent ageing), or a
bad design which leads to a loeal overheating reducing the reliability, or else
an exeessive temperature in the final applieation.

In the same manner, the identifieation of the software fault which has
provoked a failure of an exeeutable program leads to the investigation of
relationships whieh link the different subprograms making up the software.

3. Failures and Faults 45

This analysis will be more or less refined according to the degree of
precision required for the fault' s localization and the investigation means
used (e.g. the observation of the variables). Furthermore, the software
necessarily has relationships with an operating system and other software
tools which manage the resources; this will complicate the analysis even
more. Finally, the support of the software's execution is an electronic
component, also susceptible to being affected by a fault!

As a result, the pertinence of the cause's designation is linked to the
means which are mobilized in order to remedy it. Consequently, faults are
often called adjudged or hypothesized causes.

In Appendix D we provide a study relative to the diagnosis of the flight
control system fault of the first flight of Ariane 5 rocket. This study
highlights the difficulty to specify the causes of a failure. This case is also
interesting, as it shows a situation where the two technologies (hardware and
software) intervened in the failure occurrence.

3.2.2 Fault Characterization

Faced with the difficulties evoked in the previous section in identifying
faults, we are now going to highlight some significant criteria to characterize
the faults. As for failures, it is useful to define a set of criteria which permits
the classification of faults. Such a classification allows the proposal of
generic means of fault handling adapted to each class, instead of researching
specific means for each particular fault.

We will analyze faults according to two main viewpoints: their origin and
their nature. Each of them is defined by several criteria.

The origin of faults characterizes:

• where is located this fault, that is which is the affected object (the
product, the user, their environment)?

• when was the fault introduced into the life cycle (during the product
creation or during the operation)?

• who is the author of the fault?

The nature of faults identifies:

• its type: functionall conceptual faults opposed to technological faults,

• its intention: accidental faults opposed to intentional faults,

• its duration: temporary faults opposed to persistent I permanent faults.

46 Chapter 3

These fault characteristics are illustrated in Figure 3.4. We thus define a
space with two viewpoints and several criteria that will be analyzed in the
following seetions.

Orij!in
Where: When: Who:

~
• Internat: • Creatlon: • Hwnan

Product S pecification
• Tools

• Extemal: Design
• TecbnoJogy _.-

User Producrion
Fault

Characteristics
Environment • Operation

Nature

~ Type: _ Intention: Duration:
• .Fnnctlonal • Accldental • Temporary

• TecbnoJogical • Intentional • Persistent

Figure 3.4. Fault characterization

3.2.3 Fault Origin

The origin of a fault is characterized by three criteria studied 10 the
following sub-sections:

• The object at the origin of the fault, by asking where?

• The step of the life cycle at which it appears, by asking when?

• The entity responsible of its occurrence, by asking who?

3.2.3.1 The Infected Object: Where

Relatively to the product's point of view, we consider two classes of
faults (see Figure 3.5): internal and externaifaults.

Internaifaults affect the product and are introduced during its life cycle:
specification, design, production and use. For example, a software design
error in an airfighter control system provoked the turn over of the plane
during its first flight to the equator.

An internal fault is for instance an erroneous statement in a pro gram or a
short-circuit in an electronic component. If their effects in the form of
failures always occur during the operation phase, their causes could originate
from any stage of the life cycle. This concerns the design step in the first
quoted example (an erroneous statement), whereas the short-circuit in the
second example could have been introduced by the manufacturing.

3. Failures and Faults

IDteraal Faults _.I!tlfie~

Figure 3.5. Internal and external faults

Exteraal Faults
or Perturbations

Externalfaults affect the user or the non-functional environment:

47

• the user: e.g. a system controlling a flexible manufacturing workshop is
blocked whilst waiting for a drilling machine (belonging to the process)
which will never fulfill its task because of a rupture of a drill, an input
value out of range, or a sequence of events not in accordance with the
expected scenario;

• the non-functional environment: e.g. the coffee distributor provides cups
filled only with powder because the water supply has been cut off, an
integrated circuit does not work due to an excessive temperature.

The external faults affect the expectations defined by the specifications.
They are often called perturbations or aggressions or else disturbances .

We should ins ist on the fact that in all failure cases, the product does not
deli ver the expected service, but the object at the origin of this failure is the
product itself (internal fault) or not (extern al fault) . Consider as a last
example a 'heavy ion' bombarding a satellite whose functioning is altered.
The origin belongs to the environment whereas it is clearly the satellite
wh ich is affected.

3.2.3.2 Occurrence Phase: When

Even if failures only occur during the operational phase, faults which
provoke these failures arise during the diverse phases of the product' s life
cycle: specification, design, production and operation.

Ouring the specification. It might seem strange to talk of faults arising
during this stage as the specifications constitute the reference document
which defines the expected services (cf. Figure 3.2). However, some
problems are actually possible. For example, an incomplete definition of the
service, which has to be delivered by the product, leads to different
interpretations by the client, the designer and the user. The user notices
failures in the service provided (the service understood by the designer) as it
is different to the one expected (the service understood by the user).

48 Chapter 3

During the design. All designers have encountered these faults. They
can arise during each one of the design steps, from the architectural
definition until the final implementation: at behavioral, structural and
technologicallevels.

During the production. An example of fault affecting software
technology is about a change in the characteristics of an execution
environment (a new hardware processor or operating system) whose
performances are no longer sufficient to respect the deadlines of tasks of a
real-time application. When hardware technology is concemed, a failure can
be due to a short-circuit or to a rupture of a wire during the production phase
of a PCB (bad insertion, bad soldering).

During the operation. Such faults can come from an elevation of the
environment's temperature which provokes modifications of the electronic
equipment' s capability.

Note. Faults appearing during the first three stages are also known as
creation faults.

3.2.3.3 Entity Responsible: Who

Faults result from:

• the human activity which intervenes in the transformational process
(specification, design, production) used to create the product: erroneous
choice of methods and technologies, bad interpretation of specifications,
wrong application of chosen methods, etc.;

• the automated tools used during this process: automatic design of a
logical circuit, compilation of a program, insertion of electronic
components by a production machine, etc.;

• the product's technology: a weak resistance to aggressions of a
component (this resistance depends on the hardware technology used),
the use of a programming language which has an imprecise semantic may
lead to different interpretations by the user and the compiler' s creator;

• the user of the product (a human user, an industrial process), associated
with environmental constraints.

3.2.4 Nature ofthe Fault

We will successively consider the type (junctional, technologieal) , the
intention (accidental, intentional), and the duration (permanent, temporary).

3. Failures and Faults 49

3.2.4.1 Type: Functional and Technological Faults

A second parameter permits the classification to be refined. Whatever
their origin is, the faults can be separated into two categories:

• The functional, or conceptual faults (also called human-made faults),
which affect the way a product is specified, designed, produced or used.
An incorrect design implied by an omission of one piece of specification
is an example of functional fault.

• The technological faults (also called physical faults, or hardware faults
in the case of electronic components), which affect the implementation
means during the production and/or utilization. A cut in a wire linking
two components is an example of technological fault.

Functional faults
Functional faults concern the intrinsic functionality of a product. They

can be present when the product is supplied (for example a design fault) or
could be due to incorrect use of this product (an operational fault).
Functional faults have a precise cause, upon which one could have acted at a
given moment in order to avoid them. This group contains faults coming
from bad interpretation and/or transformation made during the life cycle:

• specijication and design faults due to humans (the partners of the initial
contract and the persons in charge of the design) and to the means used to
model or to transform the models,

• production faults due to humans and technical means involved
(essentially the manufacturing equipment),

• operational faults due to the functional environment of the product
(human users, process, etc.).

Failures due to functional faults are named systemic failures.

Technological faults

Technological faults affect the implementation means. They can result
from random or temporal problems, such as a transient problem of the
machine manufacturing a component, or a physical defect occurring in this
component due to an ageing problem or an external aggression.

This group concerns the physical components (electronic or mechanical)
employed in the manufacturing of the product. This could imply hardware
breakdowns occurring at any moment during the production and/or operation
by affecting a product wh ich functions correctly: for example, a transistor
which is suddenly blocked in a 'non-conducting' state, or an electrical line

50 Chapter 3

which is influenced by an electromagnetic perturbation. The probability of
occurrence of such events depends on the chosen technology, the production
techniques, as weIl as the non-functional environment of the product
(temperature, mechanical shocks and vibrations, etc.). These faults are
assessed by statistical studies on reliability. We should note however that the
design and production have an influence on the final product' s reliability due
to the choice of technology, the electronic structure of transistors and final
mounting and assembly techniques.

We often speak of hardware faults and physical faults where
technological faults are concerned, as they essentially affect the hardware
technology (electronics in our case). In effect, there is no real software
ageing phenomenon, and the potential problems due to the manufacturing
are negligible. However, phenomena sirnilar to those of hardware technology
nowadays affect more and more software applications. Such a situation is
illustrated by a pro gram whose production necessitates the use of non
adapted components, or whose behavior varies during the course of time.
This is the case of applications supported by an operating system whose
version changes as the producer modifies slightly the characteristics (e.g.
temporal), leading finally to modification of the delivered service.

Failures due to technological faults are named disruptive failures or
disruptions.

The perturbations due to the user (a human or a machine) induce mainly
functional faults (bad use), whereas the perturbations due to the non
functional environment induce mainly technological faults (such as in the
case of a raised temperature wh ich could lead to a breakdown of an
electronic component). Once more, the ultimate reason for a failure is often
very difficult to establish: normal ageing of the component or excessive
temperature aggression?

3.2.4.2 Intention

Faults can also be c1assified according to their accidental or on the
contrary intentional character.

Accidental faults are the most frequent and the ones which will be
considered in this book. For example, they can stern from a bad
understanding of a document' s information during the development phase,
or from a bad analysis by the designer wh ich led to an erroneous solution or
incorrect use of the technology means at his/her disposal. For example, an
engineer has incorrectly used the programrning language statements because
he/she has not understood the semantic properly. This c1ass of faults also
inc1udes keypressing faults.

3. Failures and Faults 51

The intentional faults are due to voluntary human aggressions, such as
intrusion, sabotage or piracy. They lead to the modification of a system' s
structure or of a product's behavior. Today, there are numerous examples
regarding computing networks.

The border between these two c1asses can be vague. For example, some
technologies are reputed to be dangerous and their use increases the number
of faults. This is the case, for example, with a programming language such
as C which:

• does not favor a programming style which renders the program readable,

• disposes of few fault detection means during compilation,

• proposes features, such as the goto statement, which makes checks
difficult.

As these features are known, designers should not use such technology
which leads to an increase in the number of faults produced. Therefore, it is
difficult to say whether such faults are accidental or intentional!

3.2.4.3 Duration

Like failures, faults have temporal attributes leading to two c1asses:

• permanent faults, also called static faults, for example, apower supply
breakdown which makes an equipment unusable,

• temporary faults, also called dynamic faults for example, a bad electric
contact which depends on the product' s position, or a temporary
saturation of a computing network.

Temporary faults are divided into two sub-groups, according to their
origin.

• Transient faults have external causes. For instance, a too numerous
number of pieces of data are sent to the system during a short period.

• Intermittent faults are due to internal causes. For instance, a parasitic
signal emitted by a part of an electronic system disturbs another part
during the operation.

3.3 FAULTS OCCURRING IN THE LIFE CYCLE

In this section, we consider the faults occurring during the various stages
of the product life cyc1e: specification and design faults, production faults,
and operational faults. This presentation shows the diversity of the types and
origins of faults.

52 Chapter 3

3.3.1 Specification and Design Faults

Faults introduced during the specification and design stages are various,
and the reason for their existence is diverse and often difficult to identify.
One cornmits faults by ignorance, by negligence or omission, by
incompetence, by misfortune, and even voluntarily in some cases (an aspect
which is not considered here). Nonetheless, the origins of these functional
faults can be dassified into three groups:

• initial faults arising from incomplete or incorrect specifications,

• faults arising from the top-down design process,

• faults arising from non-functional constraints.

These three groups are not totally independent. Faults can therefore
belong to several groups corresponding to complex situations. This
decomposition, refined in the following paragraphs, simplifies our study.

3.3.1.1 Specifications

Sternming from the contract generally written in natural language and
established between the dient, the designer and the user, the specifications
are therefore rarely formal. A lot of incompleteness and inconsistency cases
remain. They are at the origin of numerous faults. After their detection, it is
necessary to precise missing information or to modify bad elements, in order
to improve the specification.

Incompleteness characterizes a product's definition that can lead to
several interpretations. The 'non specification' of a system's behavior for an
input data or a sequence of input values is an example of incompleteness.
Incompleteness is therefore associated with the semantic of specification
elements. An incompleteness situation leads to a fault if the missing piece of
information is useful and generates a bad interpretation. Otherwise,
incompleteness avoids the expression of non-useful information or gives
some degrees of freedom to the designer. For instance, the output value
associated with a given input value can be absent if the user never applies
this input value. When a piece of information is missing, the designer is free
to interpret this 'non specification' in the best interests of the product (cost
optimization, execution speed, etc.). On the other hand, if the missing
element comes from amistake, the final product can behave incorrecdy.

Due to a lack in the specifications, the system obtained at the end of
design can have a functioning greater or equal to that of its specifications.
For example, an electronics circuit accepts all input data (as long as the input
sequence stays in a functioning mode which guarantees sufficient time
between two successive input values to produce an output), even if these

3. Failures and Faults 53

values have not been defined in the specifications; hence, it provides an
output value for each input value

These incomplete specifications can, on the contrary, lead to a
dysfunction if the actual operation does not support use outside of the
planned domains. For example, in the case of software, the supplying of an
input value non-planned by the designer, due to a restrictive interpretation of
too vague specifications, can lead to the following situation:

• a persistent failure if the pro gram execution stops,

• adynamie and temporary failure due to a random transient behavior if the
pro gram is re-initialized after the failure.

The inconsistency characteristic corresponds to another variety of
problems. An inconsistency expresses a contradiction between several
definitions or properties of one or several elements of the specifications. An
example is the definition of two different behaviors for the same input
applied to a system being in the same state. The technology implementation
will perhaps solve this conflict:

• Whether by giving advantage to one of these contradictory behaviors; for
example, if we simultaneously act on the 'Set' and the 'Clear' (or Reset)
inputs of a flip-flop, it is the 'Clear' which is dominant.

• Or by creating a third behavior (by combination of the values which lead
to a new value); for example, if we simultaneously switch on the red light
and the green light of a traffic light system, therefore the two lights
switch on simultaneously by OR combination of the two light control
vectors (Red, Orange, Green): (100) OR (001) = (101).

3.3.1.2 Functional Design

At design time, a system is modeled by expressing a structural
composition of components also called modules or sub-systems. Faults
introduced in the design phase belong to two c1asses: component faults or
interaction faults.

Component faults (or module faults). A component fault occurs if a
functional component does not fulfill the mission which has been defined
during its specification; for instance, a floating point multiplier or a
calculating subprogram gives an erroneous result for a particular input
configuration or on the contrary in a systematic way.

Interaction faults. The components are correct1y designed, but their
interactions can cause problems:

• the interface specifications are erroneously taken into account: e.g. there
is an incompatibility between data formats, or the constraints on the order

54 Chapter 3

of the subprogram calls have not been considered (for instance, the
subprogram ini t of a package must be called before other subprograms
offered by this package),

• the inter-relations are erroneously implemented: for example, the design
specifies an exchange protocol between two tasks which is not correctly
realized.

The interaction faults become increasingly preponderant due to the fact
that a large part of design today consists in assembling acquired components
(COTS: Components On The Shelf). The faults are due to an erroneous
assembling or to a correct assembling of the components whose effective
functionality has been badly understood by the designer. During a
development, the complexity of the designed system and the diversity of
technologies used often necessitate the separation of the work into teams
distributed into several companies. Numerous integration faults, that is
interaction faults, therefore occur.

3.3.1.3 Technological Constraints

Often unknown or badly formalized, the technological constraints
imposed on a product's development are sources of numerous faults. We
introduce in the following sub-sections two types of constraints: technical
constraints and reusability constraints.

General technical constraints

General technical constraints are often inc1uded in the design
requirements. They precise:

• certain technological choices of components: for example CMOS
components for the electronics implementation, or Ada language for the
software programming,

• design means, e.g. the use of UML design model,

• constraints on the size of a product (volume of software code, surface of
the integrated circuit),

• constraints on the electrical consumption (important constraint for
isolated or embedded systems),

• assembly constraints, cost constraints, etc.

Moreover, other constraints, non-necessarily expressed during the
specifications, appear during the design phase. They are constraints on the
available resources. For instance, the program task number is limited by the
executive software, the number of units which can be addressed on a Bus

3. Failures and Faults 55

depends on the Bus characteristics, the size of available main memory, the
number of authorized interrupts are constrained by the hardware platform,
and so on.

If these constraints are not well known, or if they are not correctly taken
into account at design time, then a faulty system is produced. For instance, a
memory overflow is raised at pro gram run-time when the memory top is
reached. This example shows again how fault loeation is difficult: is the
failure due to a too small memory size or a too large program memory
allocation?

Reusability
Whether in hardware or software domain, the designs are lengthy and

expensive. It is therefore tempting and interesting to reuse the components
already designed for other projects by adapting them to a new context: a
circuit or a calculation subprogram, a special register or counter, a FIFO
memory, a BUS coupler, etc.

This reuse is sometimes obligatory. For example, a software application
runs under a given operating system. This application reuses the
functionality offered by this system such as the input/output primitives. This
obligation to reuse arises also from the constraints of portability . For
example, the embedded pro grams do not generally access directly to the
hardware resources of the electronic board which supports them. These
programs call the primitives of a BSP (Board Support Package) which
provides an abstract view of the hardware. For example, the applicative
pro gram makes use of a primitive function to write on a port without the
knowledge of the physical port address. Hence, the software is more portable
as the hardware may be changed as long as it uses a BSP offering identical
functions. In this way, the set hardware plus BSP constitute a reused module.

Certain functions of the reused module can be of no use in the new
context or can be used in a particular restrictive way: they are therefore
redundant (we will discuss this word later). The redundancy resulting from
the reuse of modules is frequent. For example, in order to carry out an
addition operation in a circuit we reuse an arithmetic additionlsubtraction
unit: in this context, the redundant subtraction function will not be used.

Reuse is frequently employed because it is convenient and it is supposed
to reduce costs and faults. This argument is globally true, but it should be
emphasized that reutilization can typically lead to new sources of problems.
On the one hand, the insertion of a component whose subtleties and
weaknesses are not known leads to interaction faults; on the other hand, the
induced redundancy creates large verification problems, which we will study
afterwards. This is why the modules inserted have to be perfectly defined
and possess standard interfaces.

56 Chapter 3

In order to avoid these problems, we could perhaps aposteriori think to
get rid of all parts that are functionally or structurally redundant and
therefore useless to a system's mission. In reality, this suppression is not
desired, as it is likely to introduce new faults.

3.3.2 Production Faults

We will analyze separately the two hardware and software domains, as
they present problems which are completely different during production.

3.3.2.1 Hardware Technology

Integrated circults
We consider first of all the particular and very significant issues of the

manufacturing of an integrated MOS circuit. The design stage provides a
geometric model of different masks used in manufacturing. Roughly
speaking, and in order to simplify, each technological layer has a design
associated with it: N and P diffusions define the transistor channels and
some conduction' lines, the polysilicon level defines the gate electrodes of
the transistors and some conduction lines, the meta! level defines the
interconnections between transistor structures and the links with the input
and output pads. The manufacturing is going to interpret this information so
that it can structure a slice of pure silicon wafer (disk of silicon of some
15cm in diameter and less than Imm thick) in the form of an array of
identical chips, each chip making the desired product. The process which
transforms the silicon wafer into an electronic structure is long and calls for
very sophisticated specialized technological equipment (ionic implanters, e
beams, diffusion ovens, epitaxy machines, deposition and etching machines
and many more), and it has to function in extremely severe conditions
(temperature, duration, dusts, etc.).

After the wafer processing, the resulting wafer is cut into dies which are
then mounted in their final plastic or ceramic packages (dual-in-line, flat
pack, surface mounted, etc.). This implies mechanical and soldering
operations before obtaining the final chips that will be put on the market.

As previously mentioned, faults come from the use of rnanufacturing
equipment. The information provided by the design of masks has of course
got to be compatible with the equipment used during manufacturing. A
machine's control file has to be understood correctly: compatibility of
description formats or correct initialization of machines, etc.

This sophisticated equipment needs precise and frequent settings
(treatment duration, temperature, flow, intensity, position), as do the gauging

3. Failures and Faults 57

operations. The quality of the physico-chemical hardware used (crystalline
structure, fluids, etc.) also conditions the quality ofthe circuit produced.

Moreover, this process has to take place with an extremely strict control
of the environment: temperature, hygrometry degree, elimination of all dust
or particles which could provoke flaws (hence, different classes of dust
removing techniques of white rooms have been defined). Thus, the dust can
create flaws by optical or chemical interference. If the complexity of
integrated circuits is meant to double every 18 months (according to Moore's
empirical law), this then implies that the manufacturing costs will double
every 4 years!

As a consequence of this complexity, numerous faults can be introduced
during the production of integrated circuits.

Electronic board systems
The manufacturing of an electronic product involves a succession of

assembly stages and the integration of components and equipment. Each of
these stages is an occasion for faults to appear, and this occurs despite the
use of specialized equipment and qualified personnel. For example,
electronic components are inserted on printed circuit boards (PCB) by
automatic insertion machines, eventually aided by an operator. Insertion
faults can therefore be produced: incorrect mounting, a pin folded, an
incorrect electrical contact. This is also the case with incorrectly soldered
pins by the component' s welding machine. Boards are linked together thanks
to diverse and varied connectors defined by different standards. Thus, the
connector industry causes numerous problems due to bad quality contacts
(mechanical problems, oxidation problems, etc.).

3.3.2.2 Software Technology

We consider that design ends by the providing of a pro gram written in a
language (Ada, C, etc.). The production therefore consists in obtaining an
executable program for the execution machine and then by duplicating it
onto physical medium (magnetic disks, CD-ROM, ROM, EEPROM, etc.).
Naturally, these two phases are both sources offaults.

The executable code is generally produced automatically from a source
program by a compiler. The code generated has to be semantically
equivalent to the code source. That is, its execution by the target computer
has to produce a behavior equivalent to the one obtained by the
interpretation of the source program using the language semantic (described
in the reference manual of this language.) Two major causes thwart this
result:

• failure ofthe compiler,

58 Chapter 3

• hazards in the programming language's semantic.

Compilers are not always safe tools, in particular when the language or
the compiler is recent. For these reasons, a lot of firms prefer to use an 'old'
language and a compiler whose bugs have been fixed or are well known,
than to access to up-to-date technological means.

Hazards are associated with the semantics of the programming languages.
The significance or interpretation of their features can present uncertainties.
We have seen that in the design phase, these lacks of precision can generate
failures of the system designed because the dient and the designer of the
system (or sub-system) can have two different interpretations, although in
agreement with the' imprecise specifications. The same situation exists for
language users (e.g. program designers) and the people carrying out the
compiler: they can give two different interpretations to imprecise features of
a programming language. Incompleteness situations do not however imply
flaws in the language; sometimes they are on the contrary indispensable. For
example, the execution duration of a statement such as 'I : =J + K ;' is not
defined by the standard of a programming language, whereas the actual
duration of execution will have consequences on the application's
performance and could lead to a failure if the performance is too weak (such
as in real-time applications). Now, to fix a standard in a language regarding
the execution time of each statement would be stupid, as this would not
allow it to benefit from the permanent improvement of processor speed.
Although indispensable, the imprecise factors of the semantics of
programming languages can therefore lead to failures.

The duplication of executable files to market the software onto diskettes
or optical disks is another source of faults, as the physical media of
recording either magnetic, optical or other, inevitably provoke flaws:
parasitic signals during the recording or transmission, flaws by punctual
alteration of the media and other problems. This dass of faults will be fairly
easy to manage using redundant coding techniques intensively employed by
all information supports, magnetic tapes, magnetic or magneto-optical disks,
audio or digital CD ROM, electrical or Hertzian transmission means.

3.3.3 Operational Faults

We are now at the ultimate stage of the product's life cyde, and new
problems arise! During operation, technological faults appear on hardware
devices, and perturbations are provoked by the non-functional environment
and the user (process and/or human operator). They are called operational
faults.

3. Failures and Faults 59

3.3.3.1 Technological Faults

Hardware faults affect the product during its active life. They are linked
to the used technology and assembly techniques, but also to the conditions of
the environment. Reliability permits us to predict in a statistieal manner
whether a population of products has the capacity to survive. This notion
will be discussed in detail in Chapter 7. However, we do not know what the
next breakdown will be and when it will appear in our product.

The occurrence of faults can be considered as a probabilistie process,
function of time. In general, we make the hypothesis that the interactions
between the product and the user do not have an influence on the probability
laws. However, this is not always true: for instance, a light bulb has a higher
probability of breaking down when it is 'switched on' than when it is 'on',
'off', or 'switched off'. Knowledge of reliability allows us to anticipate
failures, but not to prevent them during the active life.

Non-functional environment has an influence on the technologieal fault
occurrence. For example, if the temperature increases, the reliability of a
circuit is degraded. If the environment's parameters do not correspond to
those specified for the product, faults could then occur as a result. Thus, if
the utilization temperature exceeds the norm associated with the product (for
example, maximal temperature = + 70°C), this product cannot then be used
due to a strong degradation of its reliability. Another example is that of the
standards of space radiation for products embedded in satellites. In
particular, magnetie media cannot be used in an efficient manner without
costly and drastic protection.

3.3.3.2 Faults Caused by the Functional Environment

Functional faults are caused by the user whose behavior is not
conforming to that planned by the specifications. For example, if an
electronie thermometer has :been designed to display temperatures with 2
decimal figures, it will not function correctly if it receives from sensor
values superior or equal to 100°C!

Another type of functional faults is due to the human user. Consider for
example a product whose characteristies and user instructions are described
by a user manual. The user may commit faults. For example, a video
recorder whose channels have not been set cannot record a TV program. The
user should have first performed a channel setting.

The integration of a product into its final context introduces different
problems. For example, a program correctly designed and produced is badly
adapted to the application' s environment (the operating system incorrectly
manages this program). Another example is an automatie control system

60 Chapter 3

which functions badly because it does not receive a correct initialization
from its environment (reseuing the internal state and some variables).

The specification may be correct but the physical insertion of the product
incorrect: for example, a connector is incorrectly plugged or the selected
connection port is not the right one, and so on. This is the case of a video
recorder badly connected to the television: the user cannot watch the film, or
the sound and image will be of bad quality.

3.4 EXAMPLES OF FUNCTIONAL FAULTS
ALTERING A DRINKS DISTRIBUTOR

This section deals with the study of the drinks distributors already
discussed in Chapter 2. It shows some examples of specification and design
faults as weH as their consequences. The specifications have been slightly
modified in order to reveal some interesting faults.

3.4.1 Description of the Product

Consider the distributor represented in Figure 3.6, wh ich has to provide
hot drinks such as coffee, tea or chocolate. The machine has a slot to put
coins, three selection buttons for the drinks (1: coffee, 2: tea, 3: chocolate), a
cancel button, a place where the change is delivered and/or the money is
returned, and a place where the selected drink is delivered.

On/Off ®
Coins _

Cancel

Select

Change -
CofTee •

Tea i

Figure 3.6. Drinks distributor

3. Failures and Faults 61

The distributor behavior specifies a cydic treatment. One should first
insert the money, then choose a drink, recuperate the change and finally take
the drink. If we press on the cancel button, the coins inserted are given back
and the cyde is cancelled. Then, a new cyde can be processed.

3.4.2 Faults Due to Functional Specifications

These first specifications are sources of problems because they are
incomplete. Indeed, as no deadline is defined for cancellation, an
interpretation of this specification could lead to a machine giving back coins
inserted when the drink has already been distributed, if the user presses on
the cancel button after this distribution.

What will happen if the user inserts new coins before the cyde has
finished? What will happen if the user changes hislher selection? The
specifications do not give any indication. Therefore, several interpretations
are possible, leading to different products and uses. In particular, if the
distributor user and manufacturer make divergent interpretations, a failure
will occur at operation time.

These specifications are therefore insufficient. We complete them, saying
that cancellation cannot be taken into account if the choice of a drink has
been made (or validated by a special 'validation button' which should be
added). We add a red/green light that indicates that the machine is being
handling a delivery. When the light is green (indicating that the machine is
ready), the cyde starts by the insertion of money; this light then goes red
until the end of its current cyde. We specify that the first selected beverage
is the only one to be taken into account, or we add a validation button.

3.4.3 Faults Due to Technological Constraints

We finally examine the influence of certain resource constraints. This
distributor effectively manages resources: change, cups, spoons, sugar,
coffee, tea, chocolate and water. The previous specifications, even consistent
and complete, do not take into account the natural limitations of these
resources.

What should be done when the resources run out? To prevent access by
switching the red light on? If there is no more coffee, why not allowing
access to the other available drinks (tea or chocolate)? In this last case, the
machine must authorize the choice to be modified or cancelled with money
retumed if the desired drink is not available. If all the coins necessary for
any change are not available, the machine should be used with the exact
money amount: thus the service delivered is extended.

62 Chapter 3

In all these cases, the cancel button allows the user to get his/her money
back as long as a drink has not been selected to be delivered. Cancellation is
an essential feature of such machine.

Each omission of constraints in the specifications can lead to a failure in
the service delivered to the user, leading hirn/her to be unsatisfied: loss of
change, missing cup, incorrect choice which cannot be cancelled, etc.

3.4.4 Design Faults

The design is going to lead to a structure of interconnected modules, such
as the one introduced in Chapter 2. Here the design proposes four modules:

• a module managing the cyclic treatment, asking for services provided by
the others modules,

• a module getting the coins inserted, computing the sum introduced, and
managing the money to give back,

• a module responsible for the drink delivery,

• and a module in charge of the management of the resources and the
anorn.alies.

An example of a module's design fault could lead to a bad calculation of
the sum inserted and the money to be given back. The consequences could
be to ask too much or too little money, or to give back too much or too little
money.

A first example of synchronization flaw between modules could result in
a blockage in the cycle: the management module waits forever the end of the
work of another module. On the contrary, the passage to the next stage when
the current stage is not completed is a second example of failure cause. For
instance, the end of the cycle occurs when the service has not yet been
carried out, allowing a new client to be served at the same time.

Figure 3.7. Global functional graph of a distributor

3. Failures and Faults 63

As faults are introduced during the various stages of the product life
cyc1e, it is difficult to determine the source of a failure just from a simple
externaiobservation. It is necessary to master all the stages, inc1uding the
initial specifications and their multiple amendments often required by the
design. Formal design models bring help to the research of faults, with the
aim to eliminate them. The study of a behavioral graph modeling the stages
and their transitions can help us to imagine different types of functional
faults. Figure 3.7 shows an example of such a graph. Exercis~ 3.2 proposes
the analysis of this graph.

3.5 INTERESTS AND LIMITS OF FAULT CLASSES

3.5.1 Simplitied Classitication

As causes of failures, faults are numerous and varied, sometimes
predictable but always difficult to identify. They are direcdy due to human,
the tools he/she uses, the ageing phenomena, or aggressions coming from the
functional and non-functional environment. Faults are produced during the
specification, design, production and operation stages of the life cyc1e. The
effects of these faults as failures are however uniquely perceptible during the
product's operation phase. After this broad exploration of the fault c1asses
made in the preceding sections, we are going to simplify the c1assification
given in Figure 3.4, in order to facilitate the presentation of the following
chapters. Hence, we will put aside the 'who' sub-c1asses of the 'origin' of
faults, and the 'intention' and 'duration' sub-c1asses of the 'nature' of faults.

These characteristics will be discussed when necessary. Three main
criteria remain:

• the type: functional and technological faults,

• the origin: the product, the user and the non-functional environment,

• the occurrence stage: specification, design, production and operation.

A first study consists in establishing if relationships e;.ist between the
values taken by these three criteria, that is to say knowing if they are
independent or not. Figure 3.8 summarizes these relationships. Functional
faults appear principally during the specification and design stages, and
sometimes during production and operation due to external perturbations.
Technological faults happen during the production and operation stages; they
are influenced by perturbations from the non-functional environment.

64

ereation

Perturblllions ,

Correct
Spec:ific:atiool

Figure 3.8. Synthesis of failure causes

Specificaüoo I DQign
Functiooal Fault -

Operational
FuocüonalFall1t

Operational
Hardware Fault

Figure 3.9. Caricature of fault cIasses

Chapter 3

Figure 3.9 shows a earieatured example of problems affeeting the life
eyde of a 'box': three funetional faults arise at specifieationldesign, during
the produetion and use, and a teehnologieal fault affeets the operation.

The fault classifieation and the study of the relationships between the
classes allow therefore the darifieation of problems to be treated aeeording
to the stages of the life eyde and the agents at the origin of the faults. We
will thus be able to seleet the means of fault handling appropriate to eaeh

3. Failures and Faults 65

case. The definition of fault classes facilitates the research of generic means,
that is to say, which are valuable for aIl faults belonging to one class. If no
fault classes were defined, no general solution would be possible because
each solution would be unique to each particular fault. The mastering of
faults would therefore be a coIlection of individual experiences.

3.5.2 Limitations of the Classitication

We should note again that it is often difficult to identify the exact cause
of a failure. Several faults can lead to identical effects and therefore be
equivalent. In the same way, it is not easy to precise the origin of a given
fault. For example, the absence of a connection between two logical
electronic components could be due to a functional fault during design, or
because of a production fault (a forgotten connection), or to a hardware fault
(breakdown leading to a rupture of the electrical wire), or even due to an
extemal perturbation, or else to sabotage! The most often, the diagnosis, that
is to say the research of the failure cause and/or of the fault origin, is limited
by the investigation and the observation means available to the extemal
operator (called the tester).

The border between the defined classes is often vague. Even if a fault has
been clearly identified, it can be difficult to put it in a given class. For
example, a technological fault such as a cut in the connection between two
components could be due to the environment (because of a too high
temperature), a production problem, or even a bad design choice.

Moreover, faults have a cumulative character which complicates the
analysis. Faults occurring during the different stages of the life cycle will
persist and, by combining amongst themselves, will create failures during
the operation phase. It is only when they reveal themselves as failures that
we see their negative and even catastrophic consequences on the application.

The limits which have just been exposed as weIl as all the particular
cases of special malicious faults do not however change the significance of
our classification which has an educational interest, and facilitate the
organization of means to fight against faults.

3.5.3 Protection Against Faults and their Effects

Even if they correspond to complex problems and phenomena, faults are
not a fatality that has to be endured. They have an origin upon which we can
act. Indeed, fault appearance is not independent of the methods, techniques
and technologies used aIl along the product' s life eycle. Experienee shows
that some methods, techniques and technology produce fewer faults than
others. This knowledge will aIlow the improvement of the dependability of

66 Chapter 3

products by reducing the probability of the appearance of faults and
therefore failures. We will come back to this point in the second and third
parts of this book.

Faults depend also on the technologies used to built the product. We
consider here computer systems which have hardware parts (e.g. electronic
components) and software parts. Now, these two types of logical products do
not have the same type of faults: in particular, the hardware ageing fault
phenomena wh ich affect electronic components during their functioning
with statisticallaws do not exist in software parts.

In Chapter 5 we will provide information on the main fault models used
for hardware and software technologies.

3.6 EXERCISES

Exercise 3.1. Failures ofthe distributor

lmagine several failures of the drinks distributor presented in section 4.

1. A static failure.

2. A dynamic failure.

3. A temporary failure.

4. A static and persistent failure.

Exercise 3.2. Faults ofthe drinks 4istributor

Go back to the study of a drinks distributor, looking at the global
behavioral graph (see Figure 3.7).

1. Imagine several types of functional and hardware faults and show how
they transform the graph. What failures do they lead to?

2. Which type of faults (and on which part of the graph) affect the user's
satisfaction by altering the functioning of the money management
(accepting and giving back coins)?

3. Find a functional transformation which allows this distributor to serve
several drinks with the same initial amount of money or to give the
change back by pressing on Cancel (you can add a Return-Money
button).

Exercise 3.3. Study of a stack

This exercise studies the influence of internal and external faults on
failures of a hardware stack. This product, carried out with the aid of a

3. Failures and Faults 67

logical circuit, allows to store data by PUSH operations, and to read them in
the opposite order of their recording by POP operations.

A typical failure wh ich can affect the stack consists in an overflow, that
is to say executing a PUSH when the stack memory is full. To avoid this
problem, we add an output signal called Stack_Full which takes' l' when
the memory is full and '0' when the stack still has free space. We can
nonetheless imagine several faults leading to an overflow despite the
presence of this signaling mechanism:

• an internal functional design fault: the size of the stack has been
underestimated by the designer,

• an internal hardware fault: a breakdown affects the Stack_Full signal
and maintains it at '0' value (no signaling) despite an excessive piling up,

• an external fault: the external circuit uses this stack and ignores the signal
Stack_Full.

We should note that a software implementation of this stack could have
been carried out using a package which exports the subprograms PUSH and
POP and the exception signal Stack_Full. We can imagine similar internal
and extern al functional faults as the preceding ones. A fault equivalent to the
technological one of non-transmission of the Stack_Full signal will arise
if the pro gram language used does not dispose of the exception mechanisms
to treat it.

1. For each one of these faults, find a functioning sequence which provokes
a stack failure. Does one functioning sequence exists which reveals the
presence of one oftwo different faults (producing the same failure)?

2. Imagine several failure situations that would require the use of a
Stack_Empty signal.

Exercise 3.4. Study 0/ a program

We consider a program which dec1ares two global variables, A and B, of
Integer type and the two following functions:

function Fl return integer is
begin

A :=A+li
return Ai

end Fli
function F2 return integer is
begin

A :=2*Ai
return Ai

68 Chapter 3

end Fi;

Determine the value of B after the execution of the following statement,
assuming the initial value A = 1:

B :=Fi+F2;

Chapter 4

Faults and their Effects

In the previous chapter, faults have been identified as the generic sources
of fai/ures which can modify the operation of any given hardware and/or
software product. In this chapter we will continue the analysis of
dependability impairments by specifying the fault notion and introducing the
degradation mechanisms. These mechanisms gradually transform afault into
one or several errors (internal effects), then into fai/ures which finally have
consequences on the functional environment and thus deteriorate the mission
entrusted to the product (external effects).

The internal and extern al effects of faults are examined in seetions 4.1
and 4.2. Section 4.3 synthesizes the degradation phenomena considered here.

4.1 INTERNAL EFFECTS

4.1.1 Fault

In Chapter 3, faults were defined as adjudged or hypothesized causes of
failures. The real causes of failures are often difficult to determine and
express. Their precise localization and identification depend on the
investigation means used to analyze the faulty product. When these
investigation means allow the system structure to be examined, faults can
often be specified as structure alterations. In this case, a fault can be more
precisely defined as follows:

IA structural fault is a non-adequate
alteration of the structure of a system.

69

J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

70 Chapter 4

Such a specific structural definition of faults is considered when dealing
with general-purpose design models and more specific gate or transistor
hardware models and program models. For example, consider the following
program extract:

if (A>B) then

else

endif;

Let us suppose that the programmer has written 'A>B' instead of 'A>=B'.

This is obviously a fault, as the program structure is inadequate.
In the case of electronic circuits, a fault occurs for example if the

designer has forgotten a connection between two components, or has used a
NANO gate instead of a NOR gate.

One fundamental property of faults in both hardware and software
technologies is that they are generally not identifiable as such. A simple
observation of the structure of the product cannot help the observer to decide
if a fault is present or not. In the first example, the condition 'A>B' is
syntactically correct. In the second example, the presence of a NAND gate
may be adequate or not. Hence, to judge that a structural element of the
system is a fault, other pieces of information are necessary to justify this
hypothesis. In fact, to definitely say that a fault exists, the notion of "non
adequate alteration" must be explained, specifying what is adequate or not.
Sometimes, a reference model provides properties on the adequate or
acceptable structures. The syntax of a programming language defines such
properties by means of grammar rules; for instance, the omission of the
character ')' in the first line of the previous pro gram extract is a fault:

if (A>B then ...

Moreover, the elements of a structure are frequently considered as faulty,
not in an absolute way but because they produce inadequate or undesirable
effects in operation.

The preceding examples illustrate permanent faults affecting the structure
of the product. In electronics, many other faults can be found which are
temporary like an electrical interference creating a pulse on a wire.
Temporary faults are much more difficult to identify than permanent ones.
Some transient or intermittent faults can be modeled as temporal structural
modifications of the electronic product. For instance, a parasitic induction
between two electrical wires can be considered as a temporary shortcut
between these wires.

The fault occurrence is generally invisible from the outside of the
product. This fault has no immediate effect on the delivered service of the
product. For example, the cut of a wire of a Bus connecting several
electronic components does not modify the functioning of the whole product,

4. Faults and their Effects 71

as the altered element is not presently used. Unfortunately, during the
operational life of the product, this fault will probably provoke a cascade of
events leading to one or several failures. We distinguish three main phases in
the life of a fault (Figure 4.1).

• The fault is dormant or passive, i.e. it is present in the product but the
functioning inside the product is not disturbed. For example, an electronic
component is not used although a fault occurred inside it, or an incorrect
programming statement has not yet been used at run-time.

• The fault is active, i.e. it has an effect on the product functioning. This
effect will be defined in the next section as an error in an internal
component or module. For example, a fault causes an output signal of an
electronic component of the product to be wrong, or a programming fault
produces the assignment of a bad value in a program' s variable or an
erroneous branching.

• The error is propagated inside the product till it reaches the outputs of the
product, hence creating afailure.

The transformation of a fault into an error is called the fault activation.
The mechanism which creates several errors in the product till provoking a
failure will be called the error propagation mechanism.

I fault I
activation

I error I
propagation

I failure I

Figure 4.1. Internal effects

4.1.2 Error

As explored in section 2.3 of Chapter 2, the modeling of the behavior of
each module of a product structure makes use of attributes which
characterize this behavior. These attributes can be the external input/output
variables and the internal variables memorizing data and control events of
the module processing. At run-time, various values are assigned to these

72 Chapter 4

attributes. At a given time, the set of values associated with the attributes
defines astate of this module. The actual functioning of the module is then
defined as transitions from state to state. A defective functioning is
perceived when some properties on the state value or on the state evolution
are violated. For instance, if the state of a pro gram is defined by the value of
a variable Ternperature_of_the_Ice, then the property:

'Ternperature_of_the_Ice <= 0.0' is expected.

I An error occurs in a module when its actual state deviates from its
desired or intended state.

An eITor is due to a fault. Thus, a fault modifying the structure of the
product will change its functioning, and produce an eITor.

Let us now consider the following small program extract:

if (A>B)

endifi

then Ternperature_of_the_Ice. - Fl (A, B) i

else Ternperature_of_the_Ice;= F2(A,B)i

We assurne again that the programrner has written 'A>B' instead of
'A>=B'. Every time A and B have the same value, the faulty program
executes function F2 instead of F 1.

Due to the definition of an eITor, its characterization depends on the
selected attributes and the chosen properties defining the desired or intended
states. Consequently, several eITors can be associated with this fault
according to the attributes and properties chosen.

If Ternperature_of_the_Ice is considered as an attribute of this
program, any variation of the processed value from the expected one could
create an eITor. Unfortunately, the expected value is not apriori precisely
known as the pro gram was created to calculate them. Therefore, properties
must be defined in order to identify the presence of an eITor, such as
'Ternperature_of_the_Ice <= 0.0'. This property characterizes the
acceptable states. Other properties concern state evolutions. Thus, another
property could have been: 'the difference between two consecutive values of
Ternperature_of_the_Ice is bounded by 1°C'.

For the same program, one could define another set of attributes, the two
parameters A and B of function F2, and choose the following property: 'the
specification of F2 assurnes that A "* B' .

Concerning hardware, let us consider a NAND gate with two inputs, A
and B, and one output C. In this case, we have a behavioral reference model
expressed by the property: C = (A . B)" where the symbols '.' and '"
respectively represent the logic AND and the logic complement. Thus, any
fault of the transistor structure of this gate producing a wrong value on C is
perceived as an error if C "* (A . B)'.

4. Faults and their Effects 73

On the contrary, the property 'Ternperature_of_the_Ice <= 0.0' of
the software example is not a complete formal model of the expected
behavior of this program. Hence all wrong state values produeed by this
program cannot be eharaeterized as eITors by this property.

So, the notion of eITor is relative:

• to the knowledge we have about the modular strueture of the produet and
about the selection of the attributes of eaeh module,

• to the properties associated with the attributes which define the internal
expeeted state evolution.

In the same manner as failures, errors have temporal eharaeteristies
classified aeeording to two independent eriteria:

• static error whieh eOITesponds to stable undesirable state (e.g. a false
signal' l' instead of the eorreet one '0') or dynamic error or transient
error which provokes transient undesirable states (e.g. a transient
oscillation on an electrie line),

• permanent error which alters the module for a long duration (e.g. the
output of a module is 'stuck-at 0') or temporary error wh ich alters the
module for a short duration (i.e. the eITor presenee is lirnited in time).

For instance, consider a system including a sensor whieh gets data. We
assurne that disruptions, such as eleetrical parasites, may alterate the
sampled values. If the system acquires this input value only onee (for
instance, at initialization time), then a persistent eITor occurs. If the sensor
makes periodic sampling, the eITor ean be present only during one period. In
that case, it is a temporary eITor.

4.1.3 Error Propagation

Once a fault has been activated as an eITor in one module, degradation
mechanisms can propagate this error through the produet strueture until
reaehing its output variables, thus produeing a failure. The propagation (or
error diffusion or contamination) is conducted through one or several error
propagation paths. This process depends on the initial eITor, the module
which has been first disturbed, the strueture of the produet and the external
input sequences applied to the produet since the fault has been aetivated.

For example, let us examine the strueture of Figure 4.2 infeeted by a
fault located in module MI. This fault is activated as the initial error inside
this module (eITor 1). Then, it passes to module M2 (eITor 2), i.e. at the level
of module M]2, and finally reaches M3 and provokes a failure.

74 Chapter 4

I

Figure 4.2. Example of error contamination

It should be noted that another description of the product structure by
using another modular organization would have modified the sequence of
the varlous errors (error 1 - error 2 - error 3) taking part in the contarnination
process. In particular, the absence of knowledge about this structure would
have suppressed aB internal errors! Thus, the propagation mechanism
depends on the modular structure of the product and the observation level of
the analysis.

A same fault can produce different errors and different failures at
different moments of the product' s useful life. These effects depend on the
fault location and the activity of the product during and after the fault' s
occurrence. In particular, faults do not necessarily raise errors, and errors do
not necessarily imply failures. It depends on the structure of the product and
the input sequences which are applied to the product during its use. Let us
illustrate this aspect with the program extract example of sub-section 4.1.2.
For a given value v of A=B, we suppose that F2(A,B) is erroneously executed
instead of Fl(A,B). If F2(v,v) = Fl(v,v), then there will be no error and,
hence no possible failure. Hence, in that case the error contarnination is
stopped.

The qualifiers static and dynamic are associated with errors and failures.
These properties are not necessarily preserved along the propagation paths in
the product' s structure. Thus, a dynarnic error can be propagated as a static
error. For example, a register receiving a pulse on the data Bus (dynarnic
error) can record wrong data (then it becomes a static error).

Moreover, an error created at any moment can evolve with time
according to the product activity:

• it can disappear, the operation becorning correct again (this error is also
caBed overwritten error),

• on the contrary, it can become worse by adegradation mechanism.

4. Faults and their Effects 75

The reasons for these phenomena are to be found in:

• the intrinsic evolution of the initial fault with time, e.g. temporal drift of
the response time of electronic components,

• the normal evolution of the product operation, i.e. the activity of the
modules evolves with the input sequences coming from the functional
environment, hence fault activation and/or error propagation conditions
can also be modified.

An error may be temporary, either because the fault is itself temporary, or
because the operation of the product activates the faulty module during a
short duration. Let us take the example of a parasitic signal in a control
circuit: an alpha partic1e may change the state of a RAM (a word is
erroneously changed) and induce a wrong value of a variable storing the
value of a sensor used for a control algorithm. This error is temporary
because, it will disappear at the next actualization of this variable.

A permanent fault of a computing component (such as a 'stuck-at'
electronic fault) may lead to incorrect processing for very special and rarely
applied input values. Here also, the error may be temporary.

The degradation of the behavior of a product is due to cumulative effects
involving several faults and errors which progressively affect more and more
functions of the product. For example, the presence of faults in a
comrnunication Bus connecting several processing units can progressively
disturb the operation of these units when they are using the Bus.

4.1.4 Latency

A fault remains passive until an error is produced in a module of the
structure of the product. We call initial activation the first occurrence of an
error provoked by the fault (illustrated in Figure 4.3). This error is known as
primitive error or immediate error. In the case of the example of Figure 4.2,
the initial activation causes 'error l' in module MJ•

I La~enc! is the meantime between the fault occurrence and its initial
act1vatlOn as an error.

Where software systems are concerned, faults are generally introduced
during the development phases. On the contrary, faults can also occur at any
time of the operation phase of an electronic product. For the two
technologies, errors occur at run-time.

The latency value depends on four main parameters:

• The module containing the fault: the latency is high if this module is
rarely used during the mission of the product.

76 Chapter 4

• The moment of the apparition of the fault, e.g. the module altered is used
only at the initialization of the mission, hence its latency is small during
this period and high during the rest of the mission.

• The way the product is used at the occurrence of the fault, e.g. the latency
is high because the product does not presently use the infected module.

• The 'observation' level given to the product, that is to say the precision of
the state definition and the properties associated with these states; for
instance, a false signal or a wrong variable value may be considered as an
error or not according to their action or not on the state attributes and the
ability of the properties to perceive them as wrong.

I fault 1--1 error 1
I passive fault I active fault •

(fatenv I
Figure 4.3. Latency

By generalization, latency can be extended to the meantime between
the occurrence of a fault or an error in a given module and the raising
of an error in another given module.

Hence, this latency notion is related to the observability notion.
Frequently, the latency is referred to as the observation of the fault as a
failure at the primary outputs of the product. In this case, the internal states
of the modules are not examined and thus no errors may OCCUf.

The assessment of the latency is essentially a statistical process, typically
obtained thanks to measurements conducted on sampIes of the product under
investigation. However, it can also be estimated by reference to other
products already developed. For example, in the case of software, knowledge
coming from past designs allows the latency of the software under
development to be estimated.

Some products have an intensive internal activity with a low latency. It is
the case of a sequential circuit which counts the average number of extern al
events arriving at high speed (e.g. a particIe counter): this circuit has a low
level latency (e.g. lms). On the contrary, a fire detector can remain in the
same waiting state for years, till the occurrence of a fire. Therefore, the
presence of a fault may be never observed. This is the reason why fires are
periodically simulated. Another example is an ABS car system, which

4. Faults and their Effects 77

avoids the blocking of the wheels. Its latency can vary according to the way
the driver uses his/her car.

Latency is related to the destructive mechanisms, which transform faults
into errors and propagate errors to the product' s outputs. In all cases, it
delays the appearance of a failure, i.e. the perturbation of the delivered
service. This evolution is symbolized in Figure 4.4.

4.2

4.2.1

@. p

acdvali~" ~
propagation

Figure 4.4. Latency caricatures

EXTERNAL EFFECTS: CONSEQUENCES

External Consequences of Faults

At the end of the contamination mechanism, if propagation has not been
stopped, a fault has been transformed into a failure, that is to say a non
desired service delivered by the product in the general framework of its
mission. Thus, the product gives incorrect pieces of information (incorrect
values, too high response time, spikes, etc.) to its functional environment
(the controlled process, the human operator, etc.). We will now analyze the
external consequences of the failure on the mission, in terms of seriousness
or severity of the perturbations. We identify four main grades of
consequences of failures on the mission: benign, signijicant, serious and
catastrophic.

• Benign. The failure has no serious consequences on the mission which
carries on normally. For example, if a text-processor fails, the user can
enter his/her text again from the previous back up of the file text (if such
back-up file exists). It is also known as minor failure.

78 Chapter 4

• Significant. The mission is disturbed and the efficiency of the delivered
service is reduced; for instance, the failure has economic consequences in
terms of costs (fixed or proportional to the irnmobilization duration). This
failure is also called major failure.

• Serious. The mission is greatly disturbed, the security margins being
dangerously reduced; for example, an automated process control has been
stopped for a day inducing production loss. This failure is also called
dangerous failure.

• Catastrophic or disastrous. The effects are unacceptable: the mission is
stopped with destruction ofthe product and/or the controlled process (e.g.
explosion of a heated distillation balloon) or with human injuries or
deaths (e.g. because of the explosion or the emanation of toxic gas).

The severity grade assigned to a given failure is relative. For instance, if
the text-processor failure does not allow an industrial project proposal to be
completed before the deadline, then this failure is at least significant and not
at all benign.

Independently from their seriousness, the consequences of failures can
be:

• human (loss of confidence in the product, injury of an operator, etc.),

• economical (for example, a significant consequence is expressed in terms
of cost implied by the recovery of the alte red function, the diagnosis and
the repair of the product and its environment),

• environmental (e.g. air or water pollution).

Three parameters influence the severity of the consequences of a failure:

• the nature of the failure,

• the functional environment which makes use of the product,

• the moment when the failure appeared.

The first parameter concerns the characteristics of the fault which caused
the failure, the module which was first altered and the activity wh ich
propagated the errors and contaminated the product. One must firstly try to
evaluate the loss of functionality of the altered mission. For example, let us
consider a regulation system made up of a control unit, an arithmetic
processing unit, a memory and an external interface unit. A fault in the
control unit can block all the product activity; a fault in the arithmetic unit
can, according to the activity, have benign effects (if the application does not
make use of it) or severe effects (erroneous computation leading to a
dangerous action on the environment).

4. Faults and their Effects 79

A same failure of a product has different external consequences
according to the functional environment with which the product interacts
(second parameter). A hardware fault in a given micro-controller can have
quite different effects whether this circuit is used for agame or is integrated
in an embedded flight control system.

The precise moment when the fault is revealed as a failure mayaiso be of
importance (third parameter). The effects are different whether the product
operates in a critical phase (for example, during an aircraft takeoft), or in
normal phase (cruise flight), or else is stopped (the aircraft is parked).

During the useful life of the product, the severity of the failure's
consequences can evolve and become more critical due to:

• internal reasons (evolution of the errors, appearance of new faults and
errors);

• extern al reasons (modification of the operational conditions, e.g. due to
an evolution of the functional environment); for example, a faulty text
processor is firstly used for a non urgent letter (benign consequences),
then for an urgent contract proposal (significant or serious);

Let us finally insist on the fact that the seriousness notion is frequently
subjective. For instance, let us consider a short breakdown of a TV
transmission system embedded in a satellite during an Olympic game
pro gram. This failure has rninor consequences for people not interested in
sport programs. It can be considered as significant by the fans. Finally, the
econornic cost of this failure can be catastrophic for the program producer
because he/she will have to return money paid for the non-delivered
advertisements.

Example 4.1. Regulation 01 a balloon's temperature

To illustrate the notions introduced, let us consider a product intended to
control a distiller' s temperature. It receives sampled data from sensors and
controls the heating gas flow by acting on an electro-valve. Let us suppose a
fault in this product wh ich opens the electro-valve at 20% instead of 10%.
This fault can arise from a functional design fault (bad specification
interpretation, wrong control algorithm, bad hardware design, etc.), a
functional or technological manufacturing fault (bad integrated circuit
manufacturing, fault during the insertion of a component, etc.), a
technological fault occurring during operation (stuck-at fault in a
component) or a perturbation coming from the environment of the product
(electromagnetic interference). We can imagine several kinds of
consequences:

80 Chapter 4

• significant consequences: the temperature is incorrect, so the treatment
has a smaller yield than the expected one, implying a loss of income,

• catastrophic consequences: after a few minutes, the high temperature of
the balloon provokes an explosion that destroys the process.

Note that the bad electro-valve control can firstly lead to a decreasing in
the yield, and later, by degradation, reach a total loss of the production,
obliging to halt the mission.

4.2.2 Inertia of the Functional Environment

In general, the external consequences of a failure do not occur
immediately because the functional environment connected to the product
presents inertia phenomenon (illustrated by Figure 4.5). Hence, the
explosion of a distillation balloon due to a failure of the heating control
system may occur a few minutes after the incorrect electro-valve opening.

I The inertia is the duration between the occurrence of a failure and the
beginning of its external consequences on the mission.

According to the considered application domain, the inertia varies from
milliseconds (case of electrical processes) to hours (case of processes from
iron & steel industry or civil engineering). Often, for a given failure, the
duration between the failure occurrence and the occurrence of its
consequences varies. Therefore, inertia is defined as the meantime of the
duration values.

failure I ~ Iconsequence I
I I.

Figure 4.5. Inertia of the functional environment

4.2.3 Completeness and Compatibility

In a first study, the reader may ignore this sub-section as weIl as sub
section 4.2.4 dealing with emergence.

Let us suppose that the initial contract between the designer, the dient
and the user has correctly expressed the specifications of the future product:
function, duration, non-functional constraints on the environment and

4. Faults and their Effects 81

dependabilityattributes.
Let us also suppose that no fault has been introduced during the

development phases. In that case, the following functional relation is true

P = L = S, where:

- S, ~ and P respectively express the specifications, the functionality of
the system resulting from the design phase, and the functionality of the
final embedded product,

and the symbol '=' represents the functional identity (i.e. the provided
function is the same as the expected one, taking the operational
constraints into account).

The final product used for the mission is now infected by faults that can
produce errors and failures. Therefore, P is not identical to S. However, it is
useful to separate the three following cases: P > S, P < Sand P ;!: S.

• P > S: the functionality of the product is greater than the one given by the
specifications. The product is able to do more things than given by the
specifications: it is said to be compatible with them.

• P < S: the functionality of the product is smaller than the one of the
specifications. The product can do fewer things than given by the
specifications: it is a case of implementation incompleteness.

• P;!: S: the product does not satisfy the specifications. It is a case of
incompatibility .

The interest of this distinction lies in the interpretation of the failure' s
seriousness. One generally accepts the first case as benign, as no failure will
be produced. Frequently, the specifications are not formal. They are for
example expressed as an English document. So, some situations may be
unspecified. It can be deliberate if these situations are known not to occur
during the final mission. On the contrary, they may result from omissions in
the specifications. Then, the designer will interpret these inaccuracies during
the design step. As a result, the product might have more functionality and
be able to react to input data that will never be applied by the process.

In the second case, the product may be unable to handle some expected
external stimuli (or the reaction may not be predictable), a situation which
may be considered as serious.

Finally, the third case is the c1assical one of failure production already
considered.

Note. Reuse techniques are increasingly employed in hardware and
software design in order to simplify the design process and standardize the
production. They can lead to the first case (P > S) if some elements of the
functionality provided by the reused module are not presently activated.

82 Chapter 4

Unfortunately, the two other situations exist, being at the origin of numerous
errors. For instance, a subprogram is reused, as it provides an expected
function. However, its designer assumed constraints about the parameters,
which are not satisfied in the new utilization.

4.2.4 Intluence of the Functional Environment:
Emergence

The external faults due to the functional environment which interacts
with the product are often much more difficult to identify and to master than
the internal faults which alter the product. Indeed, modeling of the
environment is oftert'very complex (mathematically speaking) and implies
numerous variables and parameters with much inaccuracy. Moreover, these
models are not static: influence of time, temperature, etc. Here, we will not
treat faults specific to the functional environment but we will analyze the
influence of the interactions between the product and its environment.

The functional relations between the product and its functional
environment place constraints on the actual functioning of the product. We
call emergent functionality the functional part of the product which is really
used in the context of the mission. This part is smaller than or equal to the
total functionality of the product considered alone without external
constraints. We express this property as:

Em(PI II) :s; P, where II represents the functional environment.

Embedded in its environment, a well defined and designed product must
have a resulting emergent functionality greater or equal to the functionality
defined by the specifications. We express this property:

Em(PI II) ~ S.

This expresses that the real behavior provided by the product in its
environment must at least include the specified (i.e. expected) one. So, new
sources of functional failures appear, which are connected to the notions of:

• reuse of a product already designed and involved in new applications
(software functions and packages, integrated circuits), and

• robustness of the product faced to perturbations arising from achanging
environment.

Reuse. A product P which has been developed for a given known
environment II is embedded in a different environment II *. Two situations
might occur:

• the functioning of the product is compatible with the new environment,
then Em(P/JI*) ~ S,

4. Faults and their Effects 83

• the functioning of the product is incompatible or incomplete according to
the new environment.

The incompatibility comes from faults introduced during the design,
production and/or operation stages of the product.

Robustness. The product is supposed to be correct1y specified, designed,
produced and used. We suppose the occurrence of an external fault, also
called perturbation, arising from the environment. This environment
changing is noted .MI (llbecomes II *). We say that the product accepts this
perturbation if Ern(PI II *) ~ S. Then, the product is qualified as robust
with regard to this perturbation. In the opposite case, the fault will produce a
failure sooner or later.

The robustness is the property of a system that defines its capability,
when it is aggressed by the environment, to provide a function wh ich is
acceptable to the user.

Certain standards define robustness as the characteristic of a product
which guarantees that its functionality is maintained even if specified
operational and utilization requirements are violated. However, it assumes:

• either a definition of the expected functionality, that is an extension of the
specifications of the system,

• or a temporal inactivity of the product which preserves its current state
for future normal use.

Our definition does not require a precise expression of what must occur,
but just the expression of its acceptance or its rejection, for example using a
property. For instance, if a traffic light controller detects a bad use, such as a
faulty signal sent by a sensor, the yellow light must wink (specified safe
behavior) or the two lights must not be simultaneously green (safe behavior).
Furthermore, for this controller the non-reaction and the state preservation
mayaiso be adequate to react to temporary faults. The concept of robustness
can be linked to the fail-safe property developed in Chapter 17.

4.3 CONCLUSION ON THE EFFECTS OF FAULTS

Figure 4.6 sums up the destructive mechanisms linking faults, errors,
failures and external consequences. A fault appears and is activated as an
error. The error propagates and contaminates the product until reaching the
output; hence, it produces a failure. Finally, the failure has external
consequences on the environment.

The vocabulary used in this book was selected from the various hardware
and software domains of computer sciences. Unfortunately, dependability

84 Chapter 4

science has not been developed jointly by specialists from these domains.
Hence, the keywords have not always the same meaning. In Electronics, the
word lailure often refers to operational values of parameters of a component
being out of range. For example, a 'failure' of a MOS transistor will disturb
the operation of a logical gate. In that context, the lailure of the MOS
component would precede an error in the product. Therefore, these notions
are recursive. In any case, the notions of fault, error and failure are always
relative to the observer's point of view. Thus, a 'stuck-at 0' of a logical
output gate may be considered as a fault of the circuit using this gate, an
error of the gate module in the complete circuit, or a failure of the gate
component. 1t depends on the investigation level considered.

Latency lnertia

Figure 4.6. Internal and external effects of faults

Latency and inertia are phenomena which delay fault effects: latency
delays the internal transformation of faults, and inertia delays the external
effects of failures. So, these two phenomena seem to have always positive
effects on a mission's dependability, because they delay the issues and give
more time to the protective mechanisms, hence avoiding for example a
catastrophe. This opinion is really true for inertia.

Concerning the latency, the property is unfortunately not always true. As
a matter of fact, latency may have negative effects on the product' s
dependability because of the lack of observability about faults inside the
product. This means that a fault may exist which eventually produces errors
that cannot be observed from the outside of the product. In some cases, a
high latency may produce an accumulation of invisible errors wh ich, later,
may inhibit the protective mechanisms. Such mechanisms are, for example,
off-line and on-line testing methods used during the maintenance periods or
fault-tolerant techniques embedded in the product to avoid failures. For
example, consider a product containing a fault-tolerant mechanism used to
handle exactly one error. Thus, if such an error exists at the end of the
development process, the presence of the associated fault is masked. For
instance, it is not transformed into a failure during a testing operation.
However, a second fault occurring anel/or activated during the operation will
not be tolerated.

4. Faults and their Effects 85

Figure 4.7 summarizes the positive and negative effects of latency and
inertia. Latency and inertia measurements are fundamentally statistical
information difficult to assess with accuracy. Therefore, the practical interest
of their analysis is more qualitative than quantitative.

..
• positive effccts

Latency
• negative effects

Inertia _ • positive effects

Figure 4.7. Positive and negative effects of latency and inertia

Example 4.2. Analogy with the human pathology

The observation of living beings gives an endless source of examples to
illustrate and enlighten the fundamental notions implied in the destructive
and the protective mechanisms we are studying here. Faced with the
relentless degradation mechanisms, life has cleverly developed a wide range
of protective mechanisms to detect and correct the problems.

A virus (considered here as the analog of a fault) penetrating our body
will at first be latent (passive fault). Later, according to our physiological
evolution, this virus can disturb the functioning of one organ (the fault is
activated as an error in a module). Then, the infection may develop and
pro pagate until it becomes an illness (propagation of errors and failure
occurrence). The main detection mechanism is pain. Temperature is also
used to detect an illness but it is fundamentally a protective mechanism.
Here also, latency plays a major role by delaying the effects of the virus. The
consequences of latency are positive. For instance, the illness is delayed for
months or even years. However, it has also negative effects. For example, it
may mask the presence of an infection that will develop inside an organ and
will be very difficult to cure later.

4.4 EXERCISES

Exercise 4.1. Latency of an asynchronous counter

Let us consider a 16-bit asynchronous counter which counts pulses
corning on the input land gives the result on the output 0 with a natural 4-
bit binary code (a, b, c, d). A stuck-at '0' of the variable a occurs while the
counter is in the initial state (0, 0, 0, 0). Hence, the counter will now evolve

86 Chapter 4

with constrained configurations (0, b, c, d).
Determine the average latency of this fault for a 2ms average-time

between input pulses.

Exercise 4.2. Latency 01 a structured system

We want to analyze the latency of the 3-module structured product
considered in Chapter 2 (represented again in Figure 4.8).

Product

-. Mt M3 r----. Input +- Output
-+

_ .. -.

~ M2

-- -~--- -

Figure 4.8. Structured system

Calculate the latency at the different levels of the structure by adding
locallatencies:

initial fault at time 0, latency LI at the level of module M 1, propagation
through M2, M3 (latencies L2 et L3), and then failure at the output.

Numerical values: LI = 10 ms, L2 = 100 ms, L3 = 30 ms.

Exercise 4.3. Consequences 01 lai/ures

A given product may be infected by one of the faults of a set of ten faults
{F1 •. F lO } having the same probability of occurrence p. The maintenance
contract which has been accepted for this application specifies that the repair
time is equal to 4 hours.

An analysis of the application showed that the external consequences of
the ten faults are as folIows:

: benign consequence,
: significant with a 'fixed cost' of 5ku
(u being a given monetary unit),

: significant with a 'variable cost' of 6ku per hour,
: significant with a 'fixed cost' of lku plus a 'variable cost' of
3ku per hour of immobilization.

What is the average maintenance cost?

4. Faults and their Effects 87

Exercise 4.4. Fault-Error-Failure in a program

The following procedure extract aims at counting the number of sheets in
a book. At first, it computes the number of the last right page.

procedure Count_Number_of_Sheets (Sheets_Number:

Last_Right_Page: positive;
begin

Last_Right_Page := ... ;

out positive) is

Sheets_Number := (Last_Right_Page + 1) / 2;
end Count_Number_of_Sheets;

We assume that the expression which calculates the Last_Right_Page
(noted ... in the program) contains a fault. We use this procedure in a book
editing processor to analyze a book whose actual last right page number is
325.

1. Is there a failure if the faulty expression gives 326 as a result? Answer the
same question with 327 and 328.

2. Is there an error in the three cases?

3. What do you conclude from this experiment?

SECONDPART

PROTECTIVE MECHANISMS

Confronted to the destructive mechanisms shown in the first part of
this book, faults - errors - failures and their extern al consequences,
designers, producers and users have developed numerous formal and
empirie proteetion means. Their principles are introduced in this part. The
associated practical methods and techniques will be studied in the third
and fourth parts of this book.

We firstly introduce in Chapter 6 the three large groups of
dependability means allowing faults and their internal and external effects
to be mastered: fault prevention, fault removal and fault tolerance. The
methods, which correspond to these approaches, are presented and
organized according to several groups.

In Chapter 7 we consider the dependability assessment which allow us
to measure the efficiency of the use of the previous methods. We study the
quantitative approaches considering the principal criteria (reliability,
testability, maintainability, availability, safety and security) , as weB as
methods which permit us to evaluate them. We also discuss qualitative
methods.

Redundancy is a fundamental notion which plays a major role in
dependability techniques, principally for fault suppression and fault
tolerance. In Chapter 8 we define this notion and its many diverse forms.

Chapter 5

Fault and Error Models

5.1 DEFINITIONS

5.1.1 Structural and Behavioral Properties

We have presented the mechanisms which trans form faults into errors,
failures and external consequences. We will now examine a fundamental
question: how can faults and errors be expressed by means of mathematical
modeling tools and what is the relevance of such models? The answer to this
question is important because it affects the means that will be used to
prevent, detect, or tolerate faults.

Faults were defined as adjudged causes of failures with regard to the
system structure: a fault is a non-adequate alteration of the system structure.
The identification of faults therefore depends initially on the modeling
means used to express the studied system. Thus, for a given product, faults
associated with a representation by state graphs are different from those
associated with an electronic modeling based on MOS transistors. In the first
case, a transition from astate to another may be a fault, whereas in the
second case, it may be a short-circuit connecting two lines. In practice,
numerous representations are used during the life cyc1e of a
hardware/software product: from the behavioral model of its specification to
the technological model of its implementation.

Moreover, the examination of each feature of a structure does not allow a
precise fault prediction. We illustrated this fact by signaling that a
connection linking two elements of a circuit can be considered as desirable
(necessary to obtain a good functioning) or not (short-circuit). Similarly, the

89

J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

90 Chapter 5

simple reading of the pro gram fragment 'i f (A> B) ...' does not permit
the conc1usion that 'if (A>=B) ... ' should have been written instead.

In fact, faults depend on the tool used to model the system, but also on
the functionality that must be expressed by the system model. For instance,
(A>=B) must be written instead of (A>B) because this last condition will
not allow the expected behavior of the system to be obtained.

This discussion leads us to conc1ude that faults are as varied as the
number of representation models and modeled systems! If an exhaustive list
of all possible faults existed, it would certainly be huge. Consequently, what
could be proposed to help design engineers in their fight against faults? To
answer this question, faults must not be identified by their individual
specificity but by common characteristics. Such common characteristics will
allow fault c1asses to be defined, and thus techniques to be proposed to
handle all faults of a given c1ass. The issue is now the definition of such
common characteristics.

As faults are defined as non-adequate modifications of a product' s
structure, we must express what is expected or required. This is generally
difficult. Indeed, as the faults being considered in this book are
unintentional, the knowledge of what is correct would prevent any fault
creation during the development phases. Instead of precise expectations on
the structure's characteristics, we will express intended properties. These
properties are ordered into two main families:

• physical properties, also called structural properties, wh ich deal with the
static structure of the system or the product,

• behavioral properties which deal with the function performed by the
system or the product.

5.1.2 Structural Properties

Properties of the first group, that is physicallstructural properties, are
expressed without any knowledge of the studied system' s function. Where
hardware technology is concemed, examples of such properties are: a wire
connecting two components has been cut, components have not been
mounted on a printed circuit board, or a board has not been properly plugged
into a rack. Inspection tools can generally perform the detection of these
faults. Conceming the domain of software technology, the properties deal
with syntax faults such as a wrong keyword, a grammar fault, etc. A syntax
fault is defined as the violation of properties on keyword and identifier
sequences defined by the language grammar rules. Each property violation
defines a c1ass of potential faults and not one particular fault. For example, if
an Ada compiler detects that a program calls a non-existent function, it

5. Fault and Error Models 91

identifies a dass containing numerous possible faults e.g. the called function
is rnissing in the file, the name of the called function is wrong, or the called
function specification has not been previously dedared, whereas the body is
written after the calling program.

IA fault model defines a set of faults characterized by
physicaVstructural properties, that is properties on the desired model
structure.

The properties can be generic, that is to say not specific to any given
system. Generic properties are related to the modeling tools, even if they are
applied to each particular modeled system. For instance, the previous syntax
fault dass is characterized by the generic property: 'a called subprogram
must be previously dedared'. This requirement is a generic feature of the
programrning language. Each subprogram call can be at the origin of a
specific fault bel on ging to this type.

5.1.3 Behavioral Properties

On the contrary, the second group of properties, that is the behavioral
properties, characterizes faults by their effects as errors. For example, the
occurrence of a '1' logical value at the output of an ANO gate when a '0'
value is applied at one input reveals an error. This error may be due to
numerous faults: wrong operation assigned to the variables (e.g. a NANO
instead of a ANO), or wrong connection (e.g. the cut of an input). The
property 'an assigned value must belong to the type range' defines a
behavioral property for programs. It is a generic property as it is expected for
all variables of any pro gram. A particular error is raised when a variable
assigned by a value does not belong to the range defined by its type. Thus,
we put all the faults producing the same sort of errors together in the same
dass of an error model. These faults are characterized as violating the same
behavioral property, that is, defined on the states intended to be reached
when the system runs.

I An error model defines a set of faults characterized
as errors by a property on desired or intended states.

This distinction between fault model and error model is not always easy
to establish. In particular, relationships exist between the two notions. For
instance, in the case of the preceding ANO gate error model, a more precise
investigation would discover a physical fault such as a short-circuit between
the output li ne and the ground line, that is, a fault model. In the literature,
most authors speak of fault model as a generic term. The term error typology
is also appropriate.

92 Chapter 5

The variety of the means used to model the systems in addition to the
variety of expressed properties do not allow an exhaustive list of faultlerror
models to be provided. Our presentation focuses on examining faults and
errors relevant to the last phases of the development process, wh ich are
associated with the implementation technologies. We examine the families
of faultlerror models relevant to hardware and software technologies.

In seetion 5.2, we present examples of significant faultlerror models of
electronic circuits and software programs. We then discuss their relevance in
seetion 5.3. We analyze, in seetion 5.4, some faults altering two simple
examples: functional and hardware faults affecting a hardware addition
circuit (seetion 5.4.1), and faults of a small program and of its runtime
resources which support its execution (seetion 5.4.2). These pieces of
information will be useful to understand the proteetion mechanisms
explained in the following parts of the book.

5.2 SIGNIFICANT FAULT AND ERROR MODELS

5.2.1 Faults and Errors at Different Representation Levels

Table 5.1 presents some classes of faults and errors for modeling means
used at different steps of the design of an electronic product.

Level System examples Examples of types of faults or errors

Abstract Finite State Machines Erroneous states I arcs (fault)
Petri nets

Program Programming languages Bad using of statements,
Erroneous constants (faults)

Register Transfer Languages Functional faultslerrors affecting the

Functional modules (flip-flops, registers, etc)
Controlfaultslerrors affecting transfers
between modules

Logic Gate, Flip-Rop Stuck-at 011 of gate inputs/outputs (errors)

EJectronic Transistor MOS Stuck-at Ollof wires
Short-circuit, open Iines (faults)
Coupling (errors)

Technology Layout Default on lhe layout
Physical structure Erroneous dimensions of technological

elements (faults)

Table 5.1. Faults and errors at various representation levels

5. Fault and Error Models 93

These 6 levels illustrate the significant steps of the design process:
abstract, program, functional HDL (Hardware Description Level), logic,
electronic and technological. Then, in Figure 5.1 we provide some simple
examples of faults and eITors for these six levels.

Abstract : design fault A
Arc 2 ~ I was forgonen ~B~ If input B is applied from state 2,
the system stays in this state mlsslng are

Program: design functional fault if A <=8 then
8 :=8 + 1;

Une 1 becomes: if A < B thell end;
The result S is not incremented when A = B

HDL: functional and control faultslerrors Cl: D+-A+B;

1. When condition Cl arises, the result of A + B is stored ~C2 in register D. If C2 is wrilten instead of Cl, an error
in the SYllchronization of this treatment occurs

2. When condition C arises, the value of register A is
C : MEM(R1) +- A ;

stored in the memory at the address provided by RI. If ~
RI is replaced by R2, then an addressing error exists R2

Logic: hardware faults

a?s!)W Stuck-at '0' or at 'I' of the inpUt/output of the gates.
For instance, stuck-at '0' of an output or stuck-at' 1 '
ofan input

Electronic MOS: hardware faults

Short circuit between two wires: '-181-:;"'-the logic function ofthe MOS network is modified -
b-j I-d

Hardware technology: design fault PolysWeoß

Creation of a parasitic MOS transistor due to an

-~ involuntary crossing of two connections (polysilicon
and diffusion)

Figure 5.1. Fault examples at several abstraction levels

We need means to identify the numerous faults which can affect the
structured models expressed during development phases. As previously
mentioned, due to the large range of possible faults and due to the difficulty
involved in considering a fault as the presence or the absence of structural
elements, the faults could be classified according to the eITors they generate.

94 Chapter 5

Unfortunately, we are again in a similar situation: the possible errors are
innumerable and they strongly depend on studied products. For instance,
when software applications are concerned, properties specific to each
application can be expressed correlating the intern al state values:

• relationships between the values of the variables of the program, for
example the value of X must be located between those of Yand Z,

• or relationships on the sequencing, for example a subprogram PI must be
called before P2.

The proposal of an 'universal' dassification of the faults therefore
requires expeeted properties whieh depend only on the system's modeling
means, that is, independent of each specific modeled system. For instance, if
the programming level is considered for a software system, the following
property is generic:

the values assigned to a variable must belong to the set defined
by the type associated with the variable.

All the program faults leading to this generie error belong to one dass of
the error model. We insist again on the fact that we defined an error model
and not il specific error: each occurrence of an 'out-of-range' assignment of
a given variable is one error; hence, being valid for any variables, the
property defines an error model.

The following two sections are dedicated to the study of some significant
fault and error models concerning the hardware technology (section 5.2.2)
and the software technology (section 5.2.3).

5.2.2 Hardware Fault/Error Models

5.2.2.1 General Error Models

Hardware fault effects can be characterized independently from any
precise system modeling tool. For this reason, this error modeling approach
is qualified as 'general'. Five independent properties that take two opposite
states are generally used to dassify errors at this level:

• logicalor non-Iogical,

• static or dynamic,

• permanent or temporary,

• single or multiple,

• symmetric or asymmetric.

5. Fault and Error Models 95

Logieal errors are characterized by transformations of logical values: '0'
becomes '1' and vice versa. On the contrary, non-logical errors provoke
alterations of the logicallevels outside the specification domains. The altered
signals take a value between '0' and '1'.

Static errors correspond to stable undesirable state, for example a gate
output '1' instead of '0'. Dynamic errors represent faults which provoke
transient undesirable states, for example an oscillation of a signal before
reaching a correct stable value.

Permanent errors affect the functioning for a long time or in a definitive
way, whereas temporary errors have lirnited operation duration (sometimes
very short). Concerning this notion, another set of definitions is found: hard
errors corresponding to permanent errors and soft e"ors corresponding to
temporary errors resulting from external causes (transient faults). These
terms are used to characterize some errors altering RAM (mainly Dynarnic
RAM) for memory testing. Soft errors can be induced by cosrnic rays or
alpha particles.

Single errors disturb only one element (for instance a transistor), when
multiple errors disturb the functioning of several elements (for instance a
problem in the electrical supply circuit affects all the components). The
order of a multiple error is the number of elements which are altered.

Finally, symmetrie errors provoke state modifications with the same
probability (for instance, '0' to '1' and conversely), whereas asymmetrie
errors have not the same probability to switch to '0' ot to '1': for example,
several lines are switched to value '1' due to the energy provided by an
external particle disturbing a component.

These five parameters taking two values, we define ten error classes.
Thus, logical, static, persistent, single and symmetric errors identify a class
of faults leading to these kinds of errors. Note again that these properties are
actually generic as they are independent of the modeling tool and thus of the
analysis level considered and also of the modeled system. From this first
characterization of the properties, more precise classes of faults will be
defined taking the system modeling tool into account.

5.2.2.2 Error Models at Logical Level

The expression of a system using a model at logical level is based on
interconnected gates. We assurne that these gates implement the following
elementary logical functions:

AND, OR, NOT, NAND, NOR, EXCLUSIVE OR (noted XOR).
This level is then extended, handling more complex objects such as

multiplexers, decoders, latches, registers, counters and other simple
functions to store or process data. Thus, the HDL level is reached. At this

96 Chapter 5

level, the fault effects are characterized by alterations of internal states of
components or alteration of signals on wires linking logical components.

All technological faults affecting gates are observed at their input and
output level. A very old but still popular error model is the single stuck-at
011 model. This is defined as an input / output wire (or node) having a
persistent '0' or '1' assignment.

Figure 5.2-a) illustrates this model for a two-input AND gate. Each one
of the 3 input and output ports can be stuck at '0' or '1'; hence there are 6
persistent single logical errors. Two of them are represented in the figure
(stuck-at '0' of band stuck-at '1' of c). By generalization, we define a
multiple stuck-at fault as any set of single stuck-at faults, for example the
stuck-at '0' of line b and the stuck-at' l' of line c in Figure 5.2-a).

a) Stuck-At faults b) Unidirectional faults

Figure 5.2. logical faults/errors

What we identify as 'stuck-at fault' represents in reality a set of unknown
technological faults which can alter the electronic components inside the
gate. This set of faults is strongLy dependent on the technology used to
realize the gate. We could also say that the 'stuck-at' model is an error
model corresponding to the activation at the input/output level of internal
'real' faults. This apparent divergence of interpretation is a matter of
observation about the gate module. It has no influence on any propagation
analysis outside the module.

A unidirectional error is a multiple asymmetric error such that all altered
lines are stuck at the same value. An example is given in Figure 5.2-b): two
lines, b and d, are stuck at the same value '1'. This model is realistic when
expressing situations like apower failure of a MOS circuit or a line cut in a
Bus connecting several units or else a parasitic phenomenon altering a
transmission line.

5.2.2.3 Fault Models at MOS Switch Level

At the MOS switch level representation, a circuit is expressed as a
network of interconnected MOS, each one being considered as a simple

5. Fault and Error Models 97

switch whose state is ON (conducting) or OFF (blocked) according to the
signal applied to its gate input.

This model is naturally c10ser to the physical reality than the logicalor
the HDL levels. Hence, the related fault models are more realistic, that is to
say c10ser to the likelihood of electronic faults which disturb the
components. Unfortunately, these fault models are also much more complex
in terms of number of faults.

In the two following sub-sections, we will examine some examples of
fundamental fault models, first at MOS network level, then at MOS gate
level. Two kinds of faults are specific to this level of representation:

• shorts between lines,

• opens paths on conducting lines.

A particular case of a short fault, called a bridging fault, implies a 'wired
logic' functioning. This kind of faults can occur in certain gate structures
when the output lines of two gates are accidentally connected together. Then,
the resulting signal on this line is the logicalOR (or the logical AND
according to the technology) of the fault-free output lines.

Elementary fault models at switch level
A very simple and basic MOS fault model supposes that each line can be

stuck-at '0' or '1', and each transistor can be:

• stuck ON when the transistor is always conducting, or

• stuck OFF if the transistor is always open (no conduction).

The fault is 'single' if only one element is altered. On the contrary, it is
'multiple' if several elements are faulty. In Figure 5.3, fault FI (transistor Tl
is OFF, hence its equivalent switch is open) is an example of such a single
fault.

NetworkN

a

b'

Figure 5.3. Faults of a MOS network

98 Chapter 5

Without fault, this network implements the logical function R = a.b' +
b.c, where the symbols '+', '.', and '" represent the logical functions OR,
AND, and NOT. When fault FI occurs, the function becomes RI = b.c
which produces a wrong output for two input vectors (a, b, c): 100 and 101.

This basic model can be improved by adding shorts between lines. For
example, fault F2 of the network of Figure 5.3 is such a short. The resulting
function ofthe network is: R2 = (a + c). (b' + b) = a + c.

One can easily show that the modified function R2 is different from the
good one R. Exercise 5.1 analyzes in greater detail the influence of switch
level faults on the behavior of this network.

Fault models at CMOS gate level

eMOS electronic circuits are generally organized as structures comprised
of two wired networks: a Pull-Up network connected to the '+' power line
and the Pull-Down network connected to the '-' power line (Figure 5.4).
According to the input values, either the Pull-Up network is conducting and
the Pull-Down network is blocked, forcing the output to a '1' value, or the
Pull-Down network is conducting and the Pull Up network is blocked,
forcing the output to a '0' value.

+

Pull.Up

r---+ Network

- ~ output
inputs

Pu1I·DOWD -... Network

.

Figure 5.4. CMOS gate structure

Figure 5.5 shows two simple fault examples affecting a NAND gate:

• SI, short-circuit in a transistor, is equivalent to a stuck-at' l' of input a,

• S2, short-circuit in a transistor, is equivalent to a stuck-at '0' of input b.

The resulting two faulty functions,/s/ and/s2> are compared to the normal
one/in the truth table of Figure 5.5:

SI -+ /s/: this fault can be detected by the input vector (a b) = (0 1),

S2 -+ /S2: this fault can be detected by the input vector (a b) = (l 1).

5. Fault and Error Models 99

Unfortunately, many physical faults cannot be reduced to such simple
logical transformations. In some cases, the altered circuit can even be
transformed into a sequential circuit, as presented now.

t

S~ I~ a~r1
f

ab f fSl fS2

00 1 1 1

NAND ~~ 01 101
10 1 1 1

b I 1 1 001

S~

Figure 5.5. Faults of a NAND MOS circuit

Stuck-Open Model. The stuck-off or stuck-open model considers that a
transistor is blocked in the OFF state. An example is given by fault 0 of
Figure 5.6 a). In this case, if we apply the input vector (01), the two PuIl-Up
and Pull-Down networks are blocked (not conducting) and the output value
depends on the preceding state of the circuit because of its output equivalent
capacitance. Hence, this circuit becomes sequential.

The exhaustive input sequence <00, 01, 10, 11> does not detect this fault.
To detect the fault, it is necessary to apply the two ordered vectors <11, 10>:
then,J remains at value '0' instead of going to '1'.

+

a
0

I f b

L f
NOR

b)SO
a) Stuck-Open b) Stuck-On

Figure 5.6. Stuck-Open and stuck-On faults in a NAND circuit

Stuck-On Model. The stuck-ON model considers that a transistor is
blocked in the ON state. An example is given by fault SO of Figure 5.6 b).

100 Chapter 5

In this case, if we apply the input vector (00), the value of output fis not
defined because both networks are conducting, producing an electrical
conflict between the power supply and ground lines. To reveal this fault,
specialists traditionally use the IDDQ testing method which consists in
measuring the power supply current passing through the circuit during
quiescent states.

Short-Circuit Model. The short-circuit model considers that two outputs
of gates are wired together. This fault category also creates situations where
the outputs cannot be easily specified to '0' nor '1' .

Other fault models. The simple fault models previously introduced can
be completed by taking into account other considerations such as the notion
of 'electrical force' or 'response time' of the components. The temporal (or
timing) faultlerror models deal with incorrect response time of components:
they are more realistic but much more complex to implement, in particular
for test applications. However, some timing fault can be actually induced by
crosstalks between wires. A delay fault occurs when a signal propagated
through a circuit is slower than it should be. This term defines a specific
temporal fault. In many cases, delay faults do not affect the functioning of a
device, but merely skew the results in time. This type of performance change
can, however, be totally unacceptable if it causes the violation of timing
specifications.

5.2.2.4 Error and Fault Models at Technological Level

At the technological level, faults can be analyzed with more accuracy.
We mention hereafter some significant c1asses of faults or errors.

• Defects of the crystalline structure of the Silicon; the quality of the
wafers wh ich are at the origin of all integrated circuits can be altered by a
certain number of crystalline structure defects: area defects, line defects,
or spot defects (fault model). These defects may induce cuts, shorts, etc.

• Punctual or global fabrication defects due to dust, optical or chemical
fabrication problems, etc. (fault model).

• Defects occurring during the use, e.g. aluminum electro-migrations, line
cuttings, layer-to-Iayer shorts, thin oxide shorts (MOS gates), floating
nodes, soldering defects (fault model).

• Aggressions during the use: parasitic signals due to crosstalk between
wires or external electro-magnetic induction, alpha-partic1e
contamination, X-ray action, etc. (error model).

5. Fault and Error Models 101

5.2.2.5 Other Integrated Circuit Faults

The preceding fault/error models cannot direct1y express a great number
of faults that alter electronic components. However, these actual faults have
to be considered during the component's production stage. We provide some
examples of such faults that have mechanical, chernical or other nature.

• Encapsulation: Integrity, waterproofness, traces of welding.

• Package: integrity, support quality, dimension, leaks, thermal and
mechanical resistance.

• Internal cavity: humidity, free partic1es, and quality ofthe support.

• Contact points: spacing, short-circuits, passivation remains, scratches.

• Die: corrosion, width, short-circuits, scratches and holes, alignment,
cover, chemical defaults, passivation.

• Electric quality: continuity and short-circuits, electric stability and
characteristics, temperature performances and stability, sensitivity to
electrostatic discharges, sensitivity to radiation, design quality.

• Pins: strength, aptitude to welding, airtightness, materials and finishing,
resistance to heat, resistance to hurnidity, spacing and length, damages.

• Support ofthe die's fixing: strength (adhesion), consistency - uniforrnity,
cover, humidity, die orientation, excessive accumulation of materials,
free partic1es, dissipation, thermal and mechanical constraints, support
type, re-processing, general manufacturing quality.

• Connection wires: strength, position, height and curve, spacing, adhesion,
uniformity, size, current density, re-processing, metallic contarnination,
thermal constraints, cuts.

5.2.3 Software Fault and Error Models

In this sub-section, we consider fault and error models relevant to
software technology. We firstly present a general error model. Then we
discuss fault and error models at source code level. Finally, we introduce
error models at executable code level.

5.2.3.1 General Error Models

The first general error models introduced in section 5.2.2.1 for hardware
systems are also applicable to software technology. In practice, three of the
five parameters presented are relevant for this technology: static or dynarnic
errors, persistent or temporary errors, and single or multiple errors.

102 Chapter 5

Static or dynamic errors. Let us consider a system which handles
sampled data coming from a sensor. The new input value is stored in a
variable x every lOms. If the program that implements this sampling
function puts a null value in x at the end of the using of the last sampled
value (e.g. for process control purpose), the variable x contains a wrong
value null till a new value is sampled and stored. This is a dynamic error as
the final value of x is correct. An example of static error would be an
erroneous Analog-Digital conversion that would store a wrong static value.

Permanent or temporary errors. To illustrate this property, we now
consider a multi-task program. A consumer task Tl treats a shared variable x
assigned by a producer task T2. When the program execution starts, x is not
assigned to a pertinent value. If T2 assigns a correct value to x before Tl
reads it, no problems occur. On the contrary, if Tl reads the value before it
has been assigned by T2, an error occurs. If the tasks Tl and T2 are
cyclically executed, this error disappears at the next cycle (after x has been
assigned by Tl). On the contrary, if xis read by Tl only once, the error is
permanent.

Single or multiple errors. Single errors are errors that affect only one
element of the software product. The term 'element' depends on the model
used. At programming level, it may be a variable, a subprogram, a package,
etc. At design level, it may be an object, aresource, etc. On the contrary,
multiple errors occur when several elements are affected.

5.2.3.2 Fault Models at Source Code Level

The syntax of a programming language is defined by rules of a grammar.
A grammar does not specify a unique sequence of keywords or identifiers.
Otherwise, only one program structure could be written. The rules define
constraints, that is properties, on the acceptable sequences. For instance:

<statement> :: = <if-statement> I <loop-statement> I ...
enumerates the various possible statements, by using the standard BNF

(Backus-Naur Form) representation.
Thus, the first role of a compiler is to check that the compiled program is

in accordance with the properties required by the programming language
grammar. Any violation of such a property highlights a fault.

Consequently, each programming language defines a fault model.
Therefore, the choice of a programming language must take into account the
features it offers, but also the fault model it provides, that is the verification
actions processed by its compilers.

Let us consider the following C language extract:

if (A>B) A++ i

5. Fault and Error Models

if (A>C) C++;

else B++;

103

The syntax of the program does not impose syntactic constraints on the
definition of the beginning and the end of programming blocks. Hence, the
previous pro gram may be erroneous, the expected correct program being:

if (A>B) {

A++;

if (A>C) {

else {

}

}

}

On the contrary, the use of the Ada language makes necessary the
expression of the end part of the statements (end i f). For instance, the
preceding algorithm becomes:

if (A>B)then

end if;

A:=A+l;

if (A>C) then

C: =C+l;

end if;

else

B:=B+l;

Note. The else part is not required by the syntax but it is strongly
recomrnended by Quality Guidelines. When nothing is to be done, a null
block must be used:

else

null;

end if;

5.2.3.3 Error Models at Source Code Level

As previously mentioned, a pro gram is a structure made up of an
assembly of features provided by a language. These features are defined by:
their syntax, allowing fault models to be expressed, and their semantics
specifying their behavior.

Such as in electronic technology, we are searching for expected
properties wh ich must be generic, that is, applicable to any pro gram

104 Chapter 5

whatever its functionality may be. The negation of properties associated with
the semantics of the programming language features therefore defines such
an error model. We present five examples.

1. Afunction does not return a value. This is an actual error of the program
execution. Indeed, unlike the other subprograms called procedures, each
function must return a value to conclude its execution. Such a property is
defined by the semantics of the used programming language. As previously,
we do not want to express the fault which is at the origin of this error. It is
maybe a simple case of negligence: the author forgot to write the statement
return Xi. This statement may exist, but another fault in the previous
statements leads to a control flow path which is not concluded by the
execution of this return statement.
2. An input parameter of a subprogram is not assigned by an actual value at
subprogram caU. This error occurs if Push (X) i is called with an non
initialized value of x.

3. An output parameter of a subprogram is not assigned at the subprogram
body execution completion. For instance, no value is returned in Y after the
execution of Pop (Y) .

4. A variable whose type is constrained is assigned by a value not belonging
to the range specified by this type. Example:

subtype Ice_Temperature is integer range -70 .. Oi

Freezer_Temperature: Ice_Temperaturei

Freezer_Temperature := ... expression

where the expression evaluation returns +270 at runtime.

5. A first task caUs the service of a second task which does not exist. This
occurs when the second task was not previously created or if, when being
created, it was then achieved. The potential faults which are at the origin of
this last error are numerous:

• the source program design explicitly expresses that the second task must
be completed before the call,

• the second task was achieved due to an error raised during its execution,

• the second task was unintentionally killed by another task.

5.2.3.4 Error Models at Executable Code Level

As usual, the error models highlight the violations of expected properties.
However, the properties now concern attributes of the executable code.

5. Fault and Error Models 105

The fact that the execution of a ca lied subprogram is not terminated by
an instruction 'return' is such an example. This instruction is absolutely
necessary to pop the call context in order to res tore the caller context.
Numerous causes can be at the origin of this error. For instance, it may be
due to the execution of a jump instruction of the subprogram body whose
associated address was corrupted. The fault which has provoked such a
situation may be:

• a bad expression used to ca1culate the branching address due to a
compiler failure,

• a bad constant address coming from an electromagnetic disturbance of a
bit of the memory word where this data is stored, etc.

The execution stack overflows is a second example of error model at
executable code level. A stack is used at runtime to manage subprogram
calls (for instance, local variables and return addresses are temporally
stored), to handle interruptions, etc. Here again, various faults can be at the
origin of this dass of errors such as:

• infinite recursivity of a subprogram due to bad design or programming,

• bad assessment of the stack memory size requirements due to:

);> the compiler whose generated code does not optirnize the stack use,

);> the runtime executive (operating system) wh ich does not master
correct1y the dynarnic memory allocation.

5.3 FAULT AND ERROR MODEL ASSESSMENT

We introduced the most significant fault and error models used for
hardware and software technologies. Of course, these models are very
different from one another as they reveal different realities (hence, different
system models). Each one makes assumptions about the possible faults
errors that may affect the system' s representation or its operation. Moreover,
they often present a probabilistic character corning from statistical data or
measurements from sampIes. The fault occurrence probability is an
important piece of information accompanying the qualitative and technical
characteristics of this fault.

5.3.1 Assessment Criteria

The engineers using these models for dependability purposes have to
answer the question: "How can I choose the best fault/error model and how

106 Chapter 5

do I assess its relevance and efficiency?". Even if we cannot provide precise
grades to each model, several criteria to assess them can be established. We
have identified 6 main criteria which allow the evaluation of the quality of
fault and error models: relevance, fault expression capability, fault
partitioning, distribution equilibrium, genericity / specificity and tractability.

1. Relevance

At first, there is not one good model, as each one is associated with a
development phase and therefore is appropriate in order to characterize the
faults and errors occurring or acting at this phase. For example, a physical
defect of a MOS transistor will certainly provoke a dysfunction of the
microprocessor which contains this transistor and finally lead to an error at
the application software level. However, an error model at software level
may be able to detect the resulting error, but not to diagnose the faulty MOS.
For this diagnosis purpose, a switch level fault model is more suitable! The
'realistic' notion of a fault model reveals its accuracy to identify faults. The
more precise the model is, the more pertinent and efficient the fault analysis
iso A fault not expressed by the model cannot be interpreted, and the
protective means used to detect and handle it can be inefficient.

2. Fault expression capability

A fault/error model defines classes of faults. Such a model has a high
fault expression capability if it allows a great number of faults to be
characterized. Each fault belonging to this set of faults is identified in at least
one faultlerror dass.

3. Fault partitioning

A third characteristic is the fact that the model makes a mathematical
partition of the considered faults into several classes. This means that each
fault is identified in exact1y one class. Otherwise, faults are difficult to
identify precisely.

4. Distribution equilibrium

A good model must induce an equilibrated distribution of the considered
faults into its classes. This property makes the fault diagnosis easier.

5. Genericity or specificity

In order to be used in many different contexts, a fault/error model must
be generic. Even if they are applied to specific systems, fault/error models
depend on the modeling tool used to express the system (gates, programming
languages, Petri nets, etc.), but they do not depend on the modeled system.

5. Fault and Error Models 107

For example, the 'stuck-at 011 fault model' is based on a gate level
representation and may be applied to any logical structure, independently of
any final technologie al implementation. However, even if these fault models
are useful, they do not allow the handling of numerous errors specific to the
particular functionality of each system. To illustrate this point of view, we
consider the following subprogram extract:

procedure Min_Max{L: in List; Minimum, Maximum: out
Element) is

begin

We assume that this subprogram returns the values Minimum and
Maximum of the elements of a given list (L). Certain presented fault models
assume that a list can be unassigned at call-time or that the subprogram body
execution can omit to return values in parameters Minimum and Maximum.
However, these fault models are not specific to this subprogram. They only
depend on the semantics of the language features 'in' and 'out'.

On the contrary, 'the Minimum value is lower or equal to the Maximum
value' is a specific property: it depends on the functionality of the
considered subprogram.

6. Tractability
Finally, the fault/error models must be tractable, as automatie or semi

automatie tools generally use them. Unfortunately, certain models that are
technologically pertinent are often unrealistic for practical reasons. For
instance, the CPU time consumed by a computer or the memory size that is
required by the tools to analyze or to simulate these fault models or to
generate test sequences is prohibitive. So, in order to use tools, we often
make many restrictive assumptions such as 'the logical faults are permanent
and single', whereas the reality shows that most of the faults are temporary.
A rate of 80% of temporary faults in electronic systems is often given.

5.3.2 Relations Between FaultlError Models and Failures

As we noticed, different fault/error models can be associated with a
modeling tool of a system, and it is very important to measure their relative
significance according to their use (such as testing). Figure 5.7 illustrates
this notion. For a given modeling tool, the normal functioning is represented
by a sub-set F of all theoretically possible behaviors (uni verse U). In the
general case, two different fault/error models reveal two sub-sets (noted
EM 1 and EM2) of this universe. Some failures belonging to this uni verse

108 Chapter 5

(and caused by unknown faults) are represented by both faultlerror models,
some failures are represented by one model only, and some other failures are
not represented.

U: U1iver.>e ci alI
Jl(S'iible behaviors

F: NlnmI FUnctioo
FMI: Fault MxIeJ 1
FM2: Fault MxIeJ 2

Figure 5.7. Fault models and failures

Different and various modeling tools are used along a project
development, involving various faultlerror models. The pertinence and the
consistency of these models is areal issue.

To highlight these notions, we will consider a very simple logical gate
circuit and show some relations between the faultlerror model and the
resulting failures.

Example 5.1. Fault/error models andfailures

Let us consider the system of Figure 5.8 represented at gate level. This
correct system expresses the logical specification f = a .b + c. If we assume
that the theoretical behavior is combinational (restrictive hypothesis), the set
of possible correct and incorrect logical functions is constituted of 1 correct
function and 28 - 1 = 255 incorrect functions. So, this circuit has 255
different failures in the combinational uni verse.

Figure 5.8. Redundant wire

As a first fault model, let us consider the 'single stuck-at 0/1' faultlerror
model introduced in 5.2.2.2. As there are 5 lines (gate inputs/outputs), this
model represents 10 faults. We want to deduce the failures associated with
each fault. Analytic and structural methods allowing to do this will be
explained in other chapters of this book. Here, for this very small circuit, a
simple method (formal analysis) consists in expressing the logical function
corresponding to each fault and draw the truth tables. For example, if input b

5. Fault and Error Models 109

is stuck at 1, the function becomes: z = a.l + c = a + c. If we apply this
method to all faults, we observe that several faults produce exactly the same
failures : the stuck at 0 of lines a, b, d, and the stuck at 1 of lines c, d, z. Thus,
we find 6 different erroneous functions (classes of failures) . The important
consequence of this analysis is to show that 249 theoretically incorrect
functions, hence failure configurations, are not covered by this fault model!

Now, suppose that a functional fault has transformed the AND gate into a
NAND gate. This new fault does not belong to the previous stuck-at fault
model. This fault provokes a new incorrect function, so a new failure class.
Many failures cannot be provoked by any of these two fault models. So, the
question is: can all theoretically possible fai/ures occur?

The answer to this question depends on the reality of the faults that might
occur during the stage considered. The good new is that, according to actual
used technologies, most failures have a very small occurrence probability .
Exercise 5.3 proposes a deeper analysis of this example.

5.4 ANALYSIS OF TWO SIMPLE EXAMPLES

To conclude this chapter, we consider some functional and technological
faults altering two simple examples and analyze the failures they imply. The
first example is a fuH adder described at gate level, and the second example
is a small pro gram which computes the average value of a set of numbers.

5.4.1 First example: Hardware Full Adder

5.4.1.1 Specification and Design of the Circuit

The examined circuit is an academic three input 'full adder' whose
specifications are given by Figure 5.9:

• the output S is the 'modulo 2' sum of the three input bits ('exc1usive or'
of theses bits, noted $: S = a $ b $ c),

• the output C is the carry of the input bits, i.e. the Majority function
(C = a.b + a.c + b.c).

S=aEBbEBc
C = Maj (a, b, c)

aSp S
b C
c

Figure 5.9. Specifications of the FuH Adder

110 Chapter 5

A modular design of this circuit at functional level uses two modules
'half-adders' (noted lI2A) connected as shown in Figure 5.10 where the
apostrophe ' represents the logical complement. Bach half-adder is made of
an XOR gate (T = a $ b) and a NAND gate (U = (a.b)'). The resulting
logical circuit has two XOR gates and three NAND gates (Figure 5.11).

. " 1I2A
a , . C c~
b l~ 11. ',

Figure 5.10. Design of the adder at functionallevel

Figure 5.11. Resulting gate circuit

5.4.1.2 Fault Examples

We will ex amine the two examples of faults of Figure 5.12: a functional
fault (fault 1) and a technologicallhardware fault (fault 2).

Fault 1: functlonal fault
of each Half-Adder
a __ ---1~
b

Fault 2: stuck-at 1 fault

c=a+b+c"'II~~ C=a+b

Figure 5.12. Fault examples of the adder

c

5. Fault and Error Models 111

Functional fault (fault 1)

During the design phase of the half-adder, the correct NAND function
(U = (a . b)') has been erroneously transformed into a NOR function
(U = (a + b)'). As a consequence, this fault affects both half-adders and can
produce an error at the U output of one module or both, depending on the
input values (a, b, c). These errors cannot be propagated towards S. On the
contrary, they disturb the C output variable which becomes a OR function (R
= a + b + c) instead of the desired Majority function. Hence, a failure occurs
for three input vectors: (00 1), (0 1 0) and (100). For each case, C provides
the value '1' instead of '0'.

It should be noted that this fault belongs to a dass of functional faults
that alter the gates of the half-adder module. In general, it may be very
difficult to identify all the faults belonging to this dass.

Hardware fault (fault 2)
The circuit carried out is now supposed to be correctly designed. Let us

imagine that during the operation of this circuit, one NAND input (Figure
5.12) is stuck at '1'. This fault will be activated as an error each time a '0'
value is expected to arrive at this point. This error has no effect on output S.
On the contrary, it can be propagated towards output C and it provokes a
failure for two input vectors, (0, 1,0) and 0, 0, 0), giving a wrong '1' value
instead of '0'.

Let us note that this fault belongs to the stuck-at error model of the global
gate structure of the adder. This model identifies 30 dasses of faults as the
resulting gate circuit given in Figure 2.10 has five 2-input gates (hence, the
number of errors is 5x3x2 = 30).

5.4.2 Second Example: Software Average Function

Functional faults of software are introduced during the creation phases:
specification, design and production. They are numerous and difficult to
model. Moreover, during the operation phase they are mixed with
technological faults coming from the executive context of the programs:
software environment (runtime executive, etc.) and electronic components
(micro-controller, I10 interface, etc.). As an example, let us consider an
average function implemented in a control system.

5.4.2.1 Faultless Program

The faultless program computes the average value of a set of N elements
previously stored in an array A. If A contains the float numbers (-12.0, 3.0,
26.0, -4.0), the program gives the correct result 3.25.

112 Chapter 5

function Average(A: in Set) return Element is
Surn: Element :=0.0;
begin

for I in A'range loop
Surn := A(I) + Surn;

end loop;
return Surn / (A'last - A'first + 1);

end Average;

5.4.2.2 Fault Examples

We will firstly consider three functional faults; then, we will examine
some technological '''faults induced by the hardware and/or software
environment of this pro gram.

1. Functional faults

Fault 1

A fault introduced during the programming affects line 5 which becomes

'Sum : = A (I) - Sum;' (see Figure 5.13).

The programmer keypressed a '-' character instead of a '+' character.
This very simple mistake of one character totally modifies the result. With
the previous values we obtainAverage = -3.75, instead of +3.25

Except for very special configurations of the numbers stored in A (e. g. if
they are all null), this fault is activated and the function fails. If, for example,
the function is used as a filter in a flight control system of an aircraft, the
consequences of this fault can be catastrophic for the mission.

Line5

~l
Line 7 return Sum I (A' last .. N first

Figure 5. J 3. Specificationldesign faults

Fault 2

~
Average = -3.75

(totally false)

Average = 4.33 ..
(E: small if N big)

Let us now consider a second fault that alters line 7 as follows (Figure
513): return Surn / (A'last - A'first);

5. Fault and Error Models 113

This fault is not activated into an error only if the sum of all elements is
equal to zero. In fact, the average is computed by dividing the sum of all
elements by their number minus 1. From the initial numerical values, the
result is Average = 4.33 ... The error seriousness depends on the number of
elements: it will be small if this number is high. Hence, the consequences of
the fault on the mission can be small or important according to the specific
case.

Fault 3

We assume that the declaration of variable Sum does not include an
initialization to 0.0. Therefore, the retumed value is:

(Init + A(1) + ... + A(N») IN,

where Init is the value located in the memory when Sum is allocated.
Due to this fault, the retumed result is hazardous, that is to say, it

depends on the actual value of Init at each function call.

Error models

After the presentation of these three fault examples, we now study the
error models that allow the faults to be characterized.

Conceming fault 1, let us assume that the following constraint exists on
the type of 'Element:

subtype Element is float range 0.0 .. 10.0;

This constraint leads to a first error model. The first fault assigns to Sum a
negative value if the first set is A = (4.0, 3.0, 2.0, 1.0). The retumed value is -
2.0 I 4.0 = - 0.5 which does not belong to the range 0.0 .. 10.0. An error will
be raised when the value will be retumed.

Therefore, the definition of a constrained type seems to be an efficient
error model. However, this does not mean that it will always highlight the
presence of faults! As an example, let us consider the second set of values
(1.0, 2.0, 3.0, 4.0). The retumed value is 2.0 I 4 = 0.5, which is included in
the defined range 0.0 .. 10.0.

Fault 2 leads to an error if the following equation is true: (sum of the N
elements) I (N -1) ;;::10.0, that is, (sum ofthe N elements);;:: 10.0 x (N -1).

For the two previous sets, the sum of the N = 4 elements is 10.0, which is
less than 30.0, so no errors will be detected, even if a fault exist.

To characterize fault 3, an error model is defined by the following
property: "A variable used to evaluate an expression must possess a
previously assigned value".

Thus, the first loop execution will process the statement 'Sum : = A (1)

+ Sum', and will raise an error, as the right side term Sum is undefined.

114 Chapter 5

2. Technological Faults

Let us now suppose that no specification and design faults have been
introduced. The average function is processed by the software executive
system on a hardware platform (Figure 5.14).

Rounding fault
. Software imprecision
. Processor imprecision

Hardware fault of the processor

Average = 3.2

Figure 5.14. Faults due to the execution context

The division of the Surn value by the number of elements is necessarily
rounded. In order to illustrate roughly the error, we assurne that the result is
3.2 instead of 3.25. Such rounding error may have several causes:

• hardware fault of the arithmetic co-processor (one frequently refers to the
first version of the Pentium microprocessor which had an ALU bug),

• production fault: the compiler uses a math library having insufficient
arithmetic performances, due to natural limitations of the arithmetic
processor and the number representation coding (e.g. the IEEE 754
floating point standard).

The activation of such faults, and the error propagation through the
hardware/software structure is difficult to analyze because it depends on the
real implementation which is generally unknown. Even if the errors see m not
to be significant (the precision of one value is not so bad), their cumulative
effects can produce significant failures of the mission. Exercise 5.6
illustrates such a situation.

It is very difficult to propose properties allowing floating precision errors
to be detected. For this reason, this issue is eliminated, considering two
points of view:

• The expected precision is defined during the design and is implemented
at programrning level. For example, the Ada language features authorize
such adefinition. Then, studies are carried out on the pro gram in order to
analyze the effects of the well-known precision value and the run-time
system is considered by providing correct computation.

5. Fault and Error Models 115

• The use of floating point representation is forbidden. Only fixed
representations are authorized. This restriction is required for the high
dependable systems.

5.5 EXERCISES

Exercise 5.1. Faults 0/ a MOS network

We consider once more the MOS network presented in section 5.2.2.3
(see Figure 5.15).

1. Compare the three logical functions performed by the circuit:

• for a faultless circuit,

• for fault F1 (a MOS is stuck-OFF),

• for fault F2 (short between two lines).

NetworkN

a

b'

Figure 5. J 5. Faults of a MOS network

2. The logical function of the faultless circuit is not modified if inputs band
c are permuted. What is the influence of this permutation on the failure
induced by fault F2?

3. What is the influence of the 'stuck-ON' of transistor Tl (the transistor is
always in an ON state)?

Exercise 5.2. Faults 0/ a/ull adder

Let us consider the full adder of section 5.4.1. We want to study the
influence of functional and hardware faults on the behavior of the circuit,
and to determine the resulting failures.

1. Study the following functional fault, noted F 1, introduced during the
design phase: the EXCLUSIVE OR gate has been transformed into an

116 Chapter 5

IDENTITY gate (its output is '1' if and only if the two inputs have the
same value).

2. Study the hardware fault, noted F2, occurring during the operation: a
'stuck-at 0' noted a in Figure 5.16.

3. Compare the failures provoked by these two faults.

Figure 5.16. Full Adder

Exercise 5.3. Fault models and failures

Consider again the circuit of Example 5.1.

1. Deterrnine by formal analysis the failures provoked by each fault of the
single stuck at 0/1 model. Draw and compare the resulting truth tables.

2. Make the same analysis with various functional faults transforming the
AND and OR gates.

Exercise 5.4. Faults of a sequential circuit

Figure 5.17 shows a Moore sequential synchronous circuit having one
input (x), one output (z), and two internal variables (y1, y2) materialized by
two synchronous D Flip-Flops.

x

Figure 5.17. Sequential circuit

yl

z=y2

y2

5. Fault and Error Models 117

1. We suppose that a functional fault made during the design of this circuit
has led to the transformation of the NAND gate denoted A into a NOR
gate. Analyze the new circuit in order to determine all induced failures .

2. Now we consider the hardware ' stuck-at l ' fault of the line noted a in the
figure. Analyze the altered circuit to determine all failures.

Exercise 5.5. Software functional faults

This exercise refers to the program computing the average value of a set
of numbers, presented in section 5.4.2.

function Average (A: in Set) return Element is
Sum: Element: =O.O;
begin

for I in A'range loop
Sum:-(A(I) + Sum) 12;

end loop;
return Sum;

end Average

Figure 5.18. Design faults

1. Consider the two design faults of lines 5 and 7 shown in Figure 5.13.
Analyze these faults and determine all the input vectors which provoke
failures . Compare the seriousness of these failures.

2. A third fault has led to the following pro gram (Figure 5.18). What are the
input activation conditions and their relative failures? What extern al
consequences could result from these failures?

Exercise 5.6. Software technologicalfaults

We want to develop a program wh ich calculates and prints the sum of the
fIoat numbers (1.0/ fIoat (l)), for 1 varying from 1 to a given value N. The
following algorithm performs such calculus:

procedure Serie (N ; in integer) is
Surn ; float ;= 0.0;
begin

for I in 1 .. N loop
Surn ; = Surn + (1 . 0 / float (I)) ;

end loop ;
Print (Surn);

end Serie;

Then, execute this pro gram for different increasing values of N. Y ou may
conc1ude that the series L 111, I = 1, N is convergent. This conc1usion is
mathematically wrong. So, your program fails . Where is the fault?

Chapter 6

Towards the Mastering of Faults and their Effects

The science of dependability is c10sely linked to the mastering of faults
and their internal and external effects. It firstly implies the analysis of
destructive mechanisms (problem identification). They were studied in the
previous chapters. Then, protection methods (use of means) must be
proposed. This aspect is introduced in this chapter. Finally, one must assess
the efficiency of the use of these methods on the dependability of the final
product. This last aspect (performance evaluation) is exposed in Chapter 7.

6.1 THREE APPROACHES

In Chapter 3, the causes of product failures were c1assified into several
groups:

• internal functional faults (or creation faults) of specification, design and
production,

• internal technological faults (or physical, or hardware faults) of
production and operation,

• external functional faults (or perturbations, or disturbanees) due to the
functional environment,

• external technological faults (or perturbations, or disturbanees) due to
the non-functional environment.

We have also observed the transformation of faults into internal errors,
then into functional failures, and finally their external effects called
consequences. We have insisted on the remarkable properties of faults: they

121

J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

122 Chapter 6

seem to be inevitable, their occurrence follows statistical mIes, they can
accumulate throughout a Iife cycle, and they are difficult to master. We
identified a destmction process having two steps:

• the occurrence of faults produced at the three first stages of the life cycle
considered (specification, design and production), and/or faults due to the
product' s environment in operation,

• and then, during operation, a transformation into several stages, from
faults to errors, then to failures, which finally have external consequences
on the application.

Therefore, in order to face these problems, we will use several actions,
operating on the fault causes as well as on their effects. Traditionally, the
different dependability techniques are distributed according to three
complementary approaches illustrated by Figure 6.1:

• fault prevention,

• fault removal,

• fault tolerance.

We should note that the fault prevention and fault removal approaches
are sometimes regrouped by the term fault avoidance.

Faults - Errors

Failures - CoosequenceJ

1. Fault Preveotioo
2. Fault Removal
3. Fault Tolerante

Figure 6.1. Protective mechanisms

The objective of this chapter is to briefly explore these three
dependability approaches in sections 6.2 (fault prevention), 6.3 (fault
removal), and 6.4 (fault tolerance). Each section aims at defining the goal of
the related approach and at giving an overview of the main techniques. Then,
we introduce the dependability assessment problems in section 6.5. Fault
prevention, fault removal and fault tolerance techniques will be analyzed in
the third and fourth parts . Thus, this chapter provides an overview of the
means which will be detailed in the following chapters of the book.

6. Towards the Mastering oJ Faults and their Effects 123

6.2 FAULTPREVENTION

The fault prevention approach consists in avoiding or reducing the
introduction of faults during the specification, design, production, and
operation stages, and/or in reducing the occurrence of faults during the
product' s use. Two complementary action groups limit fault occurrence:

• mastering the stages of the process used to create a product and to use it,

• and acting on the technological means.

The first group of means acts on the faults committed by humans or by
the tools they uses during specification, design, production and operation.
The second group, which is independent of the first one, is dedicated to the
faults which are due to the technological degradations of the product, or
which are introduced by environmental aggressions.

Fault prevention techniques aim at obtaining and maintaining a product
'without any fault'. However, even if these techniques are efficient, residual
faults frequently exist before the operation step or faults appear during this
operation step. Hence, this remarkjustifies the use ofJault removal andJault
tolerance techniques.

6.2.1 During the Specification

The initial contract that binds the different partners of a project must
firstly express, in a complete and correct manner, all the product' s functional
and non-functional aspects of the needs that the final product has to satisfy.
Any incompleteness in the product definition can lead to failures in the final
product. Indeed, such a product cannot offer the expected functionality and
performance if they have not been expressed by the client or by the product' s
user. However, all missing specification information does not necessarily
imply a future failure; it could represent a degree of freedom for the
designer. For example, the specification of a coffee distributor is to deli ver
the coffee and give back change without defining in which order the two
operations need to be carried out. A particular design will make a choice
which will be accepted by clients and users.

Moreover, the contractual base has to be understood in the same way by
all the partners: the specifications have to be non-ambiguous. The ambiguity
expresses the fact that precise yet different definitions can be given by the
client, the designer and the user, which represents a potential source of
failures. The removing of all ambiguity requires the use of a formal
specification language, for which the semantics (the feature meanings) has to
be precisely defined. In practice, the majority of clients and users is not
familiar with such languages. Therefore, we will firstly define specification

124 Chapter 6

needs written in a human language by using terms which are c1ear and
precise as much as possible. These terms need to be defined by a glossary.

We should note that the transformation of requirements into formal
specifications is not systematically carried out previous to a design. In many
industrial projects, informal specifications are the designer' s principal source
of information. On the contrary, in other cases, formal specifications are
requested which are established by a specialized team, after consulting the
client and possibly the user. The formal specifications provide therefore a
new expression of the requirements. Hence, this activity appears redundant
and therefore useless to certain persons. On the contrary, when aiming
towards dependability, this rewriting allows the needs to be correctly
understood (because they have to be reformulated in another language) and
to detect possible incompleteness or ambiguity.

6.2.2 During the Design

Fault prevention is obtained in diverse ways, by acting on the product
that is being designed, and/or by acting on the creation process itself. The
designer has to apply a 'good' method and apply it 'correctly'.

Firstly, it is necessary to master the design process, from the
specifications until the system is designed. The design is a top-down process
of several stages, which begins with the specijications and ends with a
system by successive transformations. We should remember that the system
is an abstract vision of the future product. In order to avoid the appearance of
faults during this process, we have to choose transformation models and
methods that guarantee that the obtained system conforms to the
specifications or is compatible with them. According to the notations used in
Chapter 4, we must have 1: = S (or 1: ~ S), that is to say the functioning of the
system has to be equivalent to the specifications (or greater: to perform more
functions). The choice of models, methods and tools is fundamental.

Secondly, the modeling tools and design process being defined, the way
they are used must be mastered. For instance, programming languages are
modeling tools used for software design. Their features can be assessed,
taking dependability criteria into account. Thus, the 'best' (most suitable)
language can be selected. Moreover, a bad-programming style will be at the
origin of numerous faults in produced programs.

6.2.3 During the Production

Fault prevention methods during production concern above all the
hardware products. These methods imply to master the manufacturing and
assembly process of electronic components. The techniques used depend on

6. Towards the Mastering 0/ Faults and their Effects 125

the nature of the components. Thus, for integrated circuits, it is necessary to
control the parameters of diverse machines, which compose the integration
chain and the environment conditions of the rooms that shield this
equipment. This particularly concerns dust removal, as dust constitutes an
important source of faults. In order to ensure that the production chain
functions correctly, several sampies of the manufactured components are
then subjected to a rigorous control by means of electrical, mechanical,
rnicroscopic and chemical tests. This quality control allows an improvement
of the quality of production.

Where software is concerned, the production phases are in general
automated. They use:

• a run-time environment associated with a programrning language
composed of a compiler, a linker and an executive (real-time kernei,
input/output library, etc.),

• software components developed by other companies and which are often
called COTS (Components OffThe Shelj).

The dependability of the executable application obviously depends
largely on the dependability of previous elements. The need for
dependability therefore has an important impact on their choice and their
implementation. For example, the choice of an execution environment
associated with a programming language has to prove that it has successfully
passed standard tests, if they exist. If these standard tests do not ex ist, the
developer has to write specific local tests and to apply them to the execution
environment to be evaluated. In the same way, the use of al ready developed
software and hardware components (called reuse) does not prevent their
analysis in terms of dependability before their integration in the product.

6.2.4 During the Operation

The creation problems having supposedly been resolved, the failures that
appear during the useful life arise from a bad utilization of the product or
from perturbations acting on the technology and due to the non-functional
environment.

The prevention of numerous external faults caused by the user can be
obtained by simplifying and making clear the use of the product in its
context, e.g. easy to understand user manual, user friendly interfaces, on-line
contextual help. This is the typical case of popular convivial software of
Macintosh's Apple that we find today in many UNIX or Windows systems.

A second approach consists in designing protection means which
prevents the occurrence of errors, even if they are due to incorrect use of the
product. For instance, if a user has to select an action on a computer, the first

126 Chapter 6

approach consists in displaying a menu and in getting the keypressed
character indicating the chosen action. However, a wrong character may be
provided. A second solution displays a list of buttons associated with the
offered actions. Therefore, the user cannot give unknown orders. A second
example concems the use of connectors, wh ich cannot be incorrectly
plugged in. For instance, different categories of connectors are not
compatible together: electrical power, phone, printer, screen, modem, etc.

Concerning the faults associated with technological implementation
means and the non-functional environment, we can distinguish hardware and
software technologies.

Hardware faults appear during the operation phase due to component
ageing or extern al aggressions. Their occurrence follows statistical models
of reliability. The factors that determine the occurrence of these breakdowns
depend on the technology used and the environment (temperature,
vibrations, shocks, radiation, etc.). We can first of all reduce the occurrence
of faults by choosing design and manufacturing techniques which lead to
high reliability products: choice of components and mounting and assembly
techniques wh ich reduce the probability of faults appearing. The electronic
components (res, PCBs, etc.) can also be submitted to burn-in operations
where th"ey are used at high temperature for periods which can be longer than
24 hours in order to provoke faults of weak elements; only the components
which survived are put on the market. Thus, the infant mortality rate of the
used systems is drasticaUy reduced.

Then, the faults induced by the environment can be prevented:

• by protection techniques, for example electromagnetic shielding, thermal
isolation, etc.,

• and/or active observation techniques of the environment' s parameters, for
example an on-line observation of a microprocessor' s temperature in
order to detect anomalies, such as a ventilator breakdown, which could
lead later to component faults.

Software technology does not age in the same way and is also not
subjected to extern al aggressions. However, phenomena having sirnilar
effects can happen. The software's operational life can sometimes be
relatively long (twenty to fifty years for a software used in an aircraft), and
the execution means can vary during time. For example, changing a
processor for a ne wer circuit which is quicker and has new functionality, can
lead to a modification of the execution environment. These evolutions can
have not only an impact on performance, but also on the behavior of
software which could provoke failures. For example, increasing the
frequency of a processor' s clock or the optimization of a code generated by a
new compiler can reduce the processing time and induce modifications of

6. Towards the Mastering of Faults and their Effects 127

the sequencing of executed tasks and therefore the product' s behavior.
Where the programrning technology is concerned, these faults can be
avoided if the language used has precise sernantics. Thus, the diverse
execution environments of this language will produce applications which
have identical behavior.

6.3 FAULTREMOVAL

6.3.1 General Notions

Fault removal aims at detecting and eliminating faults present at the end
of each specification, design and production stage, as weIl as faults
appearing during use. The fault suppression techniques are different for each
one of these stages; however, three aspects are explicitly or implicitly taken
into consideration:

• fault deteetion which reveals the presence of faults,

• fault loealization (or fault diagnosis or fault isolation) which identifies
the faults present,

• fault eorreetion andlor re pair operation which deletes these faults when
the systems allows it (such as with repairable produets).

Independently of these notions of detection - localization - correction, we
identify two distinct groups of fault removal techniques:

• static analysis techniques,

• dynamic analysis techniques which are also known as test techniques.

Statie analysis is carried out 'without execution' of the analyzed model.
This integrates:

~ formal proof techniques by equivalence between the model which is
treated by the stage and the model obtained at the end of the stage, or
by researching particular properties of the obtained model, etc.,

~ review techniques, greatly used in the software domain, which
consists of an analysis of the system by human experts.

On the contrary, the dynamie analysis or test is carried out by executing
the model analyzed. We test a system or a product by subjecting it to stimuli
from the outside. More precisely, we apply a sequence of data on the inputs
and then we observe the behavior on the outputs (sometimes, we observe
also some internal signals or variables). This is typically an experiment.

128 Chapter 6

In Chapter 2 we remarked that the transformation of requirements into a
product is carried out by a succession of phases. An elementary phase
transforms the model of the level i to the model of level i+ 1 (see Figure 6.2).
This process is therefore said to be top-down. The detection of faults could
consist in examining this transformation to see if the model obtained at i + 1
level is in accordance with the initial model at level i. Whatever the
technique used, we are speaking here of verification which is symbolized by
a bottom-up process symbolized by an arrow in Figure 6.2.

I Model of level; 1
Transformatioll

... ~

+ Validation
Verijication

., r
I Model of level i + 11

Figure 6.2. Fault removal during one transformation

The faults introduced stern from a bad transformation of the initial model.
We are therefore naturally led to question the quality of the transformation
method chosen. If it is possible to establish that this method is bad, we may
assurne that using a better method could have prevented faults . This
approach is different from that of verification. We do not seek to detect
faults but highlight the high risk uf faults being introduced. For example, a
program review makes obvious that certain 'programming mIes' have not
been respected. The means relevant to this process are qualified as
validation techniques. A top-down process symbolized by an arrow in
Figure 6.2 symbolizes this validation process.

We should note that the two words verification and validation
unfortunately have different meanings according to the domain considered.

Fault removal during the development phases of an industrial product is
very important but expensive in terms of human and technical means and
also time consumption. Faults must be detected and removed as soon as
possible according to the adage: "finding faults early in the design cycle
directly impacts the development cost and schedule". Year after year, the
design of Integrated Circuits is improved, and their fault rate decreases;
however, as the complexity (number of transistors) of these chips increases
in the same time, the difficulty to pinpoint the residual faults increases:
Figure 6.3 illustrates this historical evolution with a symbolic 'Fault - Test
complexity' diagram.

6. Towards the Mastering of Faults and their Effects

Faults
1000

100

10

10 100 1000 Test Complexity

Figure 6.3. Fault removal rate

129

The following sub-sections introduce the objectives and principles of
static and dynamic analysis methods used during the stages of a life cyc1e.
These techniques are discussed and developed in the third part of this book.

6.3.2 During Specification and Design

The fault suppression methods applied during the specification and
design stages concern the functional creationfaults.

6.3.2.1 Static Analysis

Detection
The modeling means used to specify or design a system offer features.

For example, the 'finite state machine' model is based on two features: the
state and the transition; the features of a programming language are
described in its reference manual. These constructions possess two essential
characteristics: the power of expression and the detection capacity.

The modeling tool features have essentially been introduced to facilitate
the expression of models for the levels where they are used. For example,
during the programming stage (which is part of software's design), the
feature of the loop f or was introduced to easily express repetitive
treatments. In electronics, the 'register' concept was created to express the
need to store data. Where the design of real-time systems is concerned, the
notion of 'task' was introduced to easily handle asynchronous events.

The features were then created to make the detection of modeling errors
easier. For example, in the programming domain, the notion of 'type' allows
the compiler to detect situations where an expression of a type is assigned to
a variable of a different type. In the same manner, we can quote the example
of the Petri nets whose analysis reveals potentially reachable non-desirable
states or deadlock situations. This second characteristic of these features was
introduced more recently, whereas it is essential when dependability is an

130 Chapter 6

important criterion of a product. Thus, the choice of modeling means has to
be made taking into account these possibilities of fault detection as much as
their power of expression.

Once a modeling tool is chosen, two c1asses of errors can be detected.

• The generic errors associated with the considered model means and not
to the characteristics of a particular modeled system. For example, a
blocking of a system' s behavior described by a Petri net can be detected,
whatever the functionality of the system iso

• The specijic errors of each modeled system. An example has already
been quoted of the reachability of particular state of a graph that is
considered undesirable. Thus, for a rail regulation system of a level
crossing, the state 'the barrier is open' AND 'the train is passing'
constitutes an eITor that we would like to detect.

It is really eITors and not faults, wh ich are made obvious since they are
about undesirable states and not structural elements wh ich have led to these
states. For example, we do not know (for the moment) the piece of program
or circuit which provoked the opening and staying 'open' of the baITier
when the train passed.

Localization

The localization of a fault by a model' s static analysis will be easier if the
used modeling tool proposes features which favor the expression of specific
eIToneous behavior. Indeed, the analysis could then detect an eITor c10se to
the original fault and not later, through errors induced by contarnination
mechanisms (side effects). For example, if the model used allows the
detection of a blocked system, the designer would want without doubt to
know the functioning sequences which led to this undesirable situation. The
localization of the fault is therefore made easier. Here again, the choice of a
modeling means has to be taken by analyzing the facilities offered by the
model to reveal faults which are at the origin of the detected errors.

Correction

Once again, the characteristics of the modeling means and the way which
this means is used have an important impact on the facility and efficiency to
COITect the localized fault. Consider, for example, a designed system made of
loosely coupled components, that is to say having few interactions and
whose actual interactions are explicit. Therefore, the correction will be
localized in apart containing the eIToneous component. On the contrary, a
strong coupling between components makes the correction difficult, due to
constraining relationships which links them; it is therefore necessary to
modify several components in order to avoid the error occurrence. The risk

6. Towards the Mastering of Faults and their Effects 131

is then to introduce other faults during this correction. For example, if a
pro gram contains numerous global variables (shared by several procedures),
the modification of one part of the pro gram (a procedure) risks having
indirect consequences on other parts of the pro gram.

When a fault is introduced during the specification and design process,
we can ask ourselves if this results from an 'unfortunate accident' (absent
mindedness, etc.) or if it originates from a fault in the development process
itself. This question is important, as in the second case several similar faults
probably exist. To correct these faults one after the other is inefficient;
therefore it is necessary to diagnose (localize) the fault in the development
process and correct or improve the development process. This case
corresponds to a validation process approach and leads to the introduction of
new techniques belonging to fault prevention. For example, if we state that
numerous faults found in a software product are due to an unclear distinction
between the variables which are 'local' and the variables which are 'global',
we would introduce a guide defining a programming 'style' wh ich imposes
rules (or constraints) on the choice of variable identifiers.

6.3.2.2 Dynamic Analysis

Let us remind that dynamic analysis, often called test, implies the
execution of a model. This supposes the existence of a formal semantics of
this model as weil as associated execution means, and sometimes an external
model of the product' s behavior. We do not consider here the particular case
obtained at the end of the design where we dispose of a physical executable
product mock-up. This case will be examined during the production and
operation stages.

Detection
Fundamental fault detection principles of dynamic analysis consists in:

• applying a sequence of input data to the system model in order to
transform the faults into errors,

• and by detecting erroneous states by any mechanism wh ich observes
generated states, including outputs.

The model therefore has to allow the expression of correct states and
those wh ich are considered as incorrect. The execution of this model has also
got to include the comparison of the system's real states, whether with those
expected (supposedly correct), or whether with the non-desired states
(supposedly incorrect). In the software domain, the definition of
'constrained types' has been introduced with this in mind. Consider as an
example 'subtype Size is Integer range 28 .. 48;'. At the
program' s execution, the value assigned to a variable of this type has to

132 Chapter 6

belong to this type (the interval [28,48] for our example); the violation of
this assertion detects the error.

Another example, typical of dynarnic analysis used for the detection of
errors, is the test by simulation: a functioning sequence is applied to the
product model and the outputs are then compared with the expected
predefined outputs. Such an analysis, which transforms faults into failures, is
applicable in numerous situations because it makes use of an external
knowledge of the system, independently from its structure.

The dynamic analysis confronts us with two problems: the controllability
and observability of faults. It is necessary to find a functioning sequence
which activates the faults into errors: this expresses the controllability
notion. However, this error creation is not sufficient for the detection; we
also have to be able to observe these incorrect states (errors): this induces the
observability nation. If we dispose of an 'encapsulated' product (only the
inputs/outputs are accessible), the dynamic analysis is totally carried out
externally: controllability and observability are minimal. On the contrary, in
the case of a software written in a language which has an 'exception
mechanism', a certain number of abnormal states are signaled; thus, the
violation of a constraint such as the one associated with a variable whose
type 'si-ze' was previously defined could, for example, provoke an error
message and stop the program execution. Then, the observability is high.

In conclusion, the detection of faults by the execution of a modeled
system reveals two problems:

• How can the system be brought into an erroneous state?

• How can we perceive that the system has reached such astate?

We should note that the fault models expressing the faults that can affect
the specification and design stages are generally difficult to establish
precisely. We often apply the analysis of erroneous behavior by detecting the
errors and not the faults which are at the origin of these errors.

Localization

Even if the existence of an error is signaled during the execution of a
modeled system, the localization of the fault which is at the origin can turn
out to be difficult. Indeed, we have to go back to the system structure, that is
to say to go from the failure or error to the original fault. It is clear that this
work is facilitated if the distance between the place where the error was
signaled and the place where the fault occurred is reduced. Consider an
example from the software domain. Let an assignment statement place the
result of a function in a variable P of Size type:

P := function(Vl, V2, V3);

Suppose that the execution of this statement signals a violation of the

6. Towards the Mastering 0/ Faults and their Effects 133

constraint associated with the variables of type size. If the input variables,
VI, V2, V3 are also constrained by types and if no type violation has been
detected in these variables, this suggests that the fault could be located in the
function and not backwards. However, this is not a certainty. For instance,
the function can be correct but should have been called at the wrong place.

Thus, localization is made easier by using executable modeling means
whose constructions have numerous and precise detection mechanisms.

Correction
The remarks made regarding static analysis could also be applied to

dynamic analysis.

6.3.3 During the Production

As the specification and design faults have now supposedly been
prevented or eliminated, we now look at the faults introduced by the
production process. Stemming from this process step, the product therefore
exists and we can subject it to dynamic analysis tests. The investigation
means are therefore generally applied through the normal inputs/outputs:
controllability and observability are apriori limited. However, where the
electronic aspects of production are concemed, we dispose of relatively
precise models of the faults which can affect the product, whether at the
production means level (manufacturing and assembly machines, etc.) or at
the level of the product itself (for example breakdowns could affect a
component). Finally, the production imposes certain constraints on the test
techniques: in particular the duration of the tests should not slow down
excessively the rhythm of production.

Detection
A product being by definition executable, we employ mainly dynamic

analysis methods: we apply a sequence of input values to the product, and
we observe the output values produced wh ich are then compared with pre
established values or with the output values of a 'standard' product which is
supposedly perfect. Static analysis methods also exist, such as the visual
inspection of a printed circuit board to detect insertion or welding errors of
electronic components.

The detection of production faults is known as production testing.
Whatever the methods used, this test is characterized by a short execution
period, contrary to design testing. Indeed, if the cost of design testing is
spread out over all the manufactured products, the cost of production testing
has to be added to that of each product. Therefore, it is necessary to detect as
quickly as possible the largest number of faults belonging to a technological

134 Chapter 6

fault model. This wager implies a compromise between the demands for
correctness of the manufactured products and the costs and delays in the
manufacturing.

Localization

The localization or diagnostic or isolation of eventual faults is generally
made difficult by the inaccessibility to the internal elements. This operation
requires a stricter and longer analysis of the product wh ich is only accepted
by the manufacturer if the detected failing components are aiming towards
an improvement in productivity. In the domain of electronic circuit
manufacturing, we proceed to a quality contral on component sampies.
Therefore, we look for the causes of such failures:

• in the product (for example a breakdown due to a component
overheating),

• in the manufacturing process (for example the temperature of welding
equipment is badly regulated).

Correction
When the localization analysis reveals a flaw in the production process,

we have to act on the process in order to correct the flaw. In certain cases,
we can repair the detected failing product by chan ging a component, a
connector or by re-establishing a broken line, etc.; the product is therefore
said to be repairable. In the opposite case where the product is non
repairable, its failure constitutes a financial loss which reduces the yield of
the production since the product is exc1uded from commercialization.

6.3.4 During the Operation

During operation, we meet functional and/or technological and/or
environmental faults. The operation test also known as a maintenance test
corresponds to the same type of problems as the production test. However, it
is often more precise because it is longer, and is not subjected to the
temporal constraints of production. In the case of repairable systems, we
look to the diagnosis of the fault present in order to correct it rapidly.

The set of manufacturing or maintenance test techniques constitutes the
off-fine testing. This test is called as such because the normal functioning of
the product has to be stopped in order to test it: for example, taking a car to
the garage for technical service.

On the contrary, we qualify the mechanisms which carry out self-tests on
the product during its functioning as on-fine testing. For example, a light
turns on in a car if there is not enough gas or oil, or if the engine temperature

6. Towards the Mastering of Faults and their Effects 135

is too high. More complex procedures are also applied at run-time on control
systems embedded in all recently produced cars.

In general, the detection or localization tests of average or high
complexity systems are very difficult to establish, and the sequences
obtained are very long. This has repercussions on the cost and duration of
the test during the life cycle. A certain number of solutions to introduce as
early as the design stage are proposed in order to make the final product
easily testable. In particular, error detection and fault diagnosis are
facilitated by using instrumentation techniques. Observation means are put
into place, which observe on-line anomalies and record typical variables;
hence, the final diagnostic carried out during the maintenance is made easier.
This is also referred to as monitoring.

6.4 FAULT TOLERANCE

The two approaches, fault prevention and fault removal, go towards the
development of dependable applications by providing:

• means which facilitate the expression of specification and design
modeling and transformation, hence reducing fault introduction or
occurrence by acting on the product' s creation process,

• means which permit fault detection, and means which avoids their
propagation along the development stages.

The fault tolerance strategy is different to those of the two other
approaches: it involves acting on the effects and not on the causes! We begin
with the realistic hypothesis that, despite the previous methods of fault
prevention and removal, the product used remains affected by the residual
faults arising from the design and manufacturing stages. Independently from
these residual faults, technological faults will probably appear during the use
of the product. Tolerance to faults is generally based on redundancy
techniques (for example by duplicating components) which act during the
product' s use, although they have been defined and implemented during the
specification, design and production.

It should be noted that the aim of fault tolerance is not to correct the
cause of the error (the fault) but to prevent the appearance of a failure. Thus,
if a pro gram contains a design fault, the tolerance mechanisms do not modify
the faulty statements. In the same way, if an integrated circuit is affected by
a breakdown, the mission should carry on functioning despite this
breakdown.

In order to make our presentation clearer, we distinguish three significant
classes of fault tolerance techniques:

136 Chapter 6

• thefailure prevention which proceed by errar masking,

• the detection and correction of errors at their occurrence,

• the handling of faults and errors to prevent the occurrence of 'dangerous
failures': here we are speaking of faU-safe systems.

Briefly introduced and commented on in the following sub-sections,
these c1asses will be discussed in the fourth part of the book.

6.4.1 Failure Prevention by Masking

The error masking techniques involve redundant devices wh ich inhibit
the effects of faults, thus preventing the appearance of failures. The most
popular example is the TMR (Tripie Modular Redundancy) which
corresponds to a redundancy by 'triplication' (also called trip lex) of the
hardware and/or software modules. The outputs of the global system are
obtained by a majority vote of the outputs of the duplicated modules. Thus,
an erroneous result of one of these modules has no effect on the final output.
This principle of redundancy is also used to secure the wheels of a lorry: by
placing several wheels in parallel instead of one single wheel allows the
effect of a burst tire to be masked.

The redundancy used according to this first approach is qualified as
passive redundancy because it does not require a mechanism to detect the
error or modify the product' s action in order to prolong its mission. The
corollary of this principle is that faults can hardly be detected externally.

This historic approach was used in the first space projects requiring high
dependability because it is simple. It is however abandoned today, in favor
of the second approach by active redundancy, wh ich is more flexible and
efficient. This second approach is described in the following section.

6.4.2 Error Detection and Correction

Contrary to the previous approach, the techniques based on error
detection and correction mechanisms necessitate the explicit detection of
errors produced by the faults, then the use of means allowing the correction
of these errors. An example of this in daily life is the spare wheel in a car:
the driver has to sta

6. Towards the Mastering of Faults and their Effects 137

The redundancy implied in this approach is qualified as active
redundancy, as it requires an explicit activity to detect the appearance of
errors and to handle them.

An illustration of this use of active redundancy is provided by the error
detecting and correcting codes presented in Chapter 15, and used for
example to code data stored in CD-ROM devices.

This approach calls for three groups of complementary techniques:

• self-testing or on-line testing,

• fault contention or error confinement,

• reconfiguration.

With the self-testing systems (or on-line testing systems), the presence of
a fault is detected by a mechanism which signals the occurrence of an error.

We can then, with the second group of techniques, called fault
contention or error confinement, prevent the eITor from reaching other
modules or functions of the product.

Finally, with the third group of techniques, called reconfiguration
techniques, the product is adapted to continue its mission, as long as its
resources permit this, with or without adegradation of its performance. For
example, the installation of a car' s spare wheel only allows one flat tire to be
replaced; the spare therefore constitutes a 'resource' : a single puncture does
not therefore imply reduced vehicle performance (if we do not count the halt
of the vehic1e and the time spent to change the tire.) On the contrary, if this
spare wheel is a 'light' type (that is to say a wheel of reduced width), the
vehic1e whose tire has been changed will only be able to drive at reduced
speed: therefore this implies adegradation of performance.

6.4.3 Fail-Safe Techniques

The techniques which prevent dangerous failures concentrate essentially
on the product' s safety criteria, that is to say that they aim at preventing the
appearance of failures which have dangerous or catastrophic extern al effects.
We are speaking here of fail-safe systems. Take far example the electronic
regulator of traffic lights on a crossroad: the failure wh ich provokes the
action 'green - green' in both directions is reputed to be dangerous. We
should therefore design this regulator in such a way that the prob ability of
occurrence of this failure is very low (below an acceptable level).

We should note that the prevention of dangerous failures is independent
of error detection and correction techniques of the previous approach.
However, we will see that the methods used are often c10se to the self-testing
methods.

138 Chapter 6

6.4.4 Resulting Fault Tolerance Classes

The objective of fault tolerance is clearly to prevent failures. For
pedagogical reasons, we are going to constitute three groups of techniques
classified by their increasing complexity:

• self-testing systems which ensure the simple detection of errors during the
product' s functioning and often constitutes the first stage towards fault
tolerance,

• the faU-safe systems which prevent failures considered as dangerous,

• fault-tolerant systems; this fault tolerance is either passive by masking,
or active by self-testing and error correction/reconfiguration.

6.5 DEPENDABILITY MEANS AND ASSESSMENT

Figure 6.4 integrates the different aspects of dependability: the
impairments, the handling means, as weIl as the techniques allowing the
evaluation of dependability. 1t is indeed necessary to be able to measure the
impact of the diverse techniques used on the dependability grade of the final
product. These measurements are introduced in the next chapter. The
dependability assurance is the set of scheduled and systematic actions
which are taken in order to guarantee that the final product satisfies the
dependability requirements.

I Dependability I
Impairements Meaos

• Faults propagation • Fault Prevention

• Errors mechanisms • Fault RemovaJ

• Failur~ • Fault Tolerance

... l. .4~
Analysis & Evaluation

• Attributes:
ReliabiJjty
AvailabiJity
Testability
Maintainability
Security . EvaJuation methods

Figure 6.4. Dependability summary

6. Towards the Mastering oj Faults and their Effects 139

Figure 6.5 illustrates the techniques wh ich stern from the three
approaches, fault avoidance, fault removal and fault tolerance, throughout
the product' s life cycle. On the left, the problems are symbolized, that is to
say the types of faults and their cumulative incidence on the stages of life
cycle: Fs (specification faults), Fd (design faults), Fp (production faults) and
Fo (operation faults). On the right are represented the solutions used at each
stage to reduce or suppress faults and their effects.

It should be noted that the prevention techniques associated with a stage
of the life cycle concern uniquely the faults which can appear during this
stage; the removal techniques treat not only the faults introduced during the
stage in process, but also faults stemming from previous stages. Fault
tolerance mechanisms act on the product during its use, but their
implementation is associated with the product's development stages
(specification and design).

Problems

[~)

6ro~~
Faults -

Solutions

Preve.DtioD

Removal
VerlJication

PreveDtioD

Removal
_ .2'!!:!!Jf!'IJon ••

VaJitllJtion

PreventioD

Removal
Production testing

Tolerance

RemovaJ

Figure 6.5. Fault mastering

140 Chapter 6

6.6 CONCLUSION

The aim of this chapter was to provide the reader with an overview of the
different aspects of dependability science. Parts three and four of the book
develop the fault prevention, fault removal and fault tolerance techniques
introduced in this chapter. Part three deals with fault avoidance means (fault
prevention and fault removal). We separate the functional faults from the
technological faults, as the related techniques are often quite different. The
very important dass of fault removal techniques related to technological
faults is studied with more details in three chapters of this part. Part four is
dedicated to the fault tolerance means: on-line detection and recovery of
errors during the operation stage.

Before analyzing these techniques, we will explain in Chapter 7 the
dependability assessment issues, and we will introduce in Chapter 8 the
basic notions of redundancy. Dependability assessment means are necessary
to evaluate the various techniques proposed to develop dependable products.
Redundancy is a fundamental concept of most of the protective means.

Chapter 7

Dependability Assessment

7.1 QUANTITATIVEAND QUALITATIVE
ASSESSMENT

Dependability has been defined as 'a property such that reliance can
justifiably be placed on the service delivered by a product' in its utilization
context. Such a definition containing the word 'justified' implies means,
which allow the evaluation or measuring of the reliance. The numerous
assessment approaches which exist are typically classified into two groups.
The first one, called quantitative dependability assessment, consists in
defining dependability measurements and techniques to obtain the values of
these measurements. The second one, called qualitative dependability
assessment, is based on dreaded events and techniques to evaluate their
effects and their potentiality. These events are faults, errors, failures and
their consequences. Naturally, some of these techniques can be used for
quantitative as weIl as for qualitative assessment.

7.1.1 Quantitative Assessment

To assess the dependability of a product in a quantitative way, several
attributes can be defined. They depend on the meaning associated with the
term reliance. These attributes define probabilistic values, as the occurrence
of a failure is generaIly not certain. This is due to two causes:

• The fault is due to non-deterministic phenomena affecting the product or
induced by the environment; for instance, the date of the arrival of a
heavy ion is unknown.

141
J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

142 Chapter 7

• The fault is due to the development process, but its localization in the
product is not defined, otherwise it would have been removed. We only
know probabilistic values of these creation faults.

Attributes can be assessed three times throughout the product' s life cycle.

• First of all, the attribute's expected values are defined at the beginning of
a project. These specijication assessment values are associated with the
specifications of the future product. They are expressed in terms of
acceptable probability ranges for a given mission. For example, we
demand that a new model of a particular light bulb has a probability
greater than 0,999 to function correctly during 2000 hours. This demand
for reliability must be integrated in the requirements expressed during the
product' s specification.

• Techniques are then used in order to estimate the jorecasting values of
the attributes during the design. This allows justifying the design and
technology choices made during the development stages. For example,
the use of goto in a program makes the verification of its behavior more
complex, and consequently, increases the probability of a program's
failure. In the hardware domain, the choice of magnetic technology to
store data can lead to insufficient reliability for an embedded product
because of space rays.

• Finally, the attribute's values are measured in the operational phase. We
then obtain the exploitation values. For example, the use of thousands of
light bulbs or the use of a pro gram by thousands of users allows the
evaluation of the average operation duration without failure.

The evaluation of forecasting as well as operational dependability is
generally difficult and does not provide any certitude about a particular
product, but only statistical information about the behavior of a population
of products. This evaluation is based on several types of deterrninistic or
probabilistic models (Petri nets, Markov chains, etc.).

The forecasting evaluation is deduced from knowledge about the
product' s structure and components. This sometimes uses interpolation and
extrapolation techniques to take the final product and its environment into
account. Moreover, several candidate architectures could be compared
before any design choice. For example, the probability of a rupture of a
generator's vapor tube in a nuclear site is 4,8 10.2 during one year. However,
the probability that this event leads to a fusion at the heart of the nuclear site
is only 1,5 10-7. This smaller prob ability is due to the setting up of protection
mechanisms, from the design stage, which handle the faults.

On the contrary, operational evaluation is based on experimental
measurements carried out on representative sampies of the population of

7. Dependability Assessment 143

products studied; the results are then treated by mathematical tools. This
dependability evaluation aims at checking the dependability of real
production; in numerous cases, this evaluation is performed relatively to
previous products.

The reliability that is desired for the examples of light bulbs or nuclear
sites is not the only criteria used to assess dependability. Several other
dependability attributes exist. They are normalized by diverse national and
international organisms and professional groups, such as the IEEE (Institute
of Electrical & Electronics Engineers), the MIL-STD standards of the US
Air Force, the ANSI (American National Standards Institute), the IEC
(International Electrotechnical Commission), the ISO (International
Standards Organization), the (European standard organization), the BS
(British Standard) and AFNOR (French normalization organism), etc.

In sections 7.2 to 7.7 we define the foIIowing 6 quantitative attributes:
Reliability, Testability, Maintainability, Availability, Safety, and Security.
These attributes are then compared in section 7.8. Some evaluation tools are
introduced in section 7.9: the fault simulation approach, the reliability block
diagrams and the non-deterministic state graph approach.

7.1.2 Qualitative Assessment

The qualitative assessment approaches aim at examining dreaded events
and evaluating their potentiality and their effects. The studied events are
faults, errors or faiIures. The methods are distributed into two classes:

• The deductive approach consists in deducing faiIures from faults or
errors (dreaded events). The considered faults or errors often come from
previous quantitative studies.

• The inductive approach considers potential failures (dreaded events) and
establishes which faults or errors can be at their origin.

As for quantitative assessment, the qualitative assessment methods do not
handle occurred events but potential ones, whose occurrence must be
avoided. In section 7.10, the inductive method caIIed Failure Mode and
Effect Analysis is presented. A popular deductive method, the Fault Tree
Method (or event tree method), is introduced in section 7.11.

7.1.3 Synthesis

The various qualitative or quantitative assessment methods assume
numerous hypotheses, and they are based on the use of models and analysis
and measurement means. Each one of these methods provides a particular
assessment of the reliance that can be justifiably placed on the services

144 Chapter 7

delivered by the products. Therefore, these methods must be used jointly.
Figure 7.1 illustrates the dependability assessment challenge.

I Dependability Evaluation I
Attributes Values

• Reliability • Foreeast I Prediction
• A vailability Experimentation
• Maintainability Estimation
• Testability • Exploitation
• Safety .. ~
• Security • ,..

Methods &Tools

• Qualitative
Fault Tree, FMEA, etc •

• Quantitative
Models: Reliability BlockDiagram,
FSM, Markov, Petri net, etc.

Figure 7.1. Dependabilityevaluation

As shown in Figure 7.2, these techniques can be c1assified according to
the nature of the basic models (events such as faults, failures and their
consequences, system with functional and structural knowledge, and
physical such as a prototype on which experiments are applied), and the
treatment which is applied (probabilistic or statistic). Some of these methods
are explained in the following sections.

Models I

treatment treatment

Figure 7.2. Dependability assessment methods

~
~

7. Dependability Assessment 145

7.2 RELIABILITY

7.2.1 General Characteristics of the Reliability of
Electronic Systems

Reliability has initially been defined for physical systems which are
submitted to the law of increasing entropy which postulates that these
systems have a tendency to degrade throughout time. Reliability is an
attribute of dependability with regard to the continuity of the delivered
service. The international standard IEC85 defines reliability as:

I the aptitude of a device (product) to accomplish a required function in
given eonditions, and for a given interval of time.

In a quantified way:

I reliability is a funetion of time whieh expresses the conditional
probability that the system has survived in a speeified environment till
the time t, given that it was operation al at time O.

A product' s reliability is a function wh ich does not inerease with time.
This deereasing tendency is due to the subjaeent phenomenon of the
degradation of eleetronic devices. On the eontrary, in the ease of software
teehnology, this funetion stays eonstant, due to the absence of ageing
phenomena (not eonsidering the maintenance operations).

Several statistical reliability models exist. Their pertinenee depends on
the teehnology domain being considered. In eleetronics, the breakdowns are
cataleptic (that is to say they appear abruptly, without an external waming
sign), and the wearing out phenomenon, classic in meehanies, are eonsidered
as minor. The degradation phenomena lead to breakdowns, whieh are
generally represented by models whieh depend on the environment' s
parameters such as temperature, radiation, vibrations, ete. The temperature is
the dominant parameter: the reliability decreases according to Arrhenius or
Eyring degradation models of physieo-ehemieal proeesses, applieable in
eleetronies.

Reliability studies eall for:

• praetical mortality experiments on sampies representative of the analyzed
product' s population,

• mathematical techniques of judgment on sampies to deduee quantifiers
(reliability parameters) applicable to the whole population.

The first group of studies eonsists in noting the number of failures appearing
during time on the bateh of produets tested. Following this observation,
statistical description tools allow to draw reliability curves. Then, statistical

146 Chapter 7

mathematical tools allow estimators to be deduced such as, for example, the
mean lifetime of a circuit, or the failure rate. These tools also allow
hypothesis and likelihood tests to be carried out wh ich measure the
confidence that can be placed in these quantitative statistical results.

Different types of reliability tests are carried out on the populations of
components to perform reliability evaluation:

• curtailed tests whose duration is fixed apriori,

• censured tests which stop when a given number of faults is reached,

• progressive tests whose decision to stop depends on the results obtained,

• progressive curtailed tests wh ich are identical to the progressive tests
with a maximum duration constraint,

• step stress tests which provoke a progressive acceleration of the
degradation mechanisms, in general by increasing the temperature which
permits an accelerated test.

7.2.2 Reliability Models

7.2.2.1 Exponential Law

Reliability is analyzed by reliability models which are mathematical
functions of time. The exponential law is the simplest of these laws. It
expresses the probability of survival by an exponential function which
decreases in relation to time (see Figure 7.3):

R(t) = e -At,

where A is the lailure rate expressing the probability of failures
occurring per hour, for example 10-6 failure per hour.

R
1

o MTTF t

Temperature
cll

time

Figure 7.3. The exponentiallaw

A is generally considered to be constant throughout time. For example, a
computing system with a CPU, a Memory, and an 1/0 unit has a failure rate

7. Dependability Assessment 147

of 10-5 failure / h. This property correspond to faults following homogeneous
Poisson process (the average number of faults by time unit is constant).

The preceding exponentiallaw has to be defined for a given temperature,
for example 18°C (environment's parameters). Special abacuses (Henry's
curves) permit the deduction of the failure rate of an electronic component of
a given technology at any temperature belonging to a given range.

This R(t) law is often associated with simple estimators called:

• MTTF: Mean Time To Failure (also called MTFF, Mean time To First
Failure) for non-repairable products, for example a mission which
terminates as soon as a breakdown happens.

• MTBF: Mean Time Between Failures, for repairable products, for
example the product wh ich has broken down is repaired and put back into
service.

If an exponentiallaw has a constant failure rate, the average value of this
function is:

MTBF (or MTFF) = 1/A..
This is expressed in exponential values of 10 hours: for example 106 H.
This estimator is often used as commercial arguments in a misleading

way: if someone declares that a product has a MTIF of 106, this does not
mean that it will survive for this duration! Indeed, in Exercise 7.2 we will
see that, at the end of aperiod of time equal to MTIF, the product in fact
only has a survival probability inferior to 37% (l/e = 36,7879 %) . This
re mark justifies the observation about the worth of a product only based on
its MTBFIMTTF. Many specifications of high dependability projects (for
example in the aerospace domain) demand a probability of survival at the
end of the mission much higher than the reliability at the MTBFIMTIF
value: for example, R = 0.9999 at the end of 105 hours of mission!

7.2.2.2 Weibull Law

The Weibull model is the most interesting reliability law because of its
flexibility in describing a number of failure patterns concerning electronics.
A simplified version with two coefficients, 11 and ß, is given by the relation:

I R(t) = e-<tl1l)ß

When ß = 1, this law reduces to the exponentiallaw with 11 = 1/A.
In the following part of this book, we will only consider the exponential

law, which is the simplest and the most frequently used law for electronic
systems.

Other more precise laws, such as the Weibull's law, are unfortunately
more complex to understand and manipulate.

148 Chapter 7

7.2.3 Failure Rate Estimation

Failure rate estimations are generally determined from survival tests
applied to significant large sampies of components. The duration of these
tests is short as compared with a product' s normallife cycle; this reduction
of the test duration is due to an increase in the environment' s temperature.
Then, by using an acceleration factor we can perform a conversion from high
temperature stress test to equivalent nominal operating system temperature.
Thus, the failure rate of the circuits is deduced. These experiments are thus
called accelerated tests. The component's degradation process can be
accelerated by increasing the temperature, and also by increasing the value
of the power supply.

Most Integrated Circuit failure mechanisms are based on physico
chemical reactions that are accelerated by temperature in accordance with
the Arrhenius equation. According to the MIL-HDBK-217:

At, = A exp(-E I (k 1)), where:

- At, is the process failure rate (base or intrinsic failure rate depending on
the technology),

- Eis the activation energy for the process (in electron volts - eV),

- k is the Boltzmann's constant (8.6 x 10-5 V lOK),

T is the temperature in Kelvin degrees,

- A is a constant,

- exp is the exponentiation operator.

The real value of the A. of a given circuit is deduced from At, by a relation
A. = A.b.A.l... which integrates numerous A.; factors characterizing the influence
of the manufacturing process.

7.2.4 Reliability Evolution

In reality, experiments conducted on physical products (mechanical
devices or electronic components) show that the failure rate A. is not constant
during time. 1t is assumed that this number is high at the beginning of the
product's life (infant mortality), then it drops and becomes more or less
constant during its usefullife, and finally it increases substantially during its
wearout phase.

This evolution is typically presented by the A.(t) curve, which is described
as a bathtub curve, shown in Figure 7.4. So, the hypothesis that A. IS

constant generally corresponds to the 'active life' stage only.

7. Dependability Assessment

),,(t)

o
Infant

mortality
Usefullife

Figure 7.4. Bathtub curve

7.3 TESTABILITY

149

t

Wearout

We should note that the test is one of the fundamental means of fault
suppression. Used during the design, manufacturing and operation stages, a
test consists in subjecting a product or its model (a model during the design,
as the product is not yet a physical product) to an experiment from the
outside, e.g. by a tester. The test is conducted through functioning sequences
which are made of input/output vectors. A test allows:

• to show the presence of faults (detection test),

• and eventually to localize them (diagnosis or localization test).

We will not develop these test methods here, as they will be analyzed in
Chapters 12 and 13.

Testability measures several factors:

• the ease with which a given product can be tested, that is to say the
facility with which we can determine detection or localization test
sequences, and the facility with which these sequences can be applied.

• the length of the obtained test sequences, that is to say the number of
input vectors to be applied to the product and the number of
corresponding output vectors to be observed,

• the coverage or efficiency of the obtained test, that is to say the
percentage of detected faults in relation to the total number of faults
which could affect the product according to a predefined fault model.

A product with a 'good testability' allows to rapidly determine a test
sequence having a short number of vectors and a high fault coverage. As
certain technological choices have an influence on the final product' s
testability , design or production choices can increase or decrease the

150 Chapter 7

testability. For example, the injection of observation means in the heart of
the product greatly facilitates the detection of errors during functioning (on
line detection), but also during test operations. This is the case of systems
which integrate error detecting codes or programs instrurnented by
executable assertions.

Several methods have been developed in order to evaluate the testability
of a product. They are often based on an analysis of the product's structure
and an estimation of its controllability and observability. These two 'system
level' notions of controllability and observability are linked to the ease with
which the interna! states of the system can be controlled from the input
variables, and their real values observed at the externaioutput variables.

Testability is assessed on a product, but also on the used technology. This
notion has recently been applied to software technology. For example, the
ISO 15942 standard evaluates each feature of the Ada language in terms of
the ease of verification of programs using this feature. Each feature thus
receives one of 3 grades:

• included when the feature use makes the verification easier,

• allowed when its using requires additional but tractable work,

• excluded when the verification techniques cannot be applied when the
feature is used in the pro gram.

Testability and reliability are two different attributes, which are however
correlated. Indeed, a good testability has to lead to an increase in the number
of faults detected, which therefore leads to a product' s higher reliability.

7.4 MAINTAINABILITY

7.4.1 Maintenance

Maintenance is an important activity related to product operation. This
activity will be explained in this section in order to introduce the
maintainability criterion.

7.4.1.1 Definitions

Maintenance is originally an operation linked to the operation stage of a
life cyc1e. It consists in stopping the product' s mission and subjecting it,
'off-line', to a certain number of troubleshooting and re pair actions:
determination of its state of health (presence of faults by detection) and
eventually putting it back in a good state by localization. and then repair of
the fault (Figure 7.5).

7. Dependability Assessment 151

Operation

Stop .. Return 10 ,,. operation

Maintenance
Detection
Dlagnosil
Repair

Figure 7.5. Maintenance

The product is therefore said to be repairable in the context of its
application. However, in numerous cases, maintenance is not applicable
because the systems are isolated or inaccessible. This is the case, for
example, with the hardware elements of satellites or polar beacons. Such
systems are therefore said to be non-repairable. Some other products are
both repairable and non-repairable according to the different stages of their
life. Thus, a rocket is considered to be repairable when it is on ground
whereas it becomes non-repairable when it is launched.

I Maintenance is the set of actions which permit a product to be
maintained or re-established in a specified state, or to be ready to
deliver a determined service.

7.4.1.2 Maintenance Categories

Three large categories of maintenance exist (Figure 7.6):

• preventive maintenance when an action detects the presence of faults
before they lead to a failure,

• corrective maintenance when a product reputed to be failing is cured,

• evolutive maintenance in order to improve the product's functionality.

-PreII'entive

I MainteT1l11lCe I .Corrective

- EvoIutive

Figure 7.6. Maintenance categories

These three categories call for different techniques and have to resolve
different problems, at the technicallevel as weIl as at the management level.

152 Chapter 7

Preventive maintenance
Preventive maintenance of computing equipment is carried out with a

fixed or variable periodicity. The measure of the maintenance periodicity
does not always use the same units. They depend on the considered
application domain. We can use the absolute time, the number of functioning
hours or the number of miles covered. Thus, an automobile is revised every
5000 miles or each year.

Two variants of preventive maintenance exist:

• systematic (or scheduled) preventive maintenance when its occurrence is
fixed,

• conditional preventive maintenance when it is conditioned by some
operational events (use of wearout or temperature sensors, etc.).

Corrective maintenance
Corrective or curative maintenance is carried out after the detection of

an anomaly during the product's functioning on the mission site. Thus, we
drive a car to the 'garage if it does not function properly.

Evolutive maintenance
Evolutive maintenance deals with the modification of certain functions

of an already designed and developed product which is supposed to operate
correctly. This is done to improve its performance, or to adapt it to new
procedures or constraints. For example, the successive versions of a product
software: 1.0, 2.0, etc.

7.4.2 Maintainability

7.4.2.1 Definition

Maintainability measures the aptitude of a product:

• to be repaired, that is to say putting the product back into a correct
functioning state, suppressing the present fault,

• to evolve, that is to say to accept modification by adding new
functionality or improving already existing functionality.

First of all, maintainability aims at measuring the ease with which a
preventive or corrective maintenance operation can be carried out: detection
and localization of the fault(s), repair and, eventually, re-initialization.
Secondly, maintainability assesses the ease with which the product allows
the modifications to be done in order to adapt it to a new functional and/or
non-functional environment or to accept a new functionality.

7. Dependability Assessment 153

Maintainability is an important criterion to assess dependability. In many
cases, the increase of its value reduces the risk of fault introduction during
the maintenance stage, and hence increases the reliability of the product.

Note. The term serviceability is used by numerous manufacturers of
electronic components and computing systems in order to express the
maintainability.

7.4.2.2 Probabilistic Models

Where the aptitude to repair is concerned, we often define probabilistic
maintenance models. In a similar way to the exponential reliability model,
the most frequent model is the exponentiallaw with a constant coefficient:

I M(t) = 1 - e -11 t,

M is the probability of being repaired, 1.1. is called the re pair rate.

From this definition, the Mean Time To Repair or MTTR is deduced.
The MTTR is the average time between the instant of failure occurrence and
the return to full functional operation.

MTTR= 1/1.1.

Where the measure of the product' s capacity to evolve is concerned, we
quantify its complexity by evaluating:

• the degree of structu ration , for example, in a program, we count the
average number of statements in its sub-programs,

• the degree of coupling, for example, in a program, we determine the
number of shared variables, the complexity of the graph expressing the
sub-program calls, etc.

7.4.3 Reliability and Maintainability

Corrective maintenance operations are supposed to integrally restore the
functionality of a product. In reality, three cases are often met:

• stable reliability: the capability of the product to deli ver its service is
statistically preserved (thejailure rate remains constant after repair);

• increasing reliability: the failing components are replaced by higher
reliability components when design or production faults are eliminated
(and without introducing new faults!), thus the failure rate decreases;

• decreasing reliability: in some cases, maintenance operations set out to
weaken some components which become less reliable, or in other cases,
the reliability of components decrease naturally with time, and therefore
the failure rate increases (c1assical wearout phenomenon).

154 Chapter 7

7.5 A V AlLABILITY

The availability eriterion eoneems repairable produets, that is to say
produets which are submitted to destruetive and repairing meehanisms.

I Availability is the probability that the produet funetions eorreetly at
time t, knowing that it funetions eorreetly at the initial time.

This attribute differs from the reliability beeause it takes into aeeount the
error eorreetion meehanisms introdueed during the development of the
produet. In the ease of simple exponential laws modeling the degradation
(faults) and repair meehanisms, we use probabilistie finite state maehine
models whose ares have been labeled by A and Jl eoefficients. Figure 7.7
shows a simple state diagram whose state 1 expresses that the produet
operates eorreetly (henee, the produet is available), state 2 speeifies a failing
situation. The are 1-2 models a failure of the produet with a failure rate A
(probability labeling the are); the are 2-1 represents arepairing of the failing
produet with arepair rate Jl (probability labeling the are).

I A I
I~ i 1 ~\:..J i
I Available).1 Failed I

Figure 7.7. Degradation Irepair eycle

Instant availability. For exponential failure and repair laws with
eonstant failure rate A and repair rate Jl, the instant availability is:

A(t) = Jl / (Jl + A) + A / (Jl + A) . e - ().1 + A) t

We should note that the availability is strietly equal to the reliability of a
non-repairable system (Jl = 0). In the opposite ease, it is superior. Indeed, the
probability of funetioning eorreetly at time t is inereased by the repair
mechanism: a fault arriving between 0 and t eould have been treated and the
produet therefore retumed to its eorreet state at t.

A vailability during the permanent stage. The permanent availability is
defined in the permanent stage (when such stage exists):

When t + 00, A(t) + A = Jl / (/J. + A), i.e. A = MTBF/(MTBF + MTTR).

We also define two other estimators in permanent funetioning:

• the Mean Down Time (MDT), mean time during wh ich the produet is not
available,

7. Dependability Assessment 155

• the Mean Up Time (MUn, mean time during which the product is
useable.

Example 7.1. Repairable Product

In order to illustrate the relationships between the notions of reliability,
testability and availability, we consider a repairable product. At time t, this
product is affected by a fault which transforms itself into an error, then a
failure, before being detected, for example, by application of a test sequence.
Then, we use a diagnosis technique wh ich localizes the fault, then repairs it
and puts the product back in service.

Figure 7.8 shows this mechanism: we see the periods of availability
(Mean Up Time) and non-availability (Mean Down Time). The period of the
correct operation depends on the product reliability. The duration used to
detect and localize the existing faults depends on the product maintainability,
more precisely its testability . The time spent in correcting the faults depends
on the product maintainability. All these characteristics affect the product
availability. Exercise 7.1 refines the study of this diagram.

product product product
available non-available available

t
I 1

TIME
I I ..
I I I I ...

fault error detection repair fault

failure diagnosis

Figure 7.8. Example of arepair cycle

7.6 SAFETY

Safety is direct1y linked to the notion of seriousness of the failures
described in the first part. We have explained that the failures induce several
c1asses of external consequences (Chapter 4): benign, significant, serious,
catastrophic. Safety is the privileged criterion for highly critical applications
for which the consequences of certain failures are catastrophic: embedded
systems from avionics or space domain, etc. This criterion measures the trust
wh ich can be attributed to a product which does not present failures having
catastrophic external consequences.

156 Chapter 7

I Safety is the probability that the product will not have failures
belonging to unacceptable seriousness c1asses, between the initial time
and a given time t.

Very often, the unacceptable seriousness c1asses concerns catastrophic
failures. If we refer to a statistical state model, we measure the probability of
not reaching the third state, which is judged to be unacceptable, knowing
that it was in state 1 at the initial time and that we know the probability of
passing from state 1 to states 2 or 3 (Figure 7.9).

1. Correc:t functioniDg
2. Non-catastrophlc faDare
3. Catastrophic faDare

Figure 7.9. Safety: dangerous failing state

A simple example is that of a balloon' s heating regulator which contains
a dangerous liquid. A failure of this regulator is catastrophic if it leads to the
explosion of the balloon by overheating. We measure the safety of this
product as the probability that it will not reach astate that provokes an
explosion. The safety naturally depends on the technology used and the
environment' s parameters (such as temperature), but also on the protection
mechanisms wh ich tend to avoid the occurrence of the failure which causes
an explosion (by a suitable design process avoiding the fault presence and/or
occurrence), or to prevent the failure from provoking an explosion (by an
external product protection or, more generally, a fault tolerance mechanism).

Relation between safety and reliability

A system that continues to function correctiy for long period of time has
a good reliability. However, it is possible to have reliable but unsafe systems
as weIl as safe but unreliable systems. A safe system can fail, as long as it
does so without creating an accident: destruction of the controlled process or
human injuries or deaths.

A handgun may be very reliable but particularly unsafe. In many
systems, safety and reliability go hand-in-hand. For example, reliability is a
very necessary safety condition for an aircraft, as most of the failures of the
flight control system may have catastrophic consequences.

Methods that increase safety are of course expensive! A first obvious
approach concerns the increase of reliability of the components used: this

7. Dependability Assessment 157

produces fault probability reduction, therefore failure reduction . However,
when this approach turns out to be insufficient, we use specific redundancy
techniques. They can at the origin of some antagonistic effects between the
two reliability and safety parameters: for instance, the increase of the
number of components destined to increase the safety often reduces the
reliability. In sub-section 7.9.3 we will see how to apprehend the quantitative
analysis of safety on Markovian type models.

7.7 SECURITY

I Security is an attribute of dependability with regard to the prevention
of unauthorized access andJor handling information.

This attribute covers two parameters: confidentiality and integrity:

• Confzdentiality measures the non-occurrence of unauthorized disclosure
of information.

• Integrity expresses the non-occurrence of improper alterations of
information.

These parameters lead to numerous techniques to protect the produet' s
access, or its utilization. The simplest example of confidentiality means is
the use of passwords in order to access a computer. We also use encryption
techniques to protect data from being understood in ease of involuntary or
fraudulent accesses. The security attribute is not considered in this book.

7.8 SYNTHESIS OF TUE MAIN CRITERIA

The evolution of a product's functioning is symbolized in Figure 7.10 by
a simple probabilistic three state model.

1. Corred functioDlDe
Z. NOD-catutrophlc faflure
3. Cata.tropbtc raUa~

Figure 7.10. Probabilistic model

State 1 is the correet functioning state, state 2 is a failing state which does
not lead to the loss of the mission and ean be repaired according to the are

158 Chapter 7

(2-1), and state 3 is a catastrophic failure state. The arc (1-2) that leads to the
non-catastrophic failure of the product is labeled by the failure rate P1 2, the
arc (2-1), which restores the correct function, is labeled by the repair rate
P21, and the arc (1-3) which lead to the end of the mission is labeled by the
rate PI3. We should note that the probabilities associated with the transitions
are expressed in general with failure and repair rates of type t.. and fl.

With this basic model, the four principal dependability criteria are
expressed by Figure 7.11, the graph being in state 1 at the beginning.
Expression q(t) represents the state in which the system is at time t. At the
initial time (t = 0), the system is supposed to be in the correct state 1.

RELlABILlTY:

SAFETY:

AVAILABILlTY:

R (t) = P (q ('t) = 1, 't E (0, t))

S (t) = P (q (t) ~ 3)

A(t)=P(q(t)=l)

Repairable Systems

MAINTAINABILITY: M(t) = P(q (t +tJ.) = llq (t) = 2)

Repairable Systems

Figure 7.11. Expression ofthe main attributes

• The reliability at time t is the probability (noted as P in Figure 7.11) that
the product remains in state 1 from time 0 to t. This corresponds to a
measure of the capacity that the product does not fail between 0 and t.

• The safety at time t is the probability that the product is not in state 3 at
time t. This property implies that the product will never reach state 3
between 0 and t .

• The availability is the probability that the product is in state 1 at time t,
whatever the evolutions which occurred before time t. The product may
produce non-catastrophic failures wh ich are repaired: its state changes
between states 1 and 2.

• The maintainability is the probability that the product failing at time t
will be repaired before a certain predefined ~ duration. This definition is
a variant of the exponentiallaw with a constant failure rate; it emphasizes
the repair delay.

Let us note that the two last criteria apply to repairable products.

Table 7.1 synthesizes the four attributes, reliability, availability and
maintainability, for exponentiallaws with constant coefficients applied to a

7. Dependability Assessment 159

repairable system. Note that availability expression is equal to reliability
expression when J..1 = o.

These attributes must be precisely defined in the specifications of a
project leading to any industrial product. According to the application, one
or several attributes can have a particular importance, leading to the use of
appropriate development techniques. Reliability is essential for a spatial
probe (for example, R = 0.99999 after a 12 month mission); as no repair is
possible, maintainability has no sense and availability and reliability laws are
equal. The development of a telephone electronic switching system requires
high availability (for example, a few minutes of unavailability per year). The
first attribute of a control system embedded in an aircraft is safety (for
example, 10.9 catastrophic failure during a flight). Naturally, in the general
case, a compromise must be found between the dependability requirements
expressed by quantitative values of the previous attributes, and the other
criteria ofthe specifications (cost, development duration, etc.).

R(t)=e"lol
Reliability MTBF I MTFF = 1/1..

A(t) = 111 (Il + 1.) + 1.1 (Il + 1.) . e - (11 + lo) I

A vailability A(00) = A = 111 (Il + 1.) = MTBF I (MTBF + M1TR)

M(t) = l-e"1I 1

Maintainability M1TR= 1/1l

Table 7.1. Simplified expressions ofthe main attributes

7.9 QUANTITATIVE ANALYSIS TOOLS AT
SYSTEM LEVEL

In the following paragraphs we introduce three models and methods used
for quantitative analysis: the fault simulation, the reliability block diagrams
which constitute one of the first analytical models used (see also in
Appendix B), and the analysis of non-deterministic state graph models (such
as Markovian graphs).

7.9.1 Fault Simulation

Fault simulation constitutes a universal approach, intensively used in
different situations. It assumes an 'executable' system model of the product
studied, a set of external input/output sequences which are applied to this
model, and the possibility to inject faults of a fault model in the system
model. This is why some of these techniques are calledfault injection.

160 Chapter 7

We will briefly explain the principles of the Monte Carlo simulation,
wh ich is a relatively simple and easy process. The events which make the
system evolve are the destructive and repairing mechanisms. At each step of
simulation, these events are randomly chosen and injected whilst taking their
respective probability laws into consideration.

This process is repeated a certain number of times, starting from the same
initial state. The statistical laws will make the system evolve towards
different states which are recorded. If the number of simulations carried out
is sufficiently important to satisfy the law of large numbers, we can deduce
from this simulation significant quantitative information about the
dependability parameters such as reliability and availability. For example,
we calculate the number of favorable cases among the total number of cases,
in order to estimate the survival or safety of a simulated product. This
method requires a system be ha vi oral model and often implies long run-time.
However, it is a very flexible method, accepting complex statistical models
and the introduction of queuing mechanisms used in computing to access
certain resources.

7.9.2 Reliability Block Diagrams

Once a product has been designed from an assembling of elementary
components with known reliability, the global reliability of the product can
be deduced. The reliability block diagram method introduced hereafter
comes from studies on electronic components. However, it is also used for
reliability studies done at system level.

7.9.2.1 Series Reliability Model

Consider a product constituted by n components, CI ... , Cno having
reliability laws, RI(t), .. , Rit). Let us assurne that the failure of one of them
is sufficient to provoke a product's failure (this is the case with the majority
of products). The reliability of the whole system is then derived from the
reliability of each component, by using the cIassical theorem of independent
probabilities. Hence, the global reliability is the product of the reliabilities of
the components: R = n Ri •

n

R=ll Ri
i= 1

Figure 7.12. Components 'in series'

7. Dependability Assessment 161

When the reliability of the components is defined by exponential laws
with constant failure rates, the reliability of the global product is also defined
by an exponential law with a failure rate 1.. wh ich is the sum of the failure
rates of the components (~): 1.. = L ~.

Therefore, it is said that these components are 'in series' and we establish
a reliability block diagram shown in Figure 7.12. Exercise 7.3 develops
these calculations and establishes that, when the components are all identical
(each having a rate A.o), the global failure rate is multiplied ,by n, and the
global MTBF is divided by n:

1.. = n A.o, and MTBF = MTBFol n, with MTBFo= 1 I A.o.
Consequently, the reliability decreases according to the number of

components: it is sensitive to the complexity with regard to this nllmber.

7.9.2.2 Parallel Reliability Model

All electronic structures are not of the previous 'series' type. In certain
redundancy cases, the failure of the product only appears when all the
components are failing. A simple example is that of two light bulbs in
parallel: as long as one light bulb functions correctly, lighting is ensured. We
often meet such redundant structures in dependable products, because they
have a better reliability. They also have a better availability in the case of
repairable systems.

D

R=l-II(l-R.)
i = 1 I

Figure 7.13. Components in 'parallel'

For n components, the reliability block diagram of this situation is
represented in Figure 7.13: we say that these components are in 'parallel'.
The reliability increase is due to the fact that the probability that the product
fails is the product of the failure probabilities of all components;

1 - R = II (1 - R;) -+ R = 1 - n (1 - R;)

Exercise 7.3 provides the opportunity to carry out calculations and to

162 Chapter 7

show that the reliability is increased: when the failure rates of the
components are identical, and for n = 2, we show that the MTBF is
multiplied by 1.5 only. Thus, the improvement of reliability is not
proportional to redundancy means: it is always smaller.

We will meet more sophisticated redundancy situations, such as a
redundancy with different reliability values of duplicate modules, or
redundancy with majority vote. The study of the reliability of these
structures involves other tools not considered here, such as the Laplace
transform.

In Exercise 7.4, we will compare two reliability block diagrams: a
'parallel-series' structure versus a 'series-parallel' structure.

To complement this introductive section, some results of the reliability of
c1assical structures are given in Appendix B.

7.9.3 Non-Deterministic State Graph Models

A Markov graph is astate graph with non-deterrninistic transitions. The
behavior evolves from state to state as in a c1assical state graph, but the
transitions between states are labeled by probabilistic values. The fact of
firing one transition or another one from a given state is in relation to these
probabilities. In dependability studies, such graphs express the different
states of a product submitted to degradation and protective mechanisms. As
long as some mathematical hypotheses are satisfied, we can apply simple
analysis tools handling probabilistic matrix associated with these graphs.

Therefore, we evaluate a prod\Jct' s behavior in terms of the prob ability to
reach or not astate or a group of states from an initial known state (typically
the fault free state). A matrix analysis method based on a Markov graph in
introduced by Example 7.2.

Other methods based on non-deterrninistic state graph models have been
defined, such as the analysis of stochastic Petri nets. This model has the
property to express parallelism. 1t uses places and transitions; tokens are
placed in some places and this marking constitutes the state of the Petri net
at a given time. Firing mies allows an asynchronous evolution of the graph.
Example 7.3 shows the use of this model to represent the evolutions of a
redundant system.

Example 7.2. Analysis 0/ a simple graph

We consider a repairable product with constant failure and repair rates.
Figure 7.14 shows its evolution graph which specifies the states and the
transitions between these states. The evolution modeled by this graph is
discrete with time; the time unit is the unity of failure or repair rate time: for
example one hour. This evolution is controlled by the probabilities which

7. Dependability Assessment 163

label the ares. We remark that the sum of the probabilities of all the ares
leaving the same state is always equal to 1.

Suppose that the produet is in state 1 at time n:
• the probability that it stays in state 1 at time (n + 1) is (1 - A),

• the probability that it goes to state 2 at time (n + 1) is A.

I .. Available ~ ~~~~dJ

Figure 7.14. Simple Markov graph

We associate a two-dimensional evolution matrix with this graph:

p=[1-+1 1-+2]=[1-11. 11.]
2-+12-+2 /l 1-/l

Example of numerical values : [0.9 0.1]
0.8 0.2

Eaeh element indexed by ij gives the probability of passing in state j from
state i.

If P is squared, the resulting matrix gives the probability to reaeh, in the
next elementary time, state 1 or state 2 from an initial state 1 or 2. By
ealeulating the sueeessive raising of P to the power of n, we analyze the
evolution of these probabilities when time progresses:

[
0.9

P=
0.8

0.1], p2 = [0.89
0.2 0.88

0.11], p3 =[0.889
0.12 0.888

0.111]
0.112

As the system is initially supposed to be in the eorreet state 1, we want to
know the evolution probabilities towards the eorrect state 1 or the ineorreet
state 2, with time. The probability of being in the ineorreet state is 0,11, then
0,111. A permanent state is reaehed when these probabilities stabilize.

We ean also study Markovian proeesses with continuous evolution, the
transitions between states being eontinuous probabilities during time.

Example 7.3. Stochastic Petn net

A regulation system has three redundant aetive units and one inaetive
spare unit. The regulation funetion is ensured as long as two of the aetive
units have no failure. When one unit is faulty, a reeonfiguration proeess is
started: this proeess replaees the faulty unit by the spare unit, if this unit has

164 Chapter 7

not already been used.
This system can be represented with the Petri net of Figure 7.15. It has

three places: P 1 represents the active units by the number of tokens which
are inside, P2 represents the spare unit, and P3 represents the failing units.
The graph is initialized with 3 tokens in P1 (three active units), I token in P3
(one spare unit), and 0 token in P3 (no failing units).

Transition Tl is labeled with the failure rate /.. of the active units. When
one unit fails, one token is taken in P 1 and one token is set in P2. In this
state, the system continues to function correctly. If a second active unit fails,
before any restoration, a second token is shifted from place P 1 to place P2,
and the system fails. Transition T2 is labeled with the restoring rate p. If one
spare unit is available (one token in P 3), and if there is at least one token in
P2, then T2 is fired: one token is removed from P2 and P3, and one token is
put in each place P 1 and P2. Hence, the regulation system works again.
Now, if another active unit fails, the system will fails and the restoring
mechanism will not be possible, as no token remains in P 3.

Exercise 7.6 proposes to modify this Petri net according to achanging in
the specifications.

1"2 P3

Active uniJs Spare availob1e

A T1

P2

Figure 7.15. Stochastic Petri net

7.10 INDUCTIVE QUALITATIVE ASSESSMENT:
FAlLURE MODE AND EFFECT ANALYSIS

7.10.1 Principles

The FMEA (Failure Modes and Effects Analysis) is a normalized
technique dedicated to qualitative analysis of reliability and safety. It is
based on an inductive process, which starts with simple failures (altering
components or modules) in order to deduce their consequences on the
complete system. This approach is used in numerous fields such as avionics,

7. Dependability Assessment 165

aeronautics, nuc1ear, chemical and automotive industries.
Initially developed by the US army in 1949 (military procedure MIL

STD-1629A, 'Procedure for Performing a Failure Mode, Effects and
Criticality Analysis), this approach has then be amended and refined by
several institutions: CEI document 812-1985, AIAG (Automotive Industry
Action Group) and ASQC (American Society for Quality Control) in 1993,
SEA (Society of Automotive Engineers) procedure J-1739.

The AIAG presents this technique as a systematic group of activities
intended to:

• recognize and evaluate the potential failure of a product or process and its
effects,

• identify actions which could eliminate or reduce the chance of the
potential failure occuITing,

• document the process.

The keywords on wh ich the FMEA and its main extension, the FMECA
introduced hereafter, are based are: the functions, the failure modes, the
effects and their severity, the causes and their OCCUITence and the controls.
Hence, FMEA is a technique used to highlight the consequences of a failed
component of the system on the behavior of the wh oie system.

[LevelN I ~ M12 ~

ILevel N+ll

Figure 7.16. Top-Down design

Let us consider a system designed according to a top-down approach. At
step N, the designer analyzes the specifications of the components used in
the system modeling of this level and proposes their implementation
combining sub-components of level N+ 1. Figure 7.16 illustrates this step of
the design of one component. Then, the designer defines the possible failures
of the sub-components.

The FMEA deals with the study of the effects of known failures at level
N+ 1, then N, ... , and finally at the global system level and the environmental
level. The eITor propagation analysis is expressed by tables providing:

166 Chapter 7

• the identity of the analyzed component (name, reference, number, etc.),

• the function performed by the component,

• the considered failure of the component, i.e. an error of the global system,

• the possible cause of the failure (this is optional),

• the local effects, that is to say the consequences on the others components
at the same design level (N + 1),

• the effects at the next higher level (N), i.e. the component which includes
the failed component,

• the effects on the global behavior (end effects),

• the failure detection method,

• the reaction to the errors.

These last two aspects are relative to the techniques used to handle the
errors. They will be considered in Chapter 17 (fail-safe systems) and Chapter
18 (fault-tolerant systems).

7.10.2 Means

The MIL-STD-1629 standard defines a worksheet used to express all the
necessary pieces of information (Figure 7.17). The filling of this worksheet
reveals two problems: the definition of the failure modes, and then, their
propagation to highlight their effects on the components introduced at each
design step, and finallyon the product' s services.

~ nue --
Imtmrelewl SlBt -- cI --
Rtferen:t,~ CbIqJiIedby --

J\.biion Approved --
by

Idtrt. IIfmI FIn:öon F.ihreltld5 M<o;im Fail flfeds Fail an.- Sewrity Rma10i
JUJb!r tin:ti<nII anlCIIU'lI5 p/BII1 .-. SIIÜJl: chHI

ideniI'icaIim qxmIiInJI LocaJ Next EnI -~ (1III1eJr.IabR) mxIe flfeds ligIu' flfeds
leYeI

Figure 7.17. FMEA Worksheet

At low level of hardware system design, quite simple and realistic error
models exist, which can be used as pertinent failure modes. During the first

7. Dependability Assessment 167

steps of a system design, the failure modes are defined as violation of
properties on the use (pre-conditions) or the behavior (post-conditions) of
the components. The considered errors must be representative of actual
errors, that is to say errors that can occur, taking the component design into
account. This can be conduded by using a deductive analysis (c.f. Fault Tree
Method in next section). Moreover, nobody knows if the list of the studied
errors is complete. To cover all the errors, general properties must be
considered. For instance, "the actuator provides a bad value" is better than
"the actuator provides value Vl instead of V", as the numerous other values,
V2, V3, etc., will not be handled.

The second problem deals with the propagation of errors through the
system structure. When failure modes are defined by bad values, and the
system modeling tool is formally defined, a simulation provides the effects.
Such a situation occurs, for instance, for a stuck-at 1 error of a component of
a structure defined by interconnected gates. On the contrary, when failure
modes are defined by temporal properties (such as "the data output is
delayed") or by general properties (such as "the data output is incorrect"),
the assessment of their effects is more difficult. This difficulty also exists
when the modeling tool used to express the system does not possess formal
semantics. This occurs when the relationships between the components are
expressed in English.

7.10.3 FMECA

The failure modes are potential failures of components. When their
occurrence probability is known, it is possible to deduce the probability of
occurrence of failures at the global system level. FMECA (Failure Modes,
Effects and Criticality Analysis) is a variant of FMEA that associates a
probability with the failure of the components and with their effects. Hence a
seriousness dass and its occurrence risk can be associated with each failure.

As previously mentioned, the values of the probability of the initial errors
(failure modes) are generaHy obtained by exploitation feedback. Some of
these values are standard for a given technology: for example a
semiconductor manufacturer provides the user with the failure probability of
an integrated circuit. Other values are specific to each design process: it is
the case of design faults which are influenced by several parameters such as
the tools, the design 'style', the used methods, the design team, etc. Thus,
FMECA is a qualitative as weH as a quantitative method.

168 Chapter 7

7.11 DEDUCTIVE QUALITATIVE ASSESSMENT:
FAULT TREE METHOD

7.11.1 Principles

Numerous failures can be imagined. Fortunately, only a few of them may
occur. The FTM (Fault Tree Methocl) aims at examining if a supposed
failure may occur or not, taking the system structure into account. It also
defines the circumstances of the failure occurrence, by expressing the
studied failure as a composition of run-time events using the 'AND' and
'OR' operators as shown in Figure 7.18

Figure 7.18. Fault Tree Method

This figure specifies that the failure is raised if (EVT1 and EVT2) occurs.
Then, it explains the causes ofthe occurrence of EVT1 (EVT3 and EVT4 and
EVT5) and EVT2 (EVT6 or EVT7) . Three situations allow to conclude on the
failure effectiveness.

• If the values of the leaves of the fault tree (basic events) are known, the
failure raising can be predicted. For instance, if EVT3 = false, and EVT4,
EVT5, EVT6 and EVT7 are true, then the failure cannot appear.

• Relationships between the basic events show contradictions. For instance,
suppose we know that EVT5 is true only if EVT6 and EVT7 are both false.
Thus, EVT1 and EVT2 cannot be true simultaneously, and consequently,
the failure cannot occur!

• Relationships between the events of a branch reveal contradictions. For
instance, EVT5 is the negation of the assertion defining the failure.

In practice, the three studies are often combined and the conclusion on
the failure occurrence is not simply true orfalse, but a potentiality. However,
the fault tree defines thecircumstances of this potentiality.

7. Dependability Assessment 169

Two difficulties exist in the definition of fault trees: the choice of the
failures to be examined, and the obtaining of the tree from a given failure .
The tree is built by a system structure analysis. When the formal
composition laws can be used to combine elements to define a structure, a
systematic process is sometimes proposed to derive the tree. For instance,
Nancy Leveson proposes such process when Ada programming language is
used to express a software system.

Note. The nodes of the fault tree being general events, including
erroneous but also correct events, this modeling is also called event tree.

Example 7.4. Redundant system

A system is made of three modules: M 1, M2 and M 3. M 1 and M2 are two
redundant active units: as long as one of them is faultless, the performed
function is correct. M 3 ensure another part of the system' s function .

Thus, the system fails if M 1 and M2 fail or M3 fails . This analysis can be
represented by the fault tree of Figure 7.19. This model can be used to
perform quantitative failure evaluations. Exercise 7.7 proposes to evaluate
the reliability of this system with the FTM approach, and to compare with
the Reliability Block Diagram approach.

M3 fai ls

Figure 7.19. Redundant system

7.11.2 Software Example

Example 7.5. Stack

Consider the procedure Simple_Example wh ich uses the procedures
Push and Pop provided by the package Stack:

with Stack, Ada.Text_Ioi
procedure Simple_Example (Element: in out

Type_Element) is

beg in
Stack.Push (Element) i

Stack.Pop (Element) i

170 Chapter 7

exception

when Overflow ==> Ada.Text_Io.Put_Line
("Stack Overflow·);

end Sirnple_Example;

The exception Overflow (respectively Underflow) can be raised by the
procedure Push (respectively Pop). The exception Overflow is handled
locally be the procedure Simple_Example, whereas no handler exists for
Underflow. So, if it is raised by Pop, this exception is propagated by
Simple_Example signaling a faHure. We use the Fault Tree Method to
study this faHure.

The exception Underflow is raised by Simple_Example: if it is raised
by Push, or if it is raised by Pop and no exception is raised by Push.

Stack empty before
caU to Pop

Stack empty after
Push execution

No exception raised
byPush

Stack executed
normally

Stack not empty
after Push execution

Figure 7.20. Example ofFault Tree

This last condition is due to the fact that an exception raising terminates
the execution of the procedure body. The top of Figure 7.20 illustrates this
first step of analysis.

Looking at the body of the procedure, Push (not provided here), we
notice that it cannot raise the exception Underflow. So, the event
"Underflow raised by Push" is always false.

The event "Underflow raised by Pop and no exception raised by Push"
results from two branches connected by a AND.

• The Underflow can be raised by Pop if the stack is empty before Pop is
called. This conclusion is obtained by analyzing the Pop procedure body
(not provided here). As Pop is called after Push, this conclusion is
derived from the assertion "Stack empty after Push execution".

7. Dependability Assessment 171

• If no exception is raised by Push, the procedure execution was conc1uded
normally. So, an element was memorized in the stack which is therefore
not empty.

In conc1usion, an Underflow can be raised by Simple_Example if E
and not (E) is true, where E = "Stack empty after Push execution". This
contradiction leads to conc1ude that the root event is false; hence the
considered failure cannot occur.

7.11.3 Use ofthe FTM

Generally , the Fault Tree Method does not lead to conc1ude that a failure
is always true (that is, the product is always failing), or always false (the
failure will never occur). This method provides a Boolean expression which
defines the cause of the failure. For instance, Figure 7.18 specifies that:

failure = (EVT3 . EVT4 . EVT5) . (EVT6 + EVT7),

where '.' and '+' represent the AND and OR operators.
Partial knowledge on the basic event values allows to reduce the

expression. For instance, assurne that EVT4 is always true and that EVT6 =>
EVT7. Then, this expression becomes:

failure = EVT3 . EVT5 . EVT6

This result will be used by most of the fault handling techniques. For
example, the occurrence of the basic events must be prevented, or the faults
that make the expression true must be detected and removed. This
expression also gives the circumstances of the failure, information very
useful to design a fault-tolerant product.

Let us note again that this method has also quantitative assessment
applications. Indeed, if probability values are associated with the basic
events, it is possible to apply probability compositional rules (to treat the OR
and AND nodes) in order to deduce the probability of any event in the tree,
inc1uding the failure occurrence probability . Exercise 7.7 uses this method to
calculate the reliability of a redundant system, and to compare the results
with those obtained by the reliability block diagram method.

7.12 EXERCISES

Exercise 7.1. The 'fault - error - failure - detection - repair' cycle

In Figure 7.8, place time intervals which correspond to fault latency,
detection mean time, then repair mean time. By supposing that the temporal
diagram results from a statistical study of the product behavior during

172 Chapter 7

several cycles of functioning, how can the MTBF (for repairable system) and
the MTTR be deduced?

Exercise 7.2. Reliability of a component

An electronic circuit has an exponential reliability with a constant J.... rate.

1. Calculate the mean time (MTBF or MTTR), as weIl as the R(t) value at
this mean time. Numerical value: J.... = 10-6.

2. Demonstrate that this MTBFIMTTF corresponds to the time which is at
the intersection of the tangent at the origin of the curve with the time axis
(as indicated by Figure 7.3).

3. Explain why A is similar to a 'failure rate by unit of time'.

4. With another technology, the component has a failure rate equals to 10.7.

What is the relationship of the probabilities of these two vers ions when
t = 104 hours?

Exercise 7.3. Composed reliability

We wish to study the reliability of a system constituted of 2 basic

modules (noted Mi) interconnected according to diverse 'series' and
'parallel' reliability diagrams. The reliability of each module is modeled by

an exponentiallaw with a constant failure rate J....: Ri(t) = e -Ait.

1. Determine the reliability of a 'series' reliability diagram of these modules.
Calculate the global MTTF. Study the particular case where the two
failure rates are identical.

2. Carry out the same study for a 'parallel' diagram.

3. Consider the previous questions with J.... = 10-4, and compare the reliability
of these structures at time t = 1000H.

Exercise 7.4. Comparison of two redundant structures

Figure 7.21. 'Parallel-series' and 'series-parallel' structures

1. Study the reliability of the two systems which are represented by the two

7. Dependability Assessment 173

reliability diagrams in Figure 7.21, noted as Sps and Ssp, knowing that all
the modules have the same reliability.

2. Which of the two organizations has the best reliability?

Exercise 7.5. Safety analysis on a Markov graph

Consider the graph in Figure 7.22. From the initial state 1 which
represents a behavior without fault, the system degrades with the appearance
of faults; it evolves towards the states 2, 3 and 4 which are failing states. On
the contrary, protective and repair mechanisms are going to make the system
evolve towards better states, for example the state 3 towards the state I! The
arcs between states indicate the hourly rate of evolution (probabilities): pI,
p2, p3, p4 for the degradations and rI, r2 for the corrections and repairs.

Study the evolution of the graph from state 1 towards state 4 which is
here supposed to be catastrophic.

Figure 7.22. Markov graph

Exercise 7.6. Representation of a system by a stochastic Petri net

We modify the specifications of the system studied in Example 7.3. The
spare unit has a failure rate A.s and arepair rate Jls. When an active unit has
been detected faulty, this unit is repaired with a rate Ils; this repaired unit can
then replace the spare unit.
Represent this redundant system with a stochastic Petri net.

Exercise 7.7. Fault Tree and Reliability Block Diagram

Use the FTM to calculate the reliability of the redundant system of Example
7.4. Compare with the Reliability Block Diagram method.

THIRDPART

FAULT AVOIDANCE MEANS

During the first part of this book we identified the sources of the
problems which can affect a product in its applicative environment. In the
second part, we firstly introduced he approaches allowing faults and their
effects to be mastered: fault prevention, removal and tolerance techniques
used or acting during a product life cycle. Then, the dependability
assessment means were presented. Finally, we developed the basic notions
relative to redundancy, which are necessary to implement the means
allowing dependability impairments to be resolved.

In the third and fourth parts we will refine the methods and techniques
which allow us to get rid of faults and their interna! and extern al effects.
The groups of technique relative to fault prevention and fault removal,
known as fault avoidance, are presented in this third part, as they are
closely tied to one another. The groups of techniques relative to fault
tolerance will be studied in the fourth part of this book.

The writing of these chapters was rather problematic from the author' s
point of view: how detailed should the presentation be? For example, just
the functional and structural testing methods, which provide dynarnic
analysis of systems in order to detect faults, could by themselves justify
an entire book. However, a too detailed description of this subject (as with
the others) would not offer an overview of the problems and means of the
dependability, which is the aim of this book. We have therefore had to
maintain a good equilibrium between the principles and the detailed
techniques.

The first two chapters of this part are dedicated to the avoidance of
functional faults during the specification (Chapter 9) and during the
design (Chapter 10). Then, Chapter 11 deals with the prevention of
technological faults. The last three chapters offer a more detailed analysis
of the techniques to remove technological faults: an overview of the
problems and solutions in Chapter 12, the development of some
significant techniques in Chapter 13, and an introduction of design for
testability techniques in Chapter 14.

Chapter 8

Redundancy

Whether in the form of traditional error detecting and correcting codes
used in transmission systems, in the form of more specific codes such as the
m-out-oJ-n code or arithmetic codes, or even in the form of task duplication
techniques with majority vote or type feature of programming languages,
redundancy is omnipresent in almost all dependability techniques. In this
chapter, we introduce this concept and the associated notions. They will be
used later on in the following chapters of parts three and four.

Whether natural, intrinsic, or on the contrary, artificial (e.g. introduced
during design), redundancy is a universal property of all systems,
independently from their functionality. It can be found in computing,
linguistic and biology domains for example. Redundancy basically concems
system's structures by adding more components than necessary. However, it
also concems their behavior, i.e. the input-output relationships, the meaning
of human language sentences, or also the semantic of the statements of a
programming language. We will observe that the word redundancy is
sometimes ambiguous. On the one hand, it can have a pejorative meaning by
qualifying that is useless, or even harmful to the dependability. On the other
hand, it has sometimes a positive meaning by allowing the detection and/or
correction or else the compensation of errors.

We will analyze the two fundamental forms of redundancy:

• functional redundancy,

• structural redundancy.

We will discuss the possible applications of these forms in order to
detect, correct, or tolerate faults. These applications will be described in the
third and fourth parts of the book.

175

J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

176

8.1 FUNCTIONAL AND STRUCTURAL
REDUNDANCY

Chapter8

8.1.1 Linguistic Redundancy

The word redundancy comes from the Latin word redondare which
means plentiful, overflowing. Therefore, the meaning tends towards excess
and what is superfluous. Thus, the attribute redundant often qualifies what is
useless. We are therefore very far from the objectives of the dependability.
Its interpretation with a positive sense is actually very recent, principally
with the use of error detecting and correcting codes for transmissions.

I We say that a product or system presents redundancy if some of its
constitutive elements are not necessary to perform the normal
input/output relationships.

We will define the two terms elements and normal input/output
relationships in the case of computing systems. But be fore that, in order to
introduce the two forms of the redundancy, we analyze some examples
coming from the linguistic domain.

The sentence 'men men are are mortal mortal' c1early demonstrates a
structure redundancy, known as syntactic redundancy. This redundancy
does not however affect the understanding of the sentence. Naturally, the
non-redundant phrase is: 'men are mortal' .

We consider the following set of three sentences:
Socrates is a man,
men are mortal,
Socrates is mortal.

Any of these sentences read individually does not present syntactic
redundancy, however, the third one is semantically implied by the two
others: this is a case of syllogism. Thus, we notice a second type of
redundancy known as semantic redundancy.

Many words in human languages can be modified without harming their
understanding; to remove for example, a letter r in the word terrible will not
change the meaning at all. This type of redundancy is considered as useful or
non-useful, according to the understanding of the person who reads the
sentence: this person is known as the receptor. Removing these letters only
reduces the readability. For example: men ar mortl is generally more
difficult to understand, but it remains understandable.

All these redundancies induce a growth in the cost of syllabies, words, or
enunciation time. They have appeared spontaneously in all human languages
for varied reasons, logical and historical.

The effects of redundancy in language are antagonistic in two ways:

8. Redundancy 177

• reduction of the readability and comprehension by making the text Ion ger
and more complicated (this is the case for example with periphrases): to
make clear by avoiding redundancies,

• on the contrary, reduction of the comprehension errors due to phonetic
changes, due to noise made by the environment, due to a receptor' s lack
of knowledge: to make clear by repetition.

To conclude, the unnecessary elements introduced in the definition of the
term redundancy are syntactic parts or semantic information of the
sentences. A text is a structure which is scanned by the reader who deduces a
meaning. Scanning and meaning define the input/output relationships. If the
meaning of the text is correctly understood, these relationships are qualified
as normal. Some text elements are redundant if their removal does not
modify the correct meaning. The repetition of lexicographic or syntactic
elements in the sentences is not necessary if the comprehension is good. On
the contrary, these elements are useful in case of a failure of comprehension.

For instance, consider areader of the previous syllogism who has not
made the semantic correlation between the first two phrases and the last one.
Therefore, he/she has not concluded that Socrates is mortal. This deduction
is therefore brought by the third phrase, which is hence found to be useful
for the comprehension. In this example, illustrated by Figure 8.1, we see that
redundancy is a useful tool for increasing the quality of the comprehension
of the semantics of the sentences, but that it is difficult to master.

)--~
Functional Structural
(Semantic) (Syntactic)

· Socrates is a man . men men are morta)
· men are mortal . men ar mortl
· Socrates is amortal

Figure 8.1. The two aspects of redundancy

8.1.2 Redundancy of Computer Systems

In the context of design, production and use of electronic products, we
will also often meet difficulties when trying to master the redundancy and
distinguish its positive and negative aspects relatively to the dependability
requirements. The redundancy of electronic system also presents two forms
(Figure 8.2):

178 Chapter8

• functional redundancy which corresponds to semantic redundancy in the
case of linguistics,

• structural redundancy which corresponds to syntactic redundancy in the
case of linguistics.

Extern al behavior:

IIO relations

I 0

Intemal reallzation:
lntcrconnectcd

components

Figure 8.2. Functional and structural redundancy

The functional redundancy of a product is a characteristic of its extemal
behavior in its functional environment: certain input values or sequences are
never applied whilst the product could react, or certain output values and
sequences are never produced by the product during its functioning. A
simple example is that of a system adding two I-digit decimal numbers. The
result obtained is a two-digit number, but only the configurations between 00
and 18 are possible: redundancy in this case concems the output values (19,
20, ... , 99) which cannot appear in reality, whereas the dimension of the
output would potentially permit them (see Figure 8.3).

[Fup.clioaal 1
RedundaDcy

Adderoftwo
I-digit numbers:

C> 18 is impossible!

Circuit duplicadon:

Twice as many
components!

Figure 8.3. Simple examples of redundancy

This type of redundancy is also due to constraints between inputs and
outputs: for example, if a sub-pro gram calculates the greatest value of a list

8. Redundancy 179

of numbers provided as inputs, the property 'the greatest value belongs to the
initial list' expresses a functional redundancy: not any value can be normally
returned by the product; the output value is constrained by the input values.

Whereas the functional redundancy characterizes the external behavior of
a product, the structural redundancy depends on its internal structure: there
is more hardware of software than necessary. The duplication of two circuits
with identical outputs is such an example. This is a duplex technique studied
further on and illustrated in Figure 8.3. There are twice as many transistors
or logical gates than are strictly necessary.

In the software domain, the definition of a constrain type such as
'subtype Shoe_Size is integer range 28 .. 46;' in a program
also constitutes a structural redundancy. Indeed, only the type integer is
necessary to generate the memory allocation of variables of this type as weIl
as the arithmetic operation code (+, -, *, I). The constraint 'range 28 ..
46' will generate assembly instructions, which are useless where the
function is concerned. If no fault is committed upstream the program, these
instructions do not serve any purpose: they constitute a structural
redundancy. However, such a redundancy is clearly useful in order to verify
the type of values provided to or calculated by the pro gram, and to detect
possible errors.

These two types of redundancy are complementary: a product can present
structural and functional redundancy at the same time. The two following
sections develop these notions for hardware and software systems.

8.2 FUNCTIONAL REDUNDANCY

From a purely functional point of view, the product to design and then
implement carries out a certain treatment of information provided by the
functional environment via the inputs. This product treats this information,
then it sends back the results transmitted to the environment by the outputs.
Functional redundancy is going to qualify the product' s behavior relative to
its inputs/outputs relationships.

A product has junctional redundancy if:

- some theoretically possible input va lues or sequences are not
applicable according to the product' s specifications,

- some theoretically possible output va lues or sequences are not
produced according to the product' s specifications,

- some theoretically possible input/output values or sequences never
occur according to the product' s specifications,

180 Chapter 8

This definition conforms to the general definition of redundancy given in
8.1.1. It considers as elements the input and/or outputs values, and as normal
situation a correct usage andlor functioning. This kind of redundancy, is
independent of the product design and implementation, as it concerns the
product function. The modeling tools allowing this redundancy to be
characterized are studied in this section.

8.2.1 Static Functional Domains

Imagine that a product P has n inputs and m outputs whose values are
expressed in any numeration base (binary, decimal or other) B = {O, .. , b}.
The values taken by the inputs (and the outputs respectively) are called input
vectors (and output vectors respectively). We suppose that this product
could be a combinational or a sequential system. The output values of a
combinational system only depend on the applied input values, whereas the
output values of a sequential system depend on the applied input values and
the internal state wh ich expresses the system's behavior by a finite state
machine.

US1 and Uso are the static universes of all the possible theoretical input
and output vectors. For example, a product wh ich has n = 3 binary inputs
and m = 2 binary outputs possesses:
- a static input universe with 8 vectors US1 = {OOO, ... , 111},
- and a static output universe with 4 vectors Uso = (00, 01, 10, 11).

8.2.1.1 Statie Funetional Domain of Inputs and Outputs

The static behavior of the product introduces the notion of static
functional domain . We call:

• static input functional domain, noted Ds/, the set of the vectors applied
to the product by the environment, as defined by the specifications, that is
to say without faults in the environment: Ds/ ~ US1,

• static output functional domain, noted Dso, the set of the product' s
output vectors which result from its activity, as defined by the
specifications, that is to say without product failure: Dso ~ Uso.

A combinational system is characterized by a mathematical application
from the DS1 domain in the Dso domain, as illustrated by Figure 8.4. For
each vector applied at the input, the system gives an output vector.

IA static (input/output) functional domain is redundant if and only if
it is strictly included in its static uni verse.

This implies that certain vectors of the static uni verse are not part of the
product' s specifications defining the product relationships with the

8. Redundancy 181

functional environment. This is symbolized by the crowns in light gray in
Figure 8.4. We define the static (input/output) functional redundancy rate
as (size (USx) - size (Usx » / size (USx), where x = I for inputs and x = 0 for
outputs.

~ o
p ~

(n) (rn)

US1 ={O, I}D Uso={O,I}m

Figure 8.4. Static domains of a combinational circuit

Example 8.1. Decimal adder

Let us consider a decimal adder which receives two I-digit numbers a
and band provides the result c on two decimal digits. Whether implemented
in the form of a hardware or software system, this product presents a
functional redundancy of the outputs, as illustrated by Figure 8.5.

1 Uso={O, •• ,9}

Figure 8.5. Decimal adder

Indeed, assurning that all the configurations applied to the input are
possible, the static input domain does not present redundancy (Ds/ = Us/). On
the contrary, c has two digits. Therefore, the output uni verse has 100
numbers whilst only 19 of them (the numbers between 0 and 18) will
effectively be ca1culated by the product. Thus, there is an output redundancy
of 81 % of vectors!

Functional redundancy is an interesting concept. For instance, it allows
the detection of failures that imply an output of the functional domain. In the
case of the previous example, an ob server placed at the output of the decimal
adder can detect a failure by checking that the result effectively belongs to
the output domain: c ~ Dso. Thus, the result c = 56 is perceived as a failure.

182 Chapter8

Therefore an intemal fault exists in the product, but the location of this error
is unknown for the moment. This faHure defines a class of equivalent faults
from the externaiobservation point of view (Figure 8.6).

In the third and fourth parts we will present several examples of
functional redundancy applications, and show how this notion increases the
system dependability, notably in the case of software.

Ce {O,18}? I

Figure 8.6. Observation of the adder

8.2.1.2 Static Functional Domain of Input/Output Relations

In the previous section, redundancy concerned either inputs or outputs. In
a more general way, functional redundancies exist which correlate the input
and output domains. Thus, we define a tuple of input and output universes,
noted as US/O = US1 X Uso. The input/output domain, noted as Ds/O, comprises
the set of an possible vectors in US/O. A product has an input/output
functional redundancy if Ds/O c US/O.

Example 8.2. Search for the greatest number of a list

Consider a system which receives 4 natural 1-digit numbers and which
gives out the greatest number. The input universe has 104 vectors {OOOO, ... ,
9999}, and the output uni verse has 10 vectors {O, ... , 9}. Consequently, the
input/output uni verse contains 105 vectors. The input/output domain has only
104 vectors, because for each input vector the product only provides one
single output value which is one of the entered numbers. Consequently, the
input/output static functional redundancy rate is 90%, whereas no static
redundancy is revealed (neither at the input nor at the output).

8.2.2 Dynamic Functional Domains

What we have just discussed regarding static function (in terms of
vectors) is also relevant for the dynamic behavior of sequential systems.
Now, we no longer deal with the input and output vectors but with the input
and output sequences of vectors. We assume that an these sequences are of a
finished length. Thus, we name the set of an these theoretical sequences
which can be formed with the input and output sequences, the dynamic input
functional universe (UD!) and dynamic output functional universe (UDO).

8. Redundancy 183

With the same generalization used for static domains, we define the dynamic
input/output productfunctional universe by UD/O = UD/ X UDO.

8.2.2.1 Dynamic Functional Domains of Inputs and Outputs

The dynamic input functional domain, noted as DD/, is the set of the
input sequences applied to the product by the environment,
conformably to the specifications: DD/ ~ UD/,

The dynamic output functional domain, noted as DDo, is the set of
the product' s output sequences resulting from the product activity
conformably to its specifications: DDo ~ UDO.

A sequential system is characterized by an application of the dynamic
input domain in the dynamic output domain. lAs for static domains, we say that a dynamic input domain or a

dynamic output domain is redundant if and only if it is strictly
included in its uni verse.

Example 8.3. Binary counter

Let us consider a 4-bit binary asynchronous counter. Each time it
receives a pulse on its asynchronous I input, it increments a memorized
value and sends it to the 0 output in the form of a 4-bit number. We note this
operation: Oj+l = Oj + 1 [modulo 16]. Such a circuit is used for example to
count the number of objects wh ich cross a certain space. The analysis of
static input and output domains shows that there is no static redundancy;
indeed, all the input values are applied, and the counter can take any of the
16 output values. On the contrary, if we determine that the dynamic output
domain has sequences of length 2, we obtain the couples (Oj, Oj+ 1) modulo
16, that is 16 different couples, whilst the dynamic output universe for length
2 sequences has a cardinality of 16x15 = 24. Therefore, the redundancy rate
is more than 93%.

Figure 8.7. Observation of the counter

As in the combinational case of Example 8.1, we can use this redundancy
by placing an observer at the product' s output which memories the output' s

184 Chapter8

two successive values and detects any dynamic domain violation (Figure
8.7). These failures are created by a dass of faults which depends on the
product' s design. Hence, the functional redundancy is exploited to detect
errors by means of an automatic observer which is itself redundant according
to the normal functionality of the counter.

Example 8.4. Control software module

Let a sub-program, which, at each call, acts on an external process (for
example an engine) by an output variable which takes alternatively the two
values 'On' and 'Off . These values provoke the running and stopping of the
extern al process. If we consider the output sequences of length 2, the
dynamic output universe is {(On, On), (On, Oft), (Off, On), (Off, Oft)}.
However, each sub-program call aims at chan ging the state of the external
process. It stops if it is the running and makes it run if it was stopped.
Therefore, the dynamic output domain only comprises of two values: (On,
Oft) and (Off, On). There is a dynamic redundancy rate of 50%.

8.2.2.2 Dynamic Functional Domain of Input/Output Relations

We call dynamic input/output functional universe , noted as U D/O, the
set of sequences U DI x U DO'

As for the static domains, we define the dynamic input/output
functional domain, noted DD/O, as the set of input and output
sequences which are in conformance to the specifications.

We say that there is adynamie functional redundancy if DD/O is
strictly induded in U D/o.

We consider Example 8.4 again. We suppose that, in addition, the sub
program named 'Control' switches off automatically the process after a
delay D (it acts as a timer). This, for example, could be implemented in Ada
language using a task and a variable of type 'duration' (which allows the
time to be managed). The input uni verse has two values {Control sub
program call, D}. This last D value symbolizes the fact that a D duration has
elapsed since the last call of Control. In this new context, the relations
correlating the inputs and outputs lead to a dynamic input/output domain of
length 2 that can take the values:

• {(Control, On), (Control, Oft)}, {(Control, Oft), (Control, On)} if the
interval between the two Control calls if inferior to the D duration,

• {(Control, On), (D, Oft)} in the opposite case.

8. Redundancy 185

8.2.3 Generalization of Functional Redundancy

To sum-up the previous explanations:

A product pos ses ses a statie funetional redundaney if one of its static
functional domains is redundant.

A product possesses adynamie funetional redundaney if one of its
dynarnie funetional domains is redundant.

When a deterrninistic finite state machine describes the behavior of the
system, the output value results from the input value and the eurrent value of
the internal state. The theory of languages shows the equivalenee between
eertain expressions of input/output sequenees (language) and the automaton
model. Redundaney expresses itself in terms of states and/or ares non-used
by the funetioning of the product: for example, it is impossible, from an
initial state to lead the automaton deseribing the behavior into astate whieh
is however part of its specifieations. Example 8.5 illustrates this notion.

Another (and independent) extension of funetional redundaney leads to a
probabilistic vision of the domains. We end up with more general studies
which belong to the domain of the theory of information and its applieations
in the deteetion of errors. Indeed, as the reader could ensure by treating
Exereise 8.1, the adder's output domain of Example 8.1 presents a non
uniform speetrum of the probability of oeeurrenee of output veetors. This
knowledge ean be exploited in order to deeide the likelihood of the
frequency of appearanee of a given veetor; thus, the value c = 9 has to
statistically appear 10 times more often than c = 0 or c = 18. The studies,
which analyze these probabilistie aspeets, will not be developed in this book.

Example 8.5. Redundaney of a FSM

Figure 8.8 shows an example of a redundant 4-state automaton. Let us
suppose that the initial state is state 1, and that the inputs are constrained by
the property 'the input c is never applied after the input b'.

Figure 8.8. Redundancy at FSM level

With these eonditions, it is easy to show that the are from state 3 to state

186 Chapter8

1 is redundant, as it will never be used. State 4 is also redundant, as it cannot
be reached from statel : it is called an unreachable state.

A variation of this FSM will be studied in Exercise 8.2.

8.2.4 Redundancy and Module Composition

The design - process, which structures a system into interconnected
modules, frequently introduces functional redundancy because of the
constraints due to the relationships between the modules.

The general problem, not developed in this book, can be expressed on the
structure of Figure 8.9 wh ich comprises a father module Ml2 structured into
two interconnected son modules, MI et M 2• We know the global function of
the father and the structure of the interconnection between the two sons. We
suppose as weIl that the module MI is reused from another application. The
module MI can present redundancy due to:

• the constraints of use of module Ml2 which are more restrictive than those
predicted during the design of MI : all value sequences admissible by the
MI are not applied to the external input I e of Ml2,

• the constraints on the value sequences stemming from M2: all the internal
input value I i sequences admissible by M2 are not produced by MI.

Figure 8.9. Reusability

The functional redundancy of structured systems can be formally
analyzed using two operators: the fusion which determines the father' s
functioning by the composition of the son's functioning and the emergence
which searches for the son's function used at the father's level.

• The fusion operator combines the behavior of the two son modules:
M/2e = MI C Mb the operator c being the composition operator and M12e

being the effective functioning of Mn resulting from the interactions
between MI and M z.

8. Redundancy 187

The emergence operator determines the behavioral part of MI which is
actually used in combination with M 2 to produce the behavior of Mn:
M/ = Em (MI. Mn)·

There is a functional redundancy with regard to the module MI if:
MI> Em (MI, Mn) and/or if (MI c M 2) > Mn.

8.3 STRUCTURALREDUNDANCY

8.3.1 Definition and Illustration

Independently of the functional redundancy associated with the
specification of a product, the design stages wh ich provide a structured
system can introduce another type of redundancy: the structural redundancy.

A system presents a structural redundancy if its structure possesses
certain elements which are not necessary to the obtaining of a
behavior conform to the specifications, assuming that all the structure
elements have a correct functioning.

For instance, structural redundancy of the implementation model
corresponds to an overabundance of the resources used, in terms of:

• hardware (logical gates, electronic components or integrated circuits),

• software (statements, functions, procedures, data or objects),

• time (execution time of the algorithm andJor the circuit).

Whatever the system studied is, a theoretical design exists, sometimes
inaccessible, which minimizes the resources used. Each additional element
introduces structural redundancy, whatever the reason. This can be due to a
non-optimal design, or even due to a voluntary duplication of the modules
allowing the detection of errors, etc. Of course, the hardware aspects of this
redundancy concern the physical components (for example electronic
circuits). The software aspects concern the programming primitives
(statements, variables), and the used software resources (operating system,
etc.). Finally, the temporal aspects are relative to the product's execution
time, whether hardware or software technology. We should note that these
temporal aspects could be observed externally to the product. However, we
include them in the structural redundancy when they are induced by the
implementation means (circuits, programs) and not by the functional
environment.

In the following sub-sections, we distinguish several forms of structural
redundancy:

188 Chapter8

• on the one hand, between passive redundancy and active redundancy,

• on the other hand, between separable redundancy and non-separable
redundancy.

8.3.2 Active and Passive Redundancy

8.3.2.1 Definitions

Structural redundancy is essentially studied on system model using
primitive elements: for example a set of electronic components (transistors
MOS), or logical elements (gates, Flip-Flops), or code lines. Redundancy
exists as soon as the number of these constituents is greater than the optimal
value: greater number of MOS components or gates, greater number of
statements or variables in a program. This is therefore a theoretical notion,
which, in many cases, is really very difficult to evaluate: in particular, the
optimal values are often inaccessible.

A product possesses passive redundancy if certain elements can be
removed without modifying the product' s behavior.

A product possesses active redundancy if the number of elements is
greater than the optimal value without direct possibility to removing
one ofthem.

An element is irredundant if its removal causes the system to be
functionally different

This distinction between passive and active redundancy is fundamental
regarding the consequences on the dependability in general, and on the test
in particular. The two following sub-sections iIIustrate these two notions on
systems implemented by means of logical gates or features of a
programrning language.

8.3.2.2 Redundancy at Gate Level

The following examples show that the notion of active or passive
redundancy is fairly easy to understand in the case of combinational logic
circuits. This is more difficult to present in the case of sequential logic
circuits composed cIassicaIly of a combinational part and storage elements
impiemented by Flip-Flops (noted FF in Figure 8.10). We should note that,
even if the combinational part is irredundant, the complete sequential circuit
might have redundancy because of feedback loops created by the Flip-Flops.
Irredundancy of the combinational part is a necessary but non-sufficient
condition.

8. Redundancy

I -~~ Combinational
Circuit

L..---I FF 14--....J

Figure 8.10. Sequential circuit

189

o

Concerning passive redundancy, the gates as weIl as their input/output
wires are the elements considered. Before presenting examples of passive
redundancy, the notion of prime gate is defined:

IA gate of a logical circuit is said to be prime if none of its inputs can
be removed without causing a functional change of the circuit.

Example 8.6. Passive redundancy: non-prime gate

The analysis of the function carried out by the circuit in Figure 8.11
shows that the input noted as X of the OR gate is redundant and can be
removed without changing the function f Indeed, if the X input is present,
theJfunction is:J= a'.(a + b + c) = a'.b + a'.b. (where a' is the logical
complement of a). If the X input is removed, the function is the same: J = a ' .(
b + c) = a'.b + a'.b. This OR gate is therefore not prime, but it cannot
however be totaIly removed. Thus, this example shows a redundancy of one
input wire only.

a

a
b---\

b----I

c--~ C--7

Figure 8.11. Redundant wire

Example 8.7. Passive redundancy: redundant gate

We take the simple example of a logical circuit with 3 inputs a, b, c and
an output f, carried out with elementary gates: J = a.b + a ' .c + b.c. A
classical 'SIGMA-PI' realization of this function is shown by Figure 8.12: it
has 3 AND gates and one OR gate. This circuit is redundant because the
term b,c is useless in the J expression (a 'consensus' term derived from the
first two terms). Indeed:

190

f = a.b + a'.c + b.c = a.b + a'.c + (a + a').b.c

= a.b + a'.c + a.b.c + a'.b.c = a.b + a'.c,

Chapter 8

because the two last terms (a.b.c and a'.b.c) are included in the first two
(a.b and a'.c).

Therefore, this circuit is not optimal. It presents a passive redundancy, as
the gate b.c can be removed.

a

b

a'

c f

b

c I RedundaDCY I

Figure 8.12. Passive redundant gate

Example. 8.8. Active redundancy 0/ a logical circuit

We now show an example of active redundancy obtained by adding a
second output g on the previous circuit, such as g = a.b + a.c.

The realization shown by Figure 8.13 does not have passive redundancy,
as we cannot remove one of the gates without changing function f or g.
However, the term a.b, common to the two fand g outputs, could have been
shared between these two outputs (the dark gray gates in Figure 8.13). This
therefore is a case of active redundancy: all the elements are actively
employed to produce the outputs.

Figure 8.13. Active redundancy

8. Redundancy

8.3.2.3 Redundancy in Software Systems

The structural elements considered here are the statements.

Example 8.9. Passive redundancy 0/ a program

We analyze the following extract of an Ada source program:
j : = i;
k := i;

191

We suppose that the compiler has separately translated each of these
statements into machine language by using an intermediate AX register. Thus
we obtain the following assembly program:

mov AX, @i coding , j : = i'
mov @j , AX

mov AX, @ coding 'k .- i'
mov @k, AX

The third instruction in assembly language, 'mov AX, @i', is redundant
in a passive way, because AX already contains the variable i. This instruction
can therefore be removed.

Example 8.10. Active redundancy 0/ a program

We consider a pro gram extract shown in Figure 8.14 which computes the
average value and then the sum of a set of floating numbers memorized in an
array named Table.

Total :- 0.0;

for I in Table'range loop

Total :- Total + Table(I);

end loop;

NUmber :- Table'Last - Table'First + 1;

Total :- Total I float(NUmber);

Put(" the average value iss ");

Put(Total);

Total :- 0.0;

for I in Table'range loop

Total I- Total + Table(I);

end loop;
Put«"the sum of the values iss ");

Put(Total);

Figure 8.14. Redundant program

192 Chapter8

To provide the sum, the gray part repeats the calculation carried out to
obtain the average. Thus, this program possesses a structural redundancy in
terms of its code lines. However, we cannot simply pull out the gray lines,
because the first accumulated value has been crushed by the average. This
redundancy's suppression demands the program rewriting and the
declaration of a second variable named Average in which the average value
is assigned at line 6:

Average := Total / float(Number);

In a more subtle way, active redundancy is frequent when considering
program' s variables. Two variables of the same type can be used in different
parts of a program whereas one would suffice. For example, we could find
the following variables

The_Number_of_Registered_Passengers
and The_Number_of_Boarded_Passengers

in an airport management software.
The use of two distinct identifiers instead of one (The_Number_

of_Passengers) renders the program more readable and also serves to
detect errors (when their values are different).

8.3.2.4 Redundancy and Dependability

A first consequence of the notion of passive redundancy concerns the
detection of faults. A redundant passive element may have faults which
cannot be detected from the inputs/outputs of the system: we say therefore
that this fault is undetectable or masked. Figure 8.15 provides an example
of such non-detection: the fault of the stuck-at '0' at the redundant gate's
output cannot be detected by observing fOther examples are given in the
form of exercises at the end of the chapter.

a

b

a'
f

c

b
uDdetectable

c fault

Figure 8.15. Passive redundancy: undetectable fault

Passive redundant elements (superfluous in functioning) could have been
introduced involuntarily, for example because the method used had not

8. Redundancy 193

optimized the design. On the eontrary, we will so on find other examples,
whieh make use of passive or aetive redundaney in order to improve the
dependability of produets. Henee, we will introduee automatie detection
mechanisms by duplieation, or fault-tolerant structures by triplication.

In electronics, passive redundancy creates real problems for fault
detection or diagnosis (testing) because of the 'masking' phenomena that
have just been illustrated. We will find out about this problem later on, in the
third part of this book. When dealing with 'stuck-at' faults models of gate
arrays, the presence of a passive redundant element implies the existence of
such non-detectable faults; on the contrary, in the case of active redundancy,
all stuck-at faults can be observed as eireuit failures for at least one of the
applied input vectors: in that case, the cireuit is said to be totally testable.

8.3.3 Separable Redundancy

In this sub-section we introduce another criterion to characterize
structural redundancy. A product presents a separable structural
redundancy if the redundant and non-redundant elements belong to distinct
modules in the product' s structure. Therefore, we are talking about:

• functional modules which refer to the modules containing the functional
elements,

• and redundant modules which refer to the modules containing the
redundancies.

On the contrary, this redundancy is qualified as non-separable if it is not
possible to separate functional and redundant elements into distinct modules.
The redundancy is thus integrated into the original functional modules.

Separable redundancy is typical of duplication and triplication
techniques. Each redundant module is also called version or replicate
module.

input output

Duplex

Comparison

Figure 8.16. Separable redundancy: the duplex

194 Chapter8

Figure 8.16 shows a redundant separable structure called a duplex. This
technique will be explained in the fourth part. The functional module is
duplicated and the two module's outputs are then compared. An error is
signaled as soon as the results given by the functional module and its duplex
are different.

A criterion is often used to characterize separable redundancy:

• on-line separable redundancy (or hot standby),

• and off-line separable redundancy (or cold standby).

A redundant module is said to be on-Une or hot standby if it is active at
the same time as the functional module. This is the case of the previous
example. The duplex is powered, and it receives the inputs and elaborates
the outputs in parallel with the functional module connected to the external
process. In Chapter 7, section 7.9, by using reliability block diagrams, we
studied the reliability of 'parallel' settings wh ich correspond to this type of
redundancy.

On the contrary, a redundant module is said to be off-Une or on cold
standby if it does not function at the same time as the functional module.
This module, called aspare, is only switched on when the primary module
fails . Putting this spare module into service corresponds:

• to the electric power on andlor input/output connection to the
environment for hardware implementation,

• to the execution or use of this module in the case of software
implementation.

input output

Figure 8.17. Off-line separable redundancy

Figure 8.17 represents a simple example of this redundancy: module M 1
is connected to the functional environment, whereas module M2 is switched
off, waiting to be activated. The C switch symbolizes this off-line waiting
situation; it can also represent a switch of the redundant module power
supply. It should be noted that in specialized papers the terms active for on
line redundancy and passive for off-Une redundancy are often used.

8. Redundancy 195

8.3.4 Summary of tbe Various Redundancy Forms

Figure 8.18 sums-up the three main aspects of the structural redundancy:

• hardware, software or temporal,

• passive or active,

• separable or non-separable.

These criteria are independent. Numerous combinations of their values exist.
For example, the duplex is a redundancy of active and separable type of
hardware and software modules.

Passive
non-observable

values/states

Active
observable

values/states

Hardwan
too mud) components

Figure 8.18. Structural redundancy

8.4 EXERCISES

Exercise 8.1. Functional redundancy 0/ an adder

Consider the adder of Example 8.1 in section 8.2.1.1 : C = A + B ('+' is
here the addition operator).

1. We suppose that inputs A and Bare two one-digit decimal numbers, and
that all (A, B) combinations have the same occurrence probability . We
want to analyze the probabilistic functional redundancy of this circuit.
Draw the probabilistic output functional domain and deduce the existing
functional redundancy. How can this information be used to detect
calculation errors?

2. The two numbers A and B are now in Natural Binary Coded Decimal
(with 4 bits) : 0 = (0000), 1 = (0001), .. . , 9 = (1001). Knowing that the
inputs have the same probability, determine the input and the output

196 Chapter 8

functional redundancy rates of this system.

3. We suppose now that the two input numbers are binary with two bits, and
that an extern al constraint exists between these numbers: A $; B.
Determine the input functional redundancy of this product.

Exercise 8.2. Functional redundancy of astate graph

The state graph of Example 8.5 is modified as shown in Figure 8.19. We
assume the same hypotheses as in Example 8.5:

• the initial state is state 1,

• the inputs are constrained by the property 'the input c is never applied
after the input b'.

Analyze this graph and determine its functional redundancies.

Figure 8.19. Redundant FSM

Exercise 8.3. Structural redundancy and faults

Consider the circuit of Figure 8.20 wh ich has two inputs and two outputs.
Let us suppose that this circuit can be affected by stuck-at '0' or '1' of the
wires noted a and ß.
1. Study the failures induced by each of these faults.

2. From this study, deduce structural redundancies.

3. Does this circuit present functional redundancy?

b--,--..,..--"y f

g

Figure 8.20. Redundancy of a circuit

8. Redundancy 197

Exercise 8.4. Structural redundancy of several circuits

1. Determine if each of the circuits in Figure 8.21, has passive and/or active
structural redundancies.

2. W ork out the logical structures of the cOITesponding non-redundant
circuits.

I---f

b--r--t f

1 --r-----~,

f

ac be

Figure 8.21. Structural redundancy of several circuits

Exercise 8.5. Software redundancy and constraint types

We consider the following statements:

Circuit 2

Circuit 4

subtype Size_of_Shoe is new integer range 28 .. 45;
P: Shoe_Size;

f

1. Does the declaration of a new type (new) instead of using the type integer
(P: integer) introduce a redundancy? If yes, is it functional or
structural? Is it active or passive?

2. Refer to the previous questions for the statement of the constraint:
'range 28 . . 45'.

Exercise 8.6. Exception mechanisms of languages: termination model

Programming languages such as Ada offer mechanisms wh ich permit the
detection of eITor occurrence and provoke the call to an exception handler
which terminates the interrupted execution.

Example:
procedure XYZ(...) is

-- declarative part
begin

-- current body
exception

198 Chapter8

when others => exception handling

end XYZ;

Analyze the redundancy characteristics due to the exception mechanism.
Is this redundancy: active or passive, separable or non-separable, on-line
or off-line?

Chapter 9

A voidance of Functional Faults During Specification

9.1 INTRODUCTION

9.1.1 Specification Phase

The use of a product is fundamentally justified by the user' s needs. The
user possesses the initial motivation to buy or develop a product. In certain
cases, this motivation corresponds to a necessity. For example, the fact that
society does not accept accidents caused by the simultaneous presence of a
train and a vehic1e on a railroad crossing, justifies the creation of a system
that avoids such accidents. Therefore, a product' s life has to naturally start
with the client's or future user's requirements (also called needs).

Then, this life cyc1e carries on with the product' s specijication stage in
response to the previous needs. The previous example shows that one need
could involve radically different specifications: a level crossing, or a bridge
or a tunnel. The result of this stage is called specijications.

From the product' s specifications, we obtain the system by a descending
process known as design. This concems a succession of stages, which are
going to structure a system using the specifications expressed at an abstract
level, to result in a system which is finally materialized as a physical
(electronic) product or a software implemented on a physical support.

This chapter focuses on the requirement and specification stages which
are at the origin of numerous faults. Their avoidance is fundamental, as their
detection during the design or production stages is generally very costly.

In Chapter 6, we introduced two approaches which permit fault
avoidance, that is to say fault prevention and fault removal. The objectives
of such means have been presented conceming faults which can happen

201

J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

202 Chapter 9

during the ereation stages. In this ehapter, we present the praetieal
teehniques to reaeh the objeetives assigned to these means during the
requirement and speeifieation stages. The integration of fault prevention and
fault removal teehniques in the same ehapter is justified by their
simultaneous use during the studied stages and their close eorrelations.
Figure 9.1 shows the loeation of these teehniques in the life eycle.

Fault avoidanee teehniques used during design are eonsidered in Chapter
10. The mastering of faults associated with the teehnology used (eleetronie
or software) to implement the produet is diseussed in Chapter 11 (fault
prevention) and Chapter 12 (fault removal).

9.1.2

Problems

[~l
Solutions

Avoidance:
• Prevention
. Removal

(Chap.9)

Avoidance:
. Prevention
• Removal
(Chap.i0)

PreveDtioD
.U •• U •• N •••• ' • • • m •••• u .. NU •••••• ••••••• U __ •

RemovaJ
Prodllction testing

Toleraoee

Removal

Figure 9.1. Fault avoidance during the specification and the design

Validation and Verification

The primary voeation of fault avoidance means is to prevent fault
introduetion during the eonsidered stages of a system' s ereation proeess
(here the expression of the requirements and of the speeifieations). During
ereation stages, we have seen that the faults introdueed were due to the

9. Avoidance of Functional Faults During Specification 203

method used to create the system (bad method andJor bad use of this
method). Therefore, we seek first of all to master this method. Secondly,
fault avoidance sets out to remove the faults introduced despite the
precautions implied by fault prevention. We then need to identify the
existing faults at each stage, in order to correct them. To do this, the result
(what has been produced) of the considered stage is analyzed.

Fault prevention techniques can be divided into two c1asses:

• techniques acting on the method used during the considered stage,

• techniques acting on the result or solution of the considered stage.

The techniques of the first c1ass allow a product to be developed in a
correct way and to detect the erroneous aspects of the process used. Hence,
we will speak of validation of the method. For example, these means seek i)
to limit the incertitude of the method, in order to eliminate potential
interpretation faults, ii) to limit the bad use of the method, in order to avoid
the faults associated with its use. The techniques of the second c1ass help the
engineer to evaluate if the actual state of the developed product is correct.
These techniques involve what we call verification of the solution.

I Problem statement I Model #1

~don 1 Design ..t~

(method)
Verijication

"
I Solution I Model #2

Figure 9.2. Design-Validation-Verification

Figure 9.2 synthesizes these two aspects. The statement of the problem
as weIl as the formulated solution depends on the stage in consideration. For
example, in the case of the specification phase, the statement is the
requirements whilst the solution is a specification model.

We have to say that the two terms 'validation' and 'verification' often
have a very similar meaning in current language. Opposed meanings to those
proposed could even be envisaged. However, in this book, we will consider
the meaning that has just been provided.

In the next part of this chapter, we present validation and verification
techniques associated with the stages of requirement expression (section 9.2)
and specification (section 9.3). The most popular verification technique, the
review, is explained in section 9.4.

204

9.2

9.2.1

FAULT PREVENTION DU RING THE
REQUIREMENT EXPRESSION

Introduction

Chapter 9

The system's specifications, that is to say the definition of a product to be
developed, are derived from the dient' s or future user' s requirements.
Determination and expression of needs is difficult. This is probably one of
the reasons for which we talk of 'need capture' techniques. The faults
introduced in the expression of needs have two principal causes:

• a bad interpretation of real needs,

• a bad expression of needs which have been correctly understood.

In sub-section 9.2.2 we introduce a method which should reduce the
presence of the first type of faults. In sub-section 9.2.3, we then propose a
method in order to limit the occurrence of the second type of faults.

We present a simple and specific method for each of these two cases.
Numerous other methods exist. Unfortunately, we cannot go into greater
detail, as this would mean a book of an unacceptable length and a lack of
generality. Moreover, our goal is to focus on dependability issues. So, in
sub-section 9.2.4 we provide a way to evaluate the capability of methods to
produce correct expression of needs. The reader can use this to judge the
numerous other need expression's methods available, so that hislher choice
is guided by the required dependability of the product to be developed.

9.2.2 Help in the Capturing of Needs

The needs are generally obtained by interviewing the dient. To be
efficient, that is to say to produce non-erroneous needs, these interviews
have to be carried out with a certain method. One possible method consists
in leading the interviews by seeking the responses to five questions: What?
Where? When? Who? Why? The responses to each of these questions
permits dasses of generic faults to be avoided, that is to say those which are
non-specific in the development of a certain product.

1. What?
We seek to define the entities upon which the future product has to act, as

the needs concern the user environment. This allows the detection and
exdusion of the elements wh ich do not have relationships with the future
product. In effect, the dient often has worries or other needs in mind which
he/she exposes but wh ich should not interfere with the project; if not, they
lead to the analysis of erroneous needs.

9. Avoidance of Functional Faults During Specification 205

2. Where?
The objective of this question is to determine the localization of the

elements brought out by the previous question. The answers split the entities
into external entities (for example an electric signal which the product
should take into account), and internal entities (for example memorized data
which qualifies the product's state). This question is fundamental as it
perrnits the separation of what should be inside the system and what should
already belong to its external environment. This issue becomes increasingly
critical in electronic systems due to their interaction with other systems
(electronic, mechanical, human, etc.). Therefore, it is essential to define the
location of enumerated entities in order to avoid starting a development
assuming, for example, that a piece of information is delivered to the system
by its environment whereas it should be computed by the system.

3. When?
This question aims at taking the temporal aspects into account. Where the

product' s internal entities are concerned, the response perrnits the expression
of the state's sequencing. For the external entities, it defines, for example,
the sequencing of events which could arise and the actions which need to be
performed. For example, if a c1ient desires a system which controls the
access to a protected room, the sequence 'card entered - code captured - code
correct -lock open' describes such a relationship between the entities.

4. Who?
The response to this question defines the actors which act on the entities

and the actors influenced by them. This could involve the external actors (for
example, the code is typed by the user) or the internal actors (for example,
the code's validity is evaluated by the system). It perrnits the description of
the agents who influence or who are influenced by the entities treated.

5. Why?
The c1ient has to justify the necessity of the elements expressed. The

response to this question allows, in particular, information to be perceived
which is relative to the c1ient's current preoccupations but which are not
related to the project. This question is therefore redundant with the others.
However, it perrnits each requirement to be analyzed again and verified.

9.2.3 Expression Aid

After having examined the first part of the method which concerns the
capture of needs, we should consider the second part which helps the

206 Chapter 9

expression of these needs. The availability of guides for such an expression
is in effect indispensable, as many faults arise during the expression process.
They are principally due to the high volume of information provided by the
client. The mastering of this great amount of information is carried out
according to two complementary approaches:

• the definition of entity farnilies,

• the definition of abstraction levels.

The aim of the definition of the families of entities is to group the
elements of information into classes of the same nature. For example, if an
aspect of a problem concerns the scheduling of manufacturing activities, all
the information relative to this subject have to be regrouped. Indeed, the
client generally provides information in a disorderly way, that is to say
without structure. He or she passes from one aspect to another of the needs
as soon as an idea comes to mind, or when he/she remembers that a certain
aspect has been ornitted. This phase provides a horizontal structuration of
the information, as represented by Figure 9.3 a).

x

x
x
x

families

x

a) Horizontal structuration

I
I'
x'x E ' --+ ntity

hierarchy
b) Vertical Strucluration

Figure 9.3. Information structuration

The aim of the second approach is to organize the elements of a class by
detecting the hierarchical relationships linking them. For example, the
development of a bank management system requires the following pieces of
information belonging to a same class: bank account, client' s name, bank
balance, account holder' s address. They can, however, be organized in the
following hierarchical way. The bank account notion is more abstract: it
provides a reference to a client and his/her account: the client himself/herself
is defined by his/her name, his/her address, etc. The detection of the levels of
abstraction perrnits a vertical structuration of the information in each of the
classes obtained by the previous horizontal structuration into families.
Figure 9.3 b) represents such a vertical structuration.

These two methods of information organization prevent faults such as the
use of two different terms for the same notion. Indeed, these two terms can
be found in the same farnily where their equivalent meaning will be easier to

9. Avoidance of Functional Faults During Specijication 207

perceive. In the same way, the natural language's semantics being
ambiguous, the hierarchy permits the darification of the belonging links and
therefore the fault detection through a comprehension of these links. For
example, is a dient' s address an element of a bank account or does this
information belong to two families if a dient has several accounts?

9.2.4 Evaluation of a Method

We have just described a simple method for capturing and expressing
needs. Many other methods exist, and to present them all would require
another complete book. Whatever the choice, the chosen method has itself to
be judged. This involves, therefore, a validation process which aims at
responding to this question: am I developing a product in the correct way?
The incorrect way could result from a bad usage of a good method (this will
be detected in the resulting product), or a correct usage of a bad method. We
are going to study the last point. It should not be forgotten that the
underlying idea of this analysis is that a bad method will undoubtedly cause
an erroneous model of the product. This method evaluation has to be done
using criteria. Where the expression of needs is concemed, we use the 8
criteria described below.

1. Facilitate the comprehension of the method
It is dear that a method can be effective in theory, but that in practice it

can be applied in an erroneous way (and therefore produce a faulty result)
due to the fact that it was badly understood by its user. Therefore, the
relative simplicity of the method of need expression and capture is a first
criterion of its efficiency for dependability purpose. This is the case of the
method presented in the previous section.

2. Systematize its application
The method has to dearly guide its user in order that he or she cannot

badly use it, but also so that he or she concentrates on the dient' s needs and
not on the method itself (if it necessitates further analyses for its use). In
particular, it has to dearly separate the explicit different stages and define, if
necessary, their sequencing. The five questions regarding the capture method
and the two dassifications of information received by the expression
method, which have been previously presented, have this goal.

3. Facilitate clarification of the problem
The aim here is to evaluate if the chosen method permits, or not, its user

to separate the problem posed by other parasitic information. We seek to
deterrnine if the information retained is pertinent or not. In the previous

208 Chapter9

method, the majority of the questions and the need to dass the obtained
information concem, among others, this objective.

4. Facilitate clarification of the incoherence in the information
provided by the client

The method could be redundant, that is led to ask the same information
in several ways or possess the means to find relationships between pieces of
information. This is typicaHy an objective of the fifth question of the capture
method proposed. The fact of asking why the dient has a need does not
provide additional information necessary for the establishing of the future
specifications. The demand for a justification, however, aHows detecting
useless pieces of information, or consistency problems.

5. Facilitate the communication with the client
The analysis of the needs, and then the definition of the system' s

specifications, are the only stages in the development process which permit a
dialogue with the dient as weH as the expression of an acceptance or
disagreement by the dient. Only the system' s delivery will then be the object
of such an exchange. However, this last stage is too late to state a
dis agreement. The method used to understand the dient' s needs therefore
has to privilege the dialogue with the dient.

6. Encourage the creation of documents
Documentation is an essential means of communication with the dient.

Writing documents also provides a way for the designer to avoid faults by
obliging himlshe to materialize (by a text) and thus analyze his/her
understanding of the needs.

7. Take the changes into account with ease
Whilst a method has to be rigorous and systematic, it also has to be able

to take modifications of the dient' s information into account. Indeed, the
c1ient can take advantage of successive interviews to define (and therefore
modify or precise) hislher own needs.

8. Provide means favoring the partitioning, abstraction and
projection of information

The five questions of the proposed method provide up to 5 projections of
information. The c1assifications permit the partitioning (by horizontal
structuring) and the abstraction (by vertical structuring).

Note. The information redundancy, which appeared in the previous
elements, can be perceived as harmful as they increase the work of the need

9. Avoidance of Functional Faults During Specijication 209

expression and could lead to the creation of more faults. In reality, it aims at
mastering need expression and fault detection by stating inconsistencies. A
compromise between 'not enough' and 'too much' information is however
difficult to find.

Being always expressed by informal languages (for instance, English),
the requirements cannot be checked by automatic tools. Fault detection is led
by human appraisals. The most important approach is the review technique
which is useful to analyze the requirements as well as the specifications; this
approach is introduced in the next section, and developed in section 9.4.

9.3 FAULT A VOIDANCE DURING THE
SPECIFICATION PHASE

Once the dient' s needs have been obtained, the engineer has to define the
system which he/she wants to propose to answer these needs. This work
leads to the expression of specijications. Here also, the faults relative to the
specification stage are due to three causes: a bad understanding of the
dient' s or future user' s needs, the proposal of a system which does not
respond to the needs which have however been dearly understood, and a bad
expression of a specification which has been well thought out.

In order to avoid these faults, the engineers need adequate methods to
help them in their work. This work is approached in sub-section 9.3.1 for the
fault avoidance during the specification expression phase. Then, means
permitting the product' s specifications to be evaluated in order to remove the
faults are required. This is the object of sub-section 9.3.2.

9.3.1 Fault Prevention: Valid Method

9.3.1.1 Choice of the Modeling Tool

The work carried out during the specification phase consists in producing
a model which defines the product to be developed. This model is expressed
using a language (or modeling tool or even model by language abuse). This
work will be facilitated, and therefore the number of faults will be reduced,
if the chosen modeling tool offers features dose to the concepts of the
system' s domain. For example, if a system' s behavior to be specified is
purely sequential, the use of a 'finite state machine' model is weIl adapted.
On the contrary, if it is necessary to represent parallel activities, the use of a
model such as Petri nets is preferable. The objective of the dependability
implies thus firstly an explicit and justijied choice of a modeling tool.

It is here difficult to provide an exhaustive enumeration of such means of
modeling and criteria which define their suitability to application domains.

210 Chapter9

Indeed, for each specific problem, it is necessary to determine its domain
and then choose the means of modeling. We should also note that this choice
problem is not particular to the specification model but will also be
necessary for the design models and the implementation models. For this
reason, we will tackle the selection technique for treating design in Chapter
10. We should only insist here on the importance of this choice on the
dependability of the systems produced. A non-adapted modeling tool will
without doubt lead to a complex modeling wh ich renders the understanding
difficult and thus will create faults during the following phases.

Even if the modeling means is specific to each application domain, it has
to possess intrinsic qualities. For instance, it has to compensate for the
intellectual limits of all human beings, including the specification team
members. In particular, it has to allow abstraction expression in order to
obtain more or less detailed views to facilitate expression and understanding.
These permit the use of a limited number of abstract objects whose reality
will be defined in the ultimate stages. On the other hand, it has to have a
precise semantic so that a feature cannot be interpreted in different ways by
the system designers. The question therefore concerns the use of a formal
model. We make two remarks regarding this point:

• it is important that the models described from such a modeling means are
understandable by the client so that he/she can give his/her approval to
the definition of the specified product,

• it is essential that the modeling means used permit the expression of
different views (or abstractions) of the defined system, such as the
inputs/outputs, the behavior, etc., whose redundancies allow checking to
be done.

9.3.1.2 Mastering of Modeling Process

The knowledge about a modeling tool is not sufficient. Still with the
objective to develop a dependable system, the designer has to dispose of
guides helping hirn/her to transform the client' s needs into the system' s
specifications. He/she should use these guides and demonstrate their real
use. Here again, the guides which can be proposed depend on the modeling
tool used. For example, the reasons for using a given synchronization when
using Petri nets as specification tool are relative to this model feature and to
the classes of systems specified. In order to remain coherent ab out this
book's objectives, we cannot provide a complete guide for a given model.
However, examples of information that should be contained in this guide
will be studied in Chapter 10 dealing with the design process, as an identical
problem exists. Indeed, such guides have one general aim: to help the
deriving of a new modeling from an existing modeling.

9. Avoidance of Functional Faults During Specijication 211

9.3.2 Fault Removal: Verification of the Specifications

The aspects described in the previous seetion are associated with the
validation (how can a specification be produced in a correct way?). Onee
produced, the specification has to be verified in a way which brings out
possible faults. This is the theme of this seetion.

9.3.2.1 Verification Parameters

Specification verification seeks to detect the presenee of faults. To do
this, there are two approaehes:

• the first one studies the system' s role by looking to confront with the
user' s needs,

• the second one carries an intrinsie judgment on the quality of the
specifications expressed, without being preoeeupied with what they
express; the underlying idea is to think thai: an expression of bad quality
has a high risk of containing faults.

1. Specific fault detection (or conformity)
Speeification verification can seek to detect two types of faults:

• faults which provoke characteristic errors of the modeling tool used,

• faults specific to the modeled system.

For example, the Petri net model allows the deteetion of a deadlock
between parallel cooperative activities. In the case of the use of a formal
modeling means, an automatie tool ean perform the detection of these errors
which are characteristic of this modeling means. These eharacteristie errors
are qualified as generic. Following this, a human expert has to diagnose the
faults which are at the origin of these errors.

In the second case of faults specific to the modeled system, we will seek,
for example, to show if the modeled system can reach non-desired states
whose definition depends on the particular system considered. Thus, if a
system controls the barrier of a level crossing, the state 'the train passes on
the crossing and the barrier is open' is unaeeeptabie. The client pays for the
development of a system wh ich guarantees that trains and cars cannot pass
simultaneously (this is a need). Here also, the use of a formal model favors
the use of tools and thus reinforces the guarantee that such undesired states
will not occur, and therefore the faults whieh lead to it.

2. Qualitative verification
Specifications can be analyzed using eertain qualitative criteria which are

detailed afterwards. These eriteria are generic faced with the specified

212 Chapter 9

system and also with the modeling tool used. Here we judge the intrinsic
qualities of the information contained in the specification document. These
criteria therefore induce a third type of judgment on the modeling proposed.

The non-conformity to these criteria increases the risk offaults.

Consequently, contrary to the two previous evaluation types, this does
not make obvious precise errors but only signals the potentiality of faults.

In order to illustrate this, we will give some criteria and sometimes
advice in order to obtain the conformity to these criteria. Therefore, the fault
risk will be reduced and thus many faults avoided. These criteria concern the
semantic or the syntax of the proposed modeling.

Four criteria are generally associated with the semantics: non-ambiguity,
completeness, consistency and traceability.

• Non-ambiguity. Each element of the specifications should only have one
interpretation. One simple means to satisfy this criterion is the definition
of a glossary, and the verification that all its words are used in the whole
specification document according to the meaning given in the glossary.

• Completeness. We want to check that the specification predicts all
possible cases. Any missing information can indeed lead the designer to
substitute another information which is not desired.

• Consistency. We seek to establish that there are no conflicts between
several specification elements. The glossary is again useful.

• Traceability. The engineer has to express the link between the client' s
needs and the system's specifications. A method which permits the
introduction of justification of the model' s constructs (here regarding
specification) will be presented in Chapter 10, but the exposed method is
applicable at every stage, inc1uding the specification.

Four criteria are associated with the syntactic aspects:

• concision: the specification statement should not contain useless
verbiage,

• clarity: the statement has to be easy to read (it does not mean that its
comprehension is easy),

• simplicity: the concepts manipulated have to be simple, in particular, the
number of these concepts has to be limited and they should be loosely
coupled,

• comprehension: the reading has to facilitate the understanding of the
semantics.

Note. The previous criteria apply also to design models. Neglecting some
specific features which will be signaled, we will find similar problems and

9. Avoidance of Functional Faults During Specijication 213

thus similar solutions.

9.3.2.2 Verification Methods

In sub-section 9.3.2.1, we pointed out that the use of formal models
permits an automated analysis in order to detect the errors created by faults
associated with the modeling tool and the faults specific to the modeled
system (specific detection methods). When the model is 'executable' (e.g. a
program or a model that can be simulated), this model can be considered as a
product on which we can apply dynamic verijication techniques which will
be discussed in the following chapters (the test techniques principally). An
analysis, generally performed by a human, has to then establish a diagnosis,
that is to say find the faults at the origin of the error.

Where non-executable models are concemed, the analysis is human.
Different methods exist: 1) review, 2) use of scenarios, 3) prototyping. We
mention below the principles of these three methods.

1. Review
The review consists in a human analysis of the contents of the

specifications. The reviewer may search for specific faults in the
specification model. If we look for faults in a qualitative manner, that is
searching for risks of faults, this review can only be carried out on a sampie
of these contents. In this case, we reckon that the violation of the criteria, if
it happens on this sampie, is without doubt repeated on the whole
specification, as it is due to a bad work method. A team independent from
the specification creation team can carry out this analysis, by studying the
associated documents. Notes raising real or potential problems are
transmitted to the specification creators so that they can provide
justifications or act to take these remarks into account. The specification
creators can also carry out the analysis during a presentation. The potential
problems are therefore directly raised. The two approaches can be combined:
an initial presentation reduces the study that is then refined in an isolated
manner by the people leading the review. As the review techniques are very
popular, they are presented in seetion 9.4.

2. Use of scenarios
Prom the specifications we derive input/output sequences which simulate

the possible interactions between the environment and the specified system.
These scenarios are then exposed to the dient (or to the specification
designer) who either approves or disapproves them. On the contrary, if the
expression of need has already led to the expression of scenarios, they can be
applied to the specified system. We find ourselves therefore in the test
situation which will be discussed afterwards.

214 Chapter9

3. Prototyping

Prototyping consists in deriving a tool from the specification document.
This tool simulates the system's interactions, but it does not correspond to a
realization of the system. For example, the technological aspects of the
future system (execution hardware, input/output devices, etc.) can be
simulated in the prototype by software (data file, processing, etc) or by the
operator (whose reactions substitute the absent elements). The tool's use by
the c1ient allows the detection of understanding and expression errors of
hislher needs.

9.4 REVIEW TECHNIQUES

9.4.1 Principles

The review is a technique used to detect faults by analyzing the
documents produced at the end of one or several phases. This technique is
often used to exarnine the expressions of the requirements or of the
specifications. Indeed, reviews do not need executable models. Hence, this
allows partial andlor informal documents to be assessed. As a consequence,
this technique can be used early in the development process, in order to
detect faults as soon as possible.

The reviewer realizes four activities described hereafter.

1. He/she analyzes the current state of the system, but also of the process
followed to obtain it. In particular, methods, techniques, and tools
involved during the development stages can be judged, if the engineer
produces documents specifying his/her way of working.

2. He/she expresses hislher conc1usion conceming, sometimes existing
faults, and often potential presence of faults. For instance, if global
variables are used in a multitask application, a great risk of bad accesses
to these shared resources exists. The reviewer has not to be sure of the
occurrence of these problems: he/she has just to notice their potentiality

3. He/she communicates hislher conc1usions to the authors of the analyzed
documents, justifying hislher opinion.

4. He/she analyzes the reply and provides a final conc1usion, as a set of
actions to be done. Frequently, many elements expressed in the first
opinion do not belong to the final proposed actions, as the authors have
explained why the suspected problems cannot occur. For instance, if
variables are shared by several tasks, the use of mechanisms guaranteeing
their mutual exc1usion for access, and the use of techniques proving the

9. Avoidance 0/ Functional Faults During Specification 215

absence of deadlock caused by these accesses, may not require additional
action.

Sometimes, the reviewer also checks that the specified actions were
actually applied.

In the following sub-sections, two techniques implementing the four
previous activities are presented: walkthrough and inspection.

9.4.2 Walkthrough

Walkthrough consists in a presentation by the engineer (the author, also
called the speaker) of his/her results (a system) and the process he/she used.
During this talk, the reviewer asks for questions to improve his/her
understanding and to express his/her opinion. The engineer answers and the
actions to be done are defined immediately. Hence, the four previously
mentioned activities are mixed together.

This technique has the advantage of training the reviewer. Thanks to the
questions that are imrnediately answered, the reviewer obtains a good
understanding of the system produced or the process. In particular, he/she
must not read numerous documents. So, this review does not spend a lot of
time, and therefore its cost is not prohibitive. For these reasons, this
technique is often used as a first step of a fault removal process.

However, several drawbacks exist. Based on a discussion, this review
process is not formal. The condusi()ns provided by the reviewer may greatly
depend on his/her personality and the personal influence of the speaker. The
review process may look like a bargaining whose results are hazardous.
Finally, the speaker often masks pieces of information, intentionally or not.
For instance, certain aspects are passed over in silen ce, as the speaker who
has not spend enough time on some aspects of its work knows that problems
mayexist.

9.4.3 Inspection

Inspection is a review technique whose process is formalized by 9 steps.

1. Request for inspection by the developer, the dient or an external
authority. During this first step, aleader is chosen.

2. Entry. The leader establishes the review feasibility. In particular, he/she
checks that all the useful documents are available.

3. Planning. The leader defines the inspection strategy (for instance, what
are the critical aspects), the tasks to be done and their scheduling, and the
persons who will carry out these tasks.

216 Chapter 9

4. Kick-off meeting. The leader presents the objectives and ascertains that
the selected experts understood their tasks.

5. Individual analysis. The experts search for actual faults or issues, which
are expressed on special sheets described hereafter.

6. Logging meeting. The experts are grouped:

~ to enumerate the faults or issues noticed during their analysis,

~ to bring out other problems or to cancel certain issues, thanks to the
knowledge of other experts,

~ to define additional studies to be made.

7. Author answer. The author of the part of the system for which an issue
was signaled, answers. He/she may agree (if the fault actually exists) or
disagree, justifying his/her reply.

8. Actions to be done. The group of experts analyzes the answers and
decides if actions must be done.

9. Checking. The leader accepts or refuses the recommended actions, and
then he/she checks their realization. An action advised by the experts can
be rejected, due to the time of the money it requires. Therefore, the leader
and his/her firm take the decision after he/she has considered that other
actions have been applied to reduce the assumed risk, or that the potential
failure is not dangerous.

The pieces of information relative to each issue are put together on a
sheet which contains: a reference number, the expert name, the task
identifier (for example, the part of the analyzed document), the description
of the issue, the ans wer provided by the author, the conclusions of the group
of experts, and the final decision of the leader conceming the realization of a
recommended action.

Numerous criteria are used to analyze the documents during step 5
(individual analysis). They may be generic, by checking for instance if the
process standards or the document writing standards specified by the project
requirements were respected. For example, the capability of the requirement
capture or specification method to help the engineer is assessed by these
criteria. In this case, only sampies of the documents are analyzed, as these
criteria detect a bad method which was certainly used during all author' s
activity. Specific criteria are associated with a particular handled problem.
For instance, if a specification document is reviewed, the reviewer checks
that expected requirements are taken into account by the specifications.

The review is a non-automated process, as humans lead it. However, this
approach is very efficient, as it highlight numerous erroneous situations due

9. Avoidance of Functional Faults During Specijication 217

to actual faults. Moreover, it does not require the execution of a formal
model, so it can be applied on various documents and particularly during the
first stages of the development process of a product.

9.5 EXERCISE

Exercise 9.1. Requirement analysis

The following text was recorded during an interview: "The
communication means must be mobile. It must be transported in cars, ... It
must have a maximized power autonomy, ... It must fit into one hand".

Analyze this text to define the families of entities and their hierarchy.

Chapter 10

A voidance of Functional Faults During Design

10.1 PRINCIPLES

Design is a complex stage of the creation of a product. It is potentially at
the origin of numerous functional faults whose prevention and removal are
quite difficult. The company IBM was the first industrial to public1y
recognize the difficult nature of design faults. A fault analysis carried out on
large operating systems of the 1970's revealed that not only did a small
number of non-eliminated design faults exist, but also that the efforts made
to totally eliminate them did not necessarily converge: eliminating a fault
meant the appearance of other faults. This knowledge encouraged people to
study and to use new methods and techniques, providing an important
improvement of the product's dependability. As an example of the result of
these efforts, the company Fujitsu announced in the 1990's that their
software did not possess more than 10 faults on average per million program
lines at the end of the first design. Even if these figures do not come from an
independent organism, they are significant and should encourage the
leaming and use of the techniques introduced here.

The design stage is a top-down process transforming the specifications
into a system. For example, the design of an integrated circuit successively
produces the behavioral, functional, logical, electronic and technological
models. Each model reveals new elements in relation to the previous level:

• from the behavioral to the functionallevel, we make appear the functions
to perform and their relationships (functional modules are introduced),

• by passing to the logical structurallevel, we reveal the block primitives
(gates, flip-flops, registers, arithmetic and logic units, memory, etc.),

219

J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

220 Chapter 10

• by passing to the electronic level, we use the cornmutation entities
(transistors) and the electric power lines (which do not have any meaning
in the previous levels),

• by passing to the technologicallevel, the circuit becomes a topology with
several technological layers: we encounter specific problems such as
geometric dimensions and routing between elementary components
(notably the power lines which have to be led to the processing places).

The same phenomena exist in the software domain where the behavioral
level specifies the expected behavior of the future product (according to the
HOOD and UML notations). This behavior is then expressed in the form of a
structure of objects (using other features of the same notations), which are
then transformed to the software level as a program written in a program
ming language. The technological level is often transparent, as the designer
does not directly act either on the code generation or on the execution
environment (use of compilers, input/output libraries, real-time kernei, etc.).

The development process of industrial projects is often more complex, as
supplementary product integration stages exist at different levels . Let us give
as examples, the integration of a software into a given hardware and
software computing context, or even the integration of a module into an
already developed product. Moreover, the sequencing of the step is not
always linear (from behavioral level to technologicallevel) . Iterative design
methods exist which progressively take the specification elements into
account (incremental approaches). So, our splitting up of the design process
into four phases offers a simplified view. However, in all cases, the
transformations, wh ich pass from one level to another, imply methods and
their associated models at each level.

valida .. n! Verijication

Figure 10.1. Design - validation - verification process

The means used to prevent or detect faults have the same objectives as
those presented in the previous chapter for the expression of requirements or
specification. Hence, the general scheme is identical (cf. Figure 10.1):

10. Avoidance of Functional Faults During Design 221

• use of an adequate method which permits a design model to be produced
in a correct way (validation),

• use of means which allow the correction of the model produced to be
ensured (verification).

The cyc1e 'validation and verification' is relevant for each phase of the
design process. We obtain therefore the structure drawn in Figure 10.2: the
design appears as a top-down chain of links, which, at each level, shows a
model transformation which has to be validated, and the model produced
which has to be verified. Thus, prevention and removal are c10sely coupled
since the detected and corrected faults on one level are then prevented for the
following levels. For example, the four levels represented in Figure 10.2 can
correspond to the four design levels of an integrated circuit previously
mentioned. This chain translates the development process by successive
structuration and refinement operations, from an abstract model until the
final structure of primitive components. The model of the obtained system at
a given stage makes the components appear whose specifications must be
analyzed at the following level. Very often, due to reuse of already designed
resources, this process is made more complex by adding a bottom-up process
which assembles the available components to produce the complete system.

VI level 1

V2 level 1

V3 level 3

V4 level 4

Figure 10.2. Multi-level design chain

Fault prevention is the first approach to consider. To put a validated
design method into practice, three aspects must be considered:

• choice of a good method,

• correct application of this method,

• and checking that this application was correct.

The term method encompasses the expression means (also called
expression tool, or modeling tool) of a design model, as well as the
development process which allows a particular modeling to be obtained. The
choice and the correct use of the modeling tool are studied in section 10.2,

222 Chapter 10

and the design process is tackled in section 10.3. The use of a validated
design method aims at preventing faults.

The second approach, fault removal, aims at verifying the model
correction. It is discussed in section 10.4. Section 10.5 details one of the
most important fault removal techniques: functional testing. Finally, section
10.6 proposes the study of someformal prooftechniques.

10.2 PREVENTION BY DESIGN MODEL CHOICE

The general ideas introduced for the specification model remain pertinent
for the design model. Here also, the choice of the expression means has to be
carried out according to the characteristics of the system to be designed.
Indeed, the more the model features are elose to the concepts to be modeled,
the more the design stage will be facilitated, and thus smaller the probability
of introducing faults will be, as the solution will be less complex. It is
difficult to develop this aspect without considering a particular application
domain. We provide two examples to illustrate this idea.

• In order to express that a system is reacting to the occurrence of events, it
is desirable to use a model integrating the notion of task. The
asynchronous reaction (meaning here 'in parallel with the current
processing') to the occurrence of an event could easily be done by
specifying the reaction as a task and by associating this event with the
task. On the contrary, the use of a sequential model necessitates studying
when this event appears and inserting occurrence observation actions in
the sequential activity, which makes the proposed solution more complex.

• If the problem is expressed using constraints which link pieces of data,
then the use of the features offered by the CLP (Constraints Logical
Program) is weH adapted.

The choice of the design model can be carried out by showing the
characteristics of the specified system to design, and by comparing them to
the characteristics taken into account by the considered design approaches.
This aim is discussed in the next section which tackles the design process.

The model has also to be capable of taking into account needs which are
not associated with the designed system, but with the design process itself.
We pointed out that this process is done by successive stages. The model
used must allow abstract notions to be expressed whose realization
(eventually partial) will be proposed at the foHowing stage of design. If the
model aHows the expression of 'abstract data types by identifying only their
name and associated operations, it is possible for example to write at one
design stage 'the abstract type Stack offers the operations Push (in X) and

10. Avoidance of Functional Faults During Design 223

Pop (out Y)', and to manipulate objects of this type in the designed model.
Then, in the following design stage, it is convenient to propose a realization
of this Stack

The means proposed to answer to the needs relative to the nature of the
system to be designed, and to those associated with the design process are
sometimes coupled. It is the case with the notion of Object which is
frequently used in software design. This facilitates first the expression of the
application's entities (dass notion), and then it permits, them to be
specialized (heritage notion). This answers the needs relative to the system's
nature. For example, an 'acknowledge' window asking for a confirmation of
arequest by dicking on the buttons 'Yes' and 'No', inherits the properties of
the generic dass Window. This object notion is also a means associated with
the design process. Indeed, it permits the manipulation of abstract entities by
masking the means used during their implementation.

10.3 PREVENTION BY DESIGN PROCESS CHOICE

10.3.1 General Considerations

The choice of an adequate design modeling tool is necessary, but not
sufficient for the design of a faultless system. Indeed, faults can also be due
to the designer' s difficulty in deducing a correct modeling thanks to this
expression means. To do this, he/she disposes of a model at level 1 and a
modeling means associated with level 1+1 (cf. Figure 10.1 and Figure 10.2).
Certain elements of the level 1+1 model can be automatically generated from
the level 1 model. For example, if a level 1 model uses an abstract data type
expressed by its specification, this can then be reproduced at level 1+ 1 where
its implementation is defined. Thus, the specification becomes the interface
of the designed component. Another example concerns the coding stage
(writing of pro grams using statements). Numerous tools generate parts of the
code, or skeletons of the code (Ada, C++, etc.), from the last design model.

However, the majority of the elements of a design model must be defined
by the designer himself/herself. Without looking for automating this work
(which would without doubt be in vain), there are two types of advice that
can be provided in order to limit the introduction of faults, that is to say in
order to create a correct model. The first dass encompasses advice relative
to the analysis process (design guide), whilst the second concerns the
modeled system (expression guide). This last advice group being linked to
the way a model is expressed, they are associated with the method, which
justifies their presentation in this seetion. We are going to successively
examine and illustrate these two aspects.

224 Chapter 10

10.3.2 Design Guide

The model proposed at the end of a design stage has to combine features
offered by the modeling means. For example, these features are plaees,
transitions and ares if we use Petri nets as modeling too1. These features are
loops, tests and sequenees if we use an algorithm or a sequential
prograrnming language as expression means.

The designer often meets the problem of knowing how to correctly
combine these features in the aim of creating a correct model. It could be
thought that the correction of this work (and therefore of the model) is
uniquely a knowledge gained from experience. This is, in fact, the case
today. However, we are going to see how this know-how can be formalized
in the form of advice which can be used by everybody.

These guidelines depend, on the characteristics of modeling tools used or
rather on the underlying concepts offered by these models (paradigm
notion). We cannot give an exhaustive list of guidelines, as, on the one hand,
we do not wish to treat a unique design model, and, on the other hand, this
would again necessitate too many pages. We are uniquely going to give an
idea of such guides by explaining their contents and contributions.

The person or team who proposes a modeling tool possesses an overall
vision of systems world. Indeed, as a modeling is an abstraction form of a
system, the features chosen to define a modeling tool are the elements
considered as pertinent by the authors of this modeling too1. These features
are supposed to be necessary for all modeling. Moreover, the authors have
introduced these features in order to take into account the whole set of the
specific characteristics of the domain of the considered systems. Remember
the example of the 'Real-Time Systems'. One of this dornain's specific
characteristics is the necessity of taking the occurrence of asynchronous
events into account. To ans wer this need, design model creators have
introduced the concept of task. This example shows two points:

• firstly, the models are adapted to a dass of systems, and the choice of a
particular model has to be carried out according to the belonging of the
considered system to this class (this point has already been discussed in
section 10.2),

• on the other hand, the introduction of modeling tool features has been
deduced from needs associated with a system dass, this is the second
aspect which we develop hereafter.

If a designer knows the relationships existing between the features
offered by a modeling tool and the needs associated with the dornain of the
considered systems, he/she possesses an essential aid to guide hirnselfl
herself in this design. It suffices that he/she points out the needs of his/her

10. Avoidance of Functional Faults During Design 225

particular problems in order to deduce the means, that is to say the features
to be used. If, for example, the analysis of a system specification makes the
existence of two events appear which have to create their own reactions
during independent occurrences, two tasks have to be introduced in the
design model. On the contrary, if a second event can only be taken into
account after the reaction to the first event, one single task has to be used.

In conclusion, knowledge on the syntax and semantics of the modeling
tool features is not sufficient for the designing of dependable systems.
Knowledge of the feature origins is also indispensable. It is therefore
desirable to dispose of guides which provide such information.

As weil as the fact that these guides facilitate the deduction of a model,
they also make corrections easier and provide the trace between the elements
of the specification provided at each level 1, and the elements of the design
model proposed at levell + 1.

10.3.3 Expression Guide

10.3.3.1 Principles

Whilst reading seetion 10.3.2, the experience acquired by the system's
designers seems useless since the previous guides are only stemmed from the
background of modeling means creators. This experience is on the contrary,
very important, but in another domain, and its formalization leads to a
second type of necessary guides. Indeed, despite the use of guides presented
in the previous sub-section, the designed models can still contain faults. In
particular, these are due to a bad comprehension of the system to be
designed or a bad expression of a designed model which has otherwise been
intelligently deduced.

1. Understandin~

~ ~

12. Analysis

----I~. cEell3>
3. Expression

Figure 10.3. Phases of a design process

The design process uses three consecutive phases (Figure 10.3):

1. the understanding of the model of the system to be designed at levell,

2. the analysis (deduction of the designed model),

226 Chapter 10

3. the expression ofthe designed model at level 1+1.

We should note that, once more, we find the three causes of faults
relevant to the three aspects associated with the specification stage (see
Chapter9).

The first phase is the understanding of the previous level 1 model and the
present state of the 1+1 level modeling. Indeed, the modeling which sterns
from a stage is not produced in one single attempt but necessitates a certain
period of time. Therefore, the designer has to make this design progress.
Numerous faults stern from the difficulty wh ich the designers meet when
trying to master their own designed model during the whole design stage.

Then, an analysis phase is performed, which allows the modeling of level
1+ 1 using level 1 data to be intelligently conceived. The guides proposed in
the previous sub-section aim at avoiding faults associated with this phase.

We arrive finally at the expression of a designed model. Although the
intellectual analysis is correct, numerous faults are due to bad expression of
the correctly imagined solution.

The guides which we tackle in this part aim at avoiding faults associated
with phases 1 and 3. Here also, the advices which can be given depend
greatly on the modeling means used. In order to illustrate and put in concrete
form the introduced notions, we consider the programming language as a
modeling means. More precisely, in the two following sub-sections we
provide some advice relative to Ada language. These guides can be adapted
for other programming languages.

10.3.3.2 Understanding Improvement

Understanding is improved, and therefore the faults due to bad
understanding are avoided, by firstly using rules relative to the readability.
These concem for example, the following aspects of a programming
language:

1) lexicography,

2) self-documenting,

3) choice of kinds of words according to the type of identifiers.

1. Lexicography

For example, we could quote as advice relevant to the lexicography, the
use of identifiers constituted only of words whose first letter is in upper case
and separated by the symbol '_'. Example: Number_Of_Sold_Tickets.

On the contrary, the language's reserved words are written in lower case.
These rules highlight the words contained in the identifiers, that is to say the
entities or concepts introduced by the designers. Indeed, we should suppose

10. Avoidance 0/ Functional Faults During Design 227

that the language user knows well the language's features (if then
... else, while ... , etc.) which should then not be highlighted.

2. Self-documenting
Where self-documenting is concerned, we can quote three guides:

1. to pay attention to the meaning of the identifiers which have to be
deduced from their reading,

2. not to use the constant values in the program body but to explicitly
dec1are constant identifiers,

3. not to introduce comments to compensate for a loss of self-explanatory
information.

Example 10.1. Bad use

for I in 1 .. 320 loop
-- we process the payments to social security
-- of each employee

The I variable as well as the constants used in the loop (1 to 320) are not
c1ear. In addition, comments have been added to try to remedy the situation.

Example 10.2. Good use

for Member_Of_Insurance_Company in Employees'range loop

where the Employees' range defines the list of employees. If these are
referenced by a number, we could have replaced this expression by
First_Employee Last_Employee, where First_Employee
(respectively Last_Employee) is an identifier ofthe constant which defines
the first (respectively the last) employee.

3. Choice of words
Now, let us exarnine the guides which concern the choice 0/ words

according to the types of identifiers. For example, we advise the use of a
verb as a procedure identifier to make the active aspect of this procedure
explicit (execution of a processing when requested).

Other mIes aim at /acilitating the understanding 0/ the semantic, for
example, with the use of the renaming feature to define the specific meaning
of a general notion in a particular context.

Example 10.3. Some rules

procedure Work_To_Be_Done{X : in Element}
renames Stack.Pushi

228 Chapter 10

By this statement, each request for Work_To_Be_Done provokes a call
to the subprogram Stack. Push. The calls to the procedure
Work_To_Be_Done (Y) permits a better understanding of the action
performed, while the call Stack. Push (Y) leaves a semantic fuzzyness
which risks creating interpretation faults.

Here we have only given some guidelines relative to the improvement of
understanding to give the reader an idea of such rules and their contributions.
Once again, an exhaustive list of guidelines would require an entire book.

10.3.3.3 Expression Improvement

The designer introduces numerous faults when the model is expressed.
We will only quote one example, which is again illustrated at the
programming level. This concerns a trivial case: typing faults. The proposed
rules do not prevent these faults, but they facilitate their detection.
Moreover, the compiler can automatically do most of these detections.

Let us consider the rule: 'Do not use constant values in the body of
program entities (subprograms, packages, tasks, etc.) and explicitly declare
these constants by identifiers' . According to this rule, the following program
extract: .

Hundred: constant integer .- 100;

Rate := Value / Hundred;

is preferable to
Rate := Value / 100;

Indeed, if we type Hunderd instead of Hundred, this fault will be
detected by the compiler, which is not the case when a keypressing error
creates 1000 instead of 100. We could retort two arguments:

First point. A keypressing fault could have taken place during the
statement of the constant (Hundred : integer constant : = 100;)
where 10 was typed instead of 100. This argument is true, but we estimate
that:

1. This risk is smaller because the designer is concentrated on one single
idea during this statement (the definition of a constant) whilst several
elements intervene in the assignment of the expression: definition of an
eventual complex expression, variable which will be assigned by the
result.

2. The detection of a keypressing fault is easier in the declaration of the
constant as the simple reading of Hundred: integer constant : =
10; would make react areader whilst he or she would perhaps not react
to a statement like Rate : = Value / 10;.

10. Avoidance of Functional Faults During Design 229

Second point. 'The proposed guidelines impose an increase in the size of
code, which is harrnful to performance'. It is false in general. For example,
the explicit statement of a constant does not have any impact on the code
generated, as all the compilers substitute the constant' s value to its identifier
in the expression where the constant identifier intervenes.

This example also illustrates that certain guidelines can have
simultaneous effects on the understanding and on the expression. Indeed, we
have pointed out that the use of constant values in the program' s bodies is
negative for its readiness, while the use of an identifier of a constant gives
this constant a semantic and thus facilitates its understanding.

10.4 FAULTREMOVAL

After having avoided the introduction of faults thanks to valid methods
whose essential aim is mastering the design, we are going to ex amine the
obtained system to detect the presence of residual faults.

Some verification methods necessitate the specifications, some others
methods are led uniquely from the designed system (without referring to its
specifications). All these methods do not have the same demonstration
strength; they are spread out from a 'partial functional simulation' to a
'complete formal proof'. They apply to the system, which has not yet been
fully designed or implemented by an implementation technology (hardware
andlor software), or sometimes even to the final product.

We are going to successively examine the verification techniques wh ich
make use of the specifications (sub-section 10.4.1), and then the techniques
without specifications (sub-section 10.4.2). Each time, we will suppose that
the initial model is that of the specifications and the final model that of the
system obtained by the design process. However, it is c1ear that our
reasoning applies to any sub-stage of the intermediate transformation,
between level land the following level 1+ J. We provide a panorama of the
principal verification approaches without entering in the detail of use of the
techniques introduced. However, to make this chapter c1earer, we will detail
one of these approaches. Furthermore, section 10.5 develop the functional
test methods by using some examples, and section 10.6 introduces some
formal proof methods.

10.4.1 Verification with the Specifications

Three groups of techniques explained in the following sub-sections can
be imagined for design verification with a specification model:

230 Chapter 10

• by reverse transformation of the design model and comparison with the
specification model,

• by double transformation of the design and specification models into an
intermediate model,

• by double top-down transformations of the specification model into two
design models.

10.4.1.1 Reverse Transformation

This approach goes back from the design model of the system towards
the specification model by a transformation, and then compares the result

with the specifications (see Figure 10.4): V = D -I
The V ascending process has to be different from the descending design

process, in order to avoid committing the same fault twice. Furthermore, this
ascending process can be very complex as the specification and design
models are often of a very different nature. For example, how can a
structural electronic model constituted of interconnected transistors be
transformed into a finite-state machine model? Nonetheless, situations exist
where this transformation can be obtained automatically. This is the case
when the system is designed as an assembly of interconnected modules, each
module being described by a functional logical model (for example an
automaton) and the composition of the modules being made of synchronous
communications. Example 10.5 (cf. next sub-section) illustrates this
automatic transformation mechanism by automaton composition.

Figure 10.4. Verification by reverse process

On the contrary, in other cases the reverse transformation is made
difficult by the use in modules of constructions whose composition is
difficult. This is the case of the manipulation of data or constraints (see
Example 10.5). The inverse transformation operation is impossible to
automate if informal annotations are used in the design model. This situation
is very frequent because the models only consider one point of view (or
abstraction) of a system. The other aspects have to be added in an informal
manner. For example, the behavior of a subprogram, which should be

10. Avoidance of Functional Faults During Design 231

developed in the next design stage, is simply described by a comment or
even just its identifier, such as:

Average_Computation(First_Value,Second_Value,
Average_Of_The_Two_Valuesl

This informal information is however indispensable and will intervene in
the following design stages where their meaning will therefore be formalized
as design model. However, as they are by nature informal, these pieces of
information cannot be automatically exploited in a reverse transformation.

Finally, even if we can obtain a reverse transformation automatically, we
must then confront the obtained model with the original specification model.
It is then often necessary to compare two different formulations of one
system: the specifications and the result of the reverse transformation. This
functional comparison is not always easy. The comparison of two automata
can be simple if they are structurally equivalent: we find the same states and
arcs. It is slightly more difficult when they are not structurally equivalent. A
common standardized and canonical form must be used.

This is a design proof if the reverse transformation and the model
comparison are formal. We insist again on the fact that, in practice, this
analysis is generally difficult to perform.

In the domain of integrated circuits, some methods use extraction
process. We start from the electronic layout structure and identify the gate
networks and other logical modules, as well as their interconnections. Then,
we extract the logical combinational and sequential functions to end up with
the original logical forms. The results are then compared with the logical
specifications (Boolean expressions or logic diagrams).

Example 10.4. Full-adder: logical extraction

Once again, we consider the simple adder already studied in Chapter 5,
with three inputs (a, b, c) and two outputs (S: surn, C: carry). Starting with
formal specifications in the form of logical expressions (S = a $ b E9 c, C =
Maj(a, b, c) = a.b + a.c + b.c), we have performed the design ofthis circuit
in two stages, as shown in Figure 10.5:

• evolution towards the functionallevel by using two 'half-adders',

• evolution towards the logical gate level, ending up with a circuit using
several NAND and XOR gates.

This logical design should be followed by an electronic level (by
replacing, for example, the gates by MOS transistor structures), then finally
by a technologicallevel, leading to a layout, that is to say the flour planning
geometrie definition of the final integrated circuit.

Now, we will proceed to a reverse operation: analysis of the logical gate
circuit, and extraction of the logical functions of the two S and C outputs of

232 Chapter 10

the adder. This extraction can pass through the intermediate stage noted as
'functional' used during the design. It is also possible to directly return to the
specification level. We find: S = a'.b.c + a.b'.c + a.b.c' + a'.b'.c' and
R = a.b + a.c + b.c. These two logical expressions are finally compared with
the logical expressions of the specifications. This comparison is rather
simple here: the canonical comparison model can be the truth table.

S=aEBbEBc :=:\3:s Specifications I C = Maj (a, b, c)
c C ,

~=a"b a 1/1 c ~ S Functional I b ADD a -+ I/lA
U=(•• b)~ HI'hAr S:;c level ,
:~bhc Logicallevel I

Figure JO.5. Logical design of an adder

Example 10.5. The drinks machine

Figure 10.6 shows a design structure of a variant of the drinks distributor.
After a design stage, the structure has three interconnected modules: the
MoneYJhanger, the Selection module and the drinks Distributor.

Coin_Entered

(CE) Money Changer
Cancellation (ct

Coin_Returned (CR)

Coin_Stored (CS) ---......
Do_Not_Deliver (DNO)

r-''-----.......I.--'-''L Switch_ OiCSeleclion_Button

Request (REQ) Deliver (OEL)

Drink_Selected Selection (SW)
(OS) Turn_ On_Seleclion_Button

(TU)

Provide (P) End_Distribution (END)

Distributor CofTee_Available (CA)

Figure 10.6. General structure

10. Avoidance 0/ Functional Faults During Design 233

The behavior of each module is described here by a finite state machine
(see Figure 10.7 and Figure 10.8). An arc without an original state figures
the initial state. The arcs between the modules in Figure 10.6 indicate the
signals exchanged between the modules or with the synchronous external
environment. The character '?' defines that the signal is waited to go through
the transition, whilst the character '!' states that the signal is sent during the
firing of the transition.

Money Changer

CE

Figure 10.7. FSM of the Money_Changer module

REQ DND p END

Selection Distributor

DS

Figure 10.8. FSMs of modules Selection and Distributor

Figure 10.9 provides the product's complete interface with its
environment. The 3 external inputs of the product are: Coin_Entered (noted
CE), Cancellation (C), Drink_Selected (DS). The 5 external (or primary)
outputs are:

Coins_Returned (CR), Coins_Stored (CS), Switch_OfCSelection_Button
(SW), Tum_On_Selection_Button (TU) and Coffee_Available (CA).

234

Drinks
Machine

Coin_Returned (CR)

Coin_Stored (CS)

Switch_ OICSelectioß_
Button (SWj

Turn_ On_Selection_
Button (TU)

Coffee_A vailable (CA)

Figure 10.9. Input/output signals of the machine

Chapter 10

Finally, we suppose that the functional definition of this distributor has
been established during the specification stage. This is provided as a Finite
State Machine in Figure 10.10.

ini!
CE ---..
--+

C
--+

DS
--+

Figure 10.10. Behavioral model of the specification

The real behavior stemming from this design can be obtained by the
composition of the automata of the three modules. Several methods exist to
carry this composition out. We will use in this example an approach based
on simulation. The initial global state of the system is GI = (MI, SI, BI).
Then, we exarnine the states reached when an input signal is applied. If, for
example, the signal Drink_Selected (DS) appears, we go to the global state
G2 = (MI, S2, BI), the signal Switch_OfCSelection_Button (SW) is sent at
the output, and we then pass to state G3 = (MI, S3, BI). In this state, the
Selection module sends the internal signal Request (REQ) to the
Money_Changer module and we go to state G4 = (M6, S4, BI). The
Money_Changer sends Do_NoCDeliver (DND) which waits for the
Selection module. We then go to the state G5 = (MI, S8, BI), and the signal
Switch_On_Selection_ Button (SW) is activated. Finally, we come back to
the initial global stable state: GI = (MI, SI, BI).

Let us synthesize this functioning extract. From the state noted as GI, the
signal Drink_Selected (DS) leads to G2 where the output Switch_OfC

10. Avoidance oj Functional Faults During Design 235

Selection_Button (SW) is sent, then we go to state G3. In this state, a
sequence of states, internal to the product, takes place which passes from G4
to G5. The signals exchanged between the internal modules are not visible
externally, as for alt internal transitions. Only the sending of the signal
Turn_On_Selection_Button (TU) followed by the return to GI is perceptible.
Considering the specification level, that is an external viewpoint, this
internal evolution is equivalent to one single transition from G3 to GI.
Figure 10.11 synthesizes the studied extern al behavior.

Figure J o. J J. Extract of the resuIting global behavior

This analysis can be followed on to provide the global behavior by
making an abstraction of the internal signals and transitions which are non
perceptible from the outside.

The obtained behavior has therefore got to be compared to the behavioral
specification model. The graph in Figure 10.10 provides this model. It
shows that from the initial state, the signal Drink_Selected (DS) has no
effect: there is no arc labeled ?DS which leaves from this state. The starting
of the automaton's composition which we have just carried out indicates a
different behavior: the selection button's light switches off and then on! It is
fairly common that the design leads us to specify, or rather choose,
behaviors which have not been planned in the specifications and which
normally corresponds to functional redundancy. The real problem is to know
if the designed system' s actual behavior is acceptable to the client.

The operation of reverse transformation (from the designed system
towards the product specifications) will be more complex, if, for example,
we complete the coffee distributor by the management of coins of different
values. Indeed, the 'data part' (leading to data calculation) wh ich completes
the 'control part' (pure automaton) renders the analysis process difficult.

10.4.1.2 Double Transformation

The second class of verification consists in transforrning, on the one hand
the specifications, and on the other hand the system in an intermediate model
which is more convenient to perform comparison (see Figure 10.12).

236 Chapter 10

Figure 10.12. Verification with intermediate model

As an example, if a Petri net is used as specification model, and if the
design model is a logical gate network, we can decide to take Finite-State
Machines (FSM) as intermediate model (Figure 10.13). From the Petri net,
we can deduce a FSM called a 'marking graph', for example by simulation.
Furthermore, we can extract the FSM from the logical model of a gate
circuit. Now, we have to compare these two resulting FSMs. We are
therefore brought back to the problem raised in the previous paragraph.

Figure 10.13. Example

10.4.1.3 Top-Down Transformation

The third approach operates using a second top-down transformation V
led in parallel with the design phase (see Figure 10.14).

v
~ __ ~ . properties

System . simulation

Figure 10.14. Top-down verification

The result of this second transformation is:

10. Avoidance of Functional Faults During Design 237

• a simulation sequence, ordered list of input and output vectors, or

• a set of functional static or dynamic properties that the system must
satisfy.

These two examples are examined in the two following sub-sections. For
both situations, a means must be provided to compare the results of the two
transformations.

Simulation sequence
The idea of this method is to deduce a sequence of couples (applied

inputs I expected outputs) from the specification model. This simulation
sequence is also called test sequence. To compare the two results, the input
sequence is then applied to the design model (the system), which in return
provides an output sequence compared to the expected outputs. If they are
the same, we assurne that the system is correct, that is to say that it conforms
to its specifications. Of course, the value of this conclusion depends on the
quality of the applied sequence. Indeed, if the input sequence only exercises
some of the aspects of the system' s behavior, the conformity to this behavior
only proves the good design of these aspects! This approach supposes that
the system model is executable. It is adynamie analysis, as discussed in
Chapter 6. We qualify this approach as functional test as it uses the
specification model, which is a priorifunctional. Often, by extension, the test
sequences are defined from structuro-functional models, that is to say
models which exploit a knowledge of the system organized into
interconnected modules. According to the level of structural knowledge
about the analyzed system, we speak of:

• black box test (no structural knowledge),

• gray box test (the system is organized into interconnected modules),

• or white box test (we know the whole structure).

We will come back to the functional test in section 10.5 by analyzing an
example. The structural test will be studied in Chapters 12 and 13 for the
verification of the manufacturing and production stages, as it has been
developed to check these stages.

We should note that simulation still constitutes today the most used
approach in all domains:

• either on a executable model (executable on a computer) of the designed
system' s, by applying significant functioning sequences and by
comparing the results provided by the computer with those expected (e.g.
we simulate an electronic circuit at logic or MOS level),

• or on a physical model (called a mock-up) wh ich is subjected to tests.

238 Chapter 10

Property satisfaction

The functional test seeks to stimulate all the behaviors of the system
specifications. The approach known as property satis/action aims at
demonstrating that some specific properties deduced from the specifications
are satisfied by the designed system.

Consider that a level crossing control system reacts to the detection of
trains approaching and leaving by acting on the barrier by actions 'rise' and
'go down'. The difficulty in defining a test sequence is that one or more
trains can arrive in the railway section which separates the two sensors
('approach' and 'leave' sensors). Therefore, it is necessary to test all the
possible cases: theoretically, the number of cases is infinite! In fact, the two
properties, which we need to verify, are the following:

The barrier is closed when afirst train enters in the section.

The barrier stays closed as long as a train is still in the section.

The verification of the two previous properties is critical. The checking
of the following one is useful:

The barrier is up is no trains are in the section.

Another example is that of a company' s accountancy management
system. The possibilities that such a system offers can be very complex.
However, we would like to know if the following assertion is true:

Any order delivered has to be paid be/ore being classed.

A last property example concems a gas pump management system:

The pump counter cannot be reinitialized as long as the
previous dient has not paid.

In these three examples, we see that we do not seek to demonstrate the
conformity of the system' s behavior with regard to the whole set of its
specifications. We wish only to prove that the designed system satisfies
certain important and particular characteristics. Therefore, these techniques
should not be opposed to the test techniques. Indeed, in section 10.5 and in
Chapter 12 we will see the difficulty experienced in demonstrating the
exhaustivity of test. The formal demonstration of some critical properties is
therefore a supplementary tool. The methods used to demonstrate these
properties naturally depends on the specification model and the design
model. Some examples of proof methods are given in section 10.6.

10.4.2 FauIt Removal without Specifications

Fault removal techniques without specifications aim at checking that the
designed system satisfies generic properties, that is properties independent

10. Avoidance 0/ Functional Faults During Design 239

of the specifications (see Figure 10.15) . In general, we seek to show the
existence or the absence of undesired properties such as, for example:

• a functioning deadlock: the system blocks in astate and no Ion ger reacts
when input signals occur,

• the system is not living: the property 'we can go from any state to any
other state by an external sequence' is no longer true,

• the functioning is non-determinist: e.g. an input can provoke different
effects from the same internal state.

Figure 10.15. Verification without specifications

These properties define potential errors independent from the system' s
functionality. The faults at the origin of these bad properties are varied and
will probably necessitate a human diagnosis.

A non-living system pos ses ses non-accessible dead parts, which is a clue
of a redundant design. For example, one branch of an if statement (then or
else parts) can never be run. This situation rnight or rnight not be due to a
fault. Indeed, redundancy is not always the expression of a fault. For
example, redundancy is becorning more and more frequent due to the reuse
of hardware or software components which were bought or developed for a
previous application. However, the designer should know that certain parts
of a reused component cannot be used and therefore justifies the reason for
this redundancy. Indeed, dead parts mayaiso be due to a design fault.

The non-deterrninism of functioning can arise from a design with faults .
This is the case with hazard phenomena in sequential systems: the
functioning is different according to the temporal values of the component' s
reaction. These values depend on the non-functional environment: the time
wh ich passes, temperature, etc. This situation arises also for real-time
programs whose executive environments can behave in a way which seems
hazardous. Indeed, some functioning parameters they use are not perceptible
and controllable by the applicative software. For example, the attribution of
the processor to a task can be interrupted by the occurrence of an external
event. This corresponds to a situation which is defined during the design.
This situation can also be due to a preemption mechanism of the real-time

240 Chapter 10

kernel when this software considers that the time allocated to the task is
excessive. Hence, this mechanism is not managed by the application whose
behavior seems hazardous. This type of property analysis can be carried out
on 'state graph' models or mainly on Petri net models if the design implies
parallelism and competition.

Example 10.6. Graph properties

Imagine a sequential system' s graph with 6 states (Figure 10.16).
Without knowing the specifications or the product' s application, we can
analyze some properties of the graph. We notice that it has connexity
problem: if we split the graph into two graphs, SG 1 = {I, 2, 3} and SG2 =
{4, 5, 6}, it is impossible to pass from SG2 to SG 1. Additionally, state 4
(weIl state) leads to a blocking, because the system behavior cannot leave
this state. ConsequentIy, we should question this system's design as it is not
living. This example is considered in Exercise 10.6.

Figure 10.16. Example of graph properties

10.5 FUNCTIONAL TEST

In sub-sections 10.4.1 and 10.4.2 we introduced diverse cIasses of fault
removal means. We also gave an overall view of the principles of these
techniques. In this section, we refine the junctional test technique
introduced in sub-section 10.4.1.3. Remember that the functional test
consists in applying a sequence of input values to a designed system; the aim
of this input sequence is to provoke all the different behaviors described in
the specifications. The output values obtained by the system' s execution (on
a simulation model, a mock-up, or the final product) are therefore compared
to the ones predicted, that is to say derived from the specifications.

10.5.1 Input Sequence

One first question is: 'how can we find the input sequence which
provokes all the behavioral possibilities?'

10. Avoidance of Functional Faults During Design 241

When the specification describes sequential behavior, for example using
a finite state machine, the test sequence has to pass by all the states and all
the arcs of the state graph.

Example 10.7. Coffee machine: input sequence

Consider the coffee distributor designed in sub-section 10.4.1.1 (Example
10.5) whose behavior specification was described in Figure 10.10.

An example of a functional test with 11lines is given in Table 10.1. This
sequence corresponds to two aborted cycles (by request to cancel) followed
by a complete cycle of coffee distribution.

Num. Input Output
1 Coin_Entered -
2 Cancel Coins_Returned

3 Coin_Entered -
4 Coin_Entered -
5 Cancel Coins_Returned

6 Coin_Entered -
7 Coin_Entered -
8 Drink_Selected Switch_OfCButton

9 - Coins_Stored

10 - Coffee_A vailable

11 - B utton_Lights

Table 10.1. A functional test sequence of the distributor

We now suppose that the distributor accepts different types of coins: 5c,
lOc, 25c, and 50c. This modification can be taken into account by
associating a parameter Value_Coin with the input Coin_Entered. The
output Coins_Retumed now receives the parameter Value_Coin. To give the
change, this output is activated as many times as necessary.

Without wanting to propose a complete new specification, we provide an
extract in Figure 10.17 which defines the actions !Switch_OfCButton, then
!Coins_Stored, then !Coffee-A vailable, etc. which should be carried out only
when the amount provided is superior or equal to the value of a coffee.

This extract is preceded by apart which accumulates the value of the
coins entered in the machine (Figure 10.18). The functional test which
integrates this new functionality becomes more complex. It is theoretically
imaginable to try all the possible combinations of coins to obtain the exact
price of the coffee (exhaustive test). In addition, here the user can put more
money in than necessary before selecting the drink. Then, a larger number of

242 Chapter JO

combinations can follow, even if the total number of coins acceptable by the
distributor is limited.

•
9

Figure 10.17. Functioning extract ofthe distributor

AmOUDt Provlded:= AmOUDt Provlded ~C' E d
- + Valiie CoiD • om_ ntere

- (Value_Coln)

Figure 10.18. Moneyaccumulation

In fact, the specification only considers two cases:

• AmounCProvided < Value_Coffee, and

• AmounCProvided ~ Value_Coffee.

If the coffee costs 75c, we can imagine a sequence which consists in
putting in 25c, selecting the drink, then waiting for the coin to be returned,
then putting in 2 coins of 50c, selecting the drink and waiting for the return
of 25c and a coffee. This sequence seems to be sufficient. Indeed, it
provokes all the possible specified behavior. However, a question is raised
concerning the real demonstration of this property. If the system's designer
made a fault when implementing a mechanism that only deli vers coffee if
the amount provided is strictly superior to the amount for the coffee, this
sequence cannot show this fault!

When input data intervenes in the specifications, the technique which
consists in identifying the value domains which provoke different behaviors,
and choosing ODe value for each of these domains as a test input, has limits

10. Avoidance of Functional Faults During Design 243

according to the detection of faults in designed systems. This is, however, a
very popular method of test sequence.

To improve the test efficiency, engineers often add tests 'to the limits' of
the value domains. Thus, in our example, the value of AmounCProvided
defines two domains represented in Figure 10.19.

Therefore, we will test the designed system with a value for each domain
(for example 50c and 1$),0$ as the inferior limit of domain 1, and 75c as the
limit between the two domains. The upper limit of the second domain
corresponds to the saturation of the box which stores the coins.

This sequence's improvement does not, however, cover all possible
design faults. Indeed, if we suppose that the 1$ coins have been added as
acceptable by the distributor and that the designer has added a speciallogic
treatment for these coins, a test based on the AmounCProvided is not
sufficient to reveal the faults having eventually affected this treatment. The
functioning of the distributor can be different, according to wh ether we
insert 2 coins of 50c or one coin of 1$.

Domain 1 Domain 2

0$ + 7Sc ...
E

SOc 1$

Figure 10.19. Value domains

10.5.2 Output Sequence

The output sequence associated with the input sequence is normally
deduced from the specification. However, in certain cases, the outputs are
not given by the specifications. This absence of information can arise if the
designed system was destined to precisely provide the unknown results. For
example, if a physician or a biologist cannot undertake areal
experimentation in order to know the effects of the studied phenomenon,
he/she would ask for a software simulation of this phenomenon. The
expected outputs (produced by simulation) are not known apriori. Hence,
the functional test that we have considered cannot be applied so easily. We
could therefore attempt to estimate the outputs produced by associating them
with intervals, for example. This approach belongs to the likelihood group of
techniques discussed in Chapter 8 to illustrate functional redundancy and
static and dynamic functional domains. These techniques are c10se to the
verification without specifications discussed in sub-section 10.4.2. For our
example, the lack of information concerning the specifications is partial: it is

244 Chapter 10

relative to the outputs of the simulated phenomenon. Likelihood techniques
express properties on the expected values.

Moreover, we can observe that a test sequence is not only a juxtaposition
of an input sequence and an output sequence. It is a sequence of couples
(inputs/outputs). To illustrate this, refer to the following example of the
coffee distributor.

Example 10.8. Coffee machine: input/output sequence

The possible values of the couples (Coffee_Available, Coins_Returned)
make 4 configurations appear (expression of the static domain):

DSI DS2 DS3 DS4

Coffee_A vailable NO NO YES YES

Coins_Returned NO YES NO YES

Coffee-A Coins-R

YES YES

YES NO

NO YES

NO NO
Amount_ Provided

OS 7Sc

Figure 10.20. 1/0 domain couples

The behavior defines relationships between the input (Figure 10.19) and
output domains (marked above); they are detailed in Figure 10.20. This
analysis shows that the test sequence has to cover 4 domains which concern
the amount provided before the coffee selection:

- 0$ no coffee and no coin returned,

]0,75c[no coffee and the coins are given back,

- 75c coffee served and no coins given back,

- 75c coffee served and change given back.

Therefore, we see the necessity in testing the cases of 0$ and 75c, which
does not appear explicitly when the input and output domains are studied
separately.

10. Avoidance of Functional Faults During Design 245

Considering the value of the returned amount refines this analysis. This is
represented by Figure 10.21. When 50c is inserted, this amount must be
introduced, and 25c has to be given back. In practice, we do not always
consider one single input value per input/output domain. Figure 10.21
defines the associated input/output values. It is clear that this graphical
representation is only possible here because of the simplicity of the
relationships between the input and output values.

YES YES x cent*

25c

YES NO 0

NO YES 75c
50c

NO NO o

* : x = Amount_Provided - 7Sc
os SOc 75c 1$

Figure lO.21. Domains and relations

10.5.3 Functional Diagnosis

A functional test sequence allows the presence of faults to be revealed by
the failure of the designed system. This failure is detected by a comparison
between the expected output values and the values produced at the system' s
execution. However, this does not give any information on the fault at the
origin of the failure. The diagnosis attempts to answer this question:

where is the fault which affects the system?

In this section we are going to give some pieces of information regarding
functional diagnosis testing, that is to say techniques which try to localize
the fault at the functional level. The diagnosis test will be reconsidered in
Chapters 12 and 13 concerning its structural aspects.

A first method consists in returning to the causes of the erroneous outputs
to discover the infected function. In practice, this backward analysis turns
out to be very complex, due to the sequential character of the majority of
systems (such as the illustrative coffee distributor used here). In such case,
failure sterns from a sequential process which activates the fault, then
propagates it towards an output (a mechanism already analyzed in the first
part). It is therefore necessary to go back in time to analyze the system's
successive states without knowing until which previous state to return to!

246 Chapter 10

This approach is also difficult to apply, due to the fact that the system is
generally designed from sub-systems (referred to here as modules)
interacting. The failure can therefore be due to one of the module' s
erroneous behavior, but also to the interaction between several modules!

Take the example of the coffee distributor. Its erroneous behavior can
arise from a design fault in the interactions between the three modules
'Money_Changer', 'Selection' and 'Distributor'. In practice, two difficulties
combine, making the diagnostic extremely difficult:

• go back to the system's history,

• and identify the interaction problems between modules.

A technique wh ich reduces this complexity consists in instrumenting the
system by adding redundant actions which facilitate the observability of the
system's internal evolution and communication between modules. These
techniques participate in what we have named as 'easily testable systems'.
These techniques will be developed in Chapter 14 for the production and
maintenance test.

At the design level of one module, some techniques are proposed:

• the use of pre-conditions defining what is expected at the module input,

• the use of post-conditions defining what is expected at the output,

• in a more general way, the use of assertions on input/output relations.

To illustrate this approach, we consider the example of a subprogram
which returns the 'minimum' and 'maximum' values of a list of given
values. We can affirm that:

minimum ~ maximum.

This concerns a post-condition. It does not give the means to ca1culate
the values produced (which is a design problem), but it gives constraints on
its behavior (here on the value of its outputs) when this subprogram
intervenes in a program' s design. If, during this program' s execution, the
'minimum' and 'maximum' do not satisfy the post-condition, this proves the
presence of an error in the subprograrn. In addition, this example shows that
the detection is not carried out on the complete system' s externaioutputs but
on evaluation of the design modules.

However, it should not be conc1uded that the subprogram in question is
faulty. The fault can concern a bad utilization of this module. For example,
we provided an empty list to the subprogram. In conc1usion, even if it does
not localize automatically the fault which is at the origin of the faHure, this
technique facilitates, nonetheless, the diagnostic by bringing useful
information on the localization of the internal error which has appeared.

10. Avoidance of Functional Faults During Design 247

10.5.4 Analysis of an Arithmetic Unit

Example 10.9. Arithmetic unit

We consider an additionlsubtraction umt m a 'floating' normalized
decimal scientific system (mantissa in the interval [0, I D. It has been
structured by the design into 5 modules shown in Figure 10.22. This
'combinational type' example completes our illustration of a coffee
distributor which is essentially sequential.

Mu(El,El)

M'l M'l

+/-

Carry

NormalizatioD

Overllow I

Figure 10.22. Example of a floating arithmetic circuit

The algorithm implemented by this structure proceeds in three phases.

1. First of all, the two numbers must have the same exponent. For this:

~ we compare the exponents (module 'EI - E2'),

~ then we adjust the smallest number on the largest number by lEI - E21
shifts to the right of its mantissa.

2. Then, we carry out the algebraic operation (+ or -) on the two mantissas,

3. Then, we normalize the result and detect a possible overflow.

The module 'sign' pHots the operation to carry out on the mantissas and
elaborates the sign of the result.

248 Chapter 10

Such a design can be partially verified by a functional testing. This is
done by making a ca1culation on a supposedly executable system (mock-up
or simulation) and by comparing the obtained result with theoretical value.
Furthermore, no knowledge about the circuit' s internal organization is
exploited by this test. For example:

0.1 10 +123 _ 0.354 10+125 = _ 0.353 10+125

We ignore apriori the faults detected (or covered) by this elementary
functional test but they are probably reduced. In addition, a final non-correct
result certainly indicates the presence of an error, but it does not permit the
diagnosis of a fault.

An exploitation of the stmcture into modules of the designed system can
enrich the verification and permits a more precise diagnosis in case of error.
Therefore, this type of simulation is of the 'gray box type' as we observe
certain intermediate values. Thus, the simulation of the previous operation
will give the output values of each of these modules as weIl as a final result:

• EI - E2 = -2, therefore the MI mantissa has to be adjusted by two shifts
to the right, M,' I = 0.001, Max (EI,E2) = E2 = 125,

• the operation control is a subtraction whose result is negative (there is a
carry) -0.353, therefore the final signal has to be corrected,

• finally, there is no need to normalize the obtained result.

Such a simulation is rich in information for the localization of the module
or the link between the modules affected by a fault. A study of this example
is proposed in Exercise 10.7.

10.6 FORMAL PROOF METHOnS

Functional testing aims at showing the system correctness by exercising
its behaviors and examining their effects on the outputs. It is the most
popular method. In this section, we introduce less popular techniques, based
on formal proof of properties, which provide additional information in order
to improve the confidence in the system correctness.

10.6.1 Inductive Approach and Symbolic Execution

10.6.1.1 Inductive Approach

The formal proof by inductive approach aims at demonstrating a
conc1usion on the system behavior, taking some hypotheses into account.
For instance, these hypotheses specify mIes on the inputs, and the conc1usion

10. Avoidance of Functional Faults During Design 249

concems the expected outputs. Hypotheses and conclusions define a
property on the system. This method is weIl known in mathematics to
demonstrate a theorem. Assuming- that an hypothesis is true, we must show
that the proposed conclusion is satisfied when the system is executed. For
instance, when a train approach is detected (hypothesis), the baITier must go
down (conclusion).

The formal demonstration of some properties is very useful, because the
client of a product often requires that critical properties be guaranteed. As
shown in the previous section, functional testing provokes numerous
activations of the system, without giving a formal proof of its COITectness
(excepted in small system for which all cases can be tested). So, the
demonstration of a small number of properties is a useful complementary
work. If we note H the hypothesis and C the conclusion, we have to
demonstrate that H ==> C when the system is executed.

Example 10.10. Sum ofthe N first integers

Consider the following pro gram which computes the sum S of the N first
integer:

S : = 0 i
I : = 0 i
while (1<N) loop

I := I + 1;
S := S + I;

end loop;

The hypothesis is N >= 0 and the conclusion is S = N * (N + 1). This
deduction proves the COITectness of the pro gram. Indeed, we have:

S = 1 + 2 + ... (N-1) + N
S = N + (N-1) + ... 2 + 1, so

2*S =
S =

(N+1) + (N+1) + ...
N*(N+l)12

(N+l) + (N+l), that is

To make this demonstration easier, we introduce assertions Ai in the
system structure. Al is the hypothesis and the last assertion is the conclusion.
For instance, consider the following annotations of the previous program:

-- Assertion Al: N ~ 0
S : = 0;
I : = 0;

-- Assertion A2: I ~ N and S
while (1<N) loop

Assertion A3: I < N and S
I := I + 1;
S := S + I;

end loop;

o

1*(1+1)/2

250 Chapter 10

-- Assertion A4: I = N and S = N*(N+1)/2

To demonstrate Al ==> A4, when the program is executed, we will make
partial demonstrations (like lemmas), considering all the possible
functioning cases. Taking the program control flow into account, we must
show that:

1. Al ==> A2 after the execution of 's : = 0;' and 'I : = 0; ';

2. A2 ==> A3 when l<N,

3. A3 ==> A3 when l<N after the execution of 'I : = 1+1;' and 's : =

S+I; " and finally

4. A2 ==> A4 if I ~ N after A2.

Demonstration:

1. Is evident.

2. Is evident, as 1= S = o.
3. Let Ib and Sb the values of I and S before the execution of the loop

statements (I ~ =1+1; and S: =S+I;). The hypothesis is:

1b<N and Sb = Ib*(lb + 1)/2.

Due to the execution, 1= Ib+ 1 (relation 1) and S = Sb+1 (relation 2). Due
to the loop condition, I<.N (first part of the conc1usion). We must now
demonstrate S = 1*(1+ 1). The hypothesis is Sb = Ib*(lb+ 1)/2 (relation 3).
Due to the relation 1, Ib = I-I, so:

Ib*(lb+l)/2 = (1-1)*(1-1+1)/2 = (/-1)*112.

Moreover, Sb = S-I (relation 2). So, relation 3 implies S-I = (1-1)*1/2, that
is: S = (/-l)*I12+1 = (1-1)*1/2 + 2*112 = (I -1+2)*112 = (1+1)*1/2.

So, S = 1*(/+1)/2 which is the second member of A3.

4. A3 is expressed by Ib<N (relation 1) and Sb = Ib*(lb+ 1)/2 (relation 2).
Due to the execution, 1= Ib+l (relation 3) and S = Sb+l (relation 4). We
assurne that P-N (relation 5). Due to the relations 1 and 3, l-l<.N, that is
I<.N+ 1. This conc1usion and the relation 5 imply that I = N which
conc1udes the first part of the demonstration. The second part
(S = N*(N+ 1)/2) is then demonstrated as previously (item 3), knowing
thatl=N.

5. A2 = ((/~ and (S = 0». As the Boolean condition of the while
statement is false, then (I2N). We conc1ude that I = N, which is the first
part of A4. As I = 0, then N = 0, so the second equality is true, as S = o.
Thanks to these partial implications, we deduce that Al ==> A4, that is,

the conc1usion is implied by the hypothesis.

10. Avoidance of Functional Faults During Design 251

The demonstrative power of this technique is very important. However, it
has two main drawbacks:

• the engineer must express the intermediate properties,

• he/she has to handle the deductions Ai ==> Ai+ 1.

10.6.1.2 Symbolic Execution

Some tools exist to process these deductions automatically. For instance,
Praxis provides such a tool based on a subset of the Ada language features.

The inductive process can be treated by a symbolic execution. The values
of the variables are not propagated through the system structure, as they are
unknown. Instead, symbolic variables are propagated. Thus, symbolic
expressions are deduced which can be reduced.

Example 10.11. Small extract

Consider for example, the following pro gram extract:
b := a;

c := a + b;
if (a = 0) then d.- 2*c;

else d.- -c;
end if;

Let A be the symbolic value of a. After the execution of the program, we
obtain the value of d:

1. d = 2*c and a = 0, or,

2. d = -c and a:;c O.

To obtain the first condition, we process b : = a; and c : = a + b; .

So, b = A, c = A+A and thus d = 2*(A+A) and A = O.

Reducing the expressions, we obtain «d = 0) and (A = 0» (relation 1).
In the same way, the second branch of the i f statement provides:
«d = -2*A) and (A :;C 0» (relation 2).
During the second step, we must demonstrate that:
(hypothesis on A) and «relation 1) or (relation 2» ==> (conc1usion).
For instance, the style of the variable adefines constraints on its values.
The conc1usions can be constraints expressed by the values of a and d.

10.6.2 Deductive Approach and FTM

10.6.2.1 Deductive Approach

As previously, an hypothesis, intermediate assertions Ai, and a
conclusion are defined. However, whereas the inductive approach aims at

252 Chapter 10

demonstrating that Ai ==> Ai+ 1 after the execution of a code fragment F, the
deductive approach operates backwards.

• from the conc1usion Ai+ 1, using a backward execution of F, we deduce
the condition Ci which must be true before F is executed.

• then, we demonstrate that Ai ==> Ci.

The main problem with this method concems the backward processing of
the condition Ai+ 1. Studies established for some design languages have
shown the way Ci is obtained when each feature of the language is executed.
We will illustrate this process examining some features of the Ada language.

Example 10.12. Sequence

The feature expressing the sequence (noted ';') does not pose any
problems: Ci = Ai+ 1. Consider the following program extract:

-- Al: x > 7 and y < -2
z := x - Yi
-- A2 : z > 0

From A2 and the assignment statement, we deduce Cl = x>y. Then, we
deduceAI ==> Cl.

Example 10.13. Conditional statements

Conditional statements needs the study of two branches. Let us consider:
Al: (abs(x) > z + 4) and (z > 1) and (x > 0)

if (x < 4) then y:= 2 - Xi

else y:= Xi

end ifi
-- A2: y > 1

If y>1 and we executed y : = 2 - Xi, therefore 2-x>1, that is l>x. This
branch was executed if x<4. So, x<4 and x<l, that is x<1 (relation 1).

If y> 1 and we executed y : = Xi, therefore, x> 1. This branch was
executed if x~4. So, x~4 and x> 1, that is x~4 (relation 2).

Now, we must show that Al ==> (relation 1) or (relation 2). This is true
as 'Z> 1 => abs(x) > z+4 > 1 +4 = 5. So, x>5, as x>O.

10.6.2.2 Fault Tree Method

The Fault Tree Method (FfM) introduced in Chapter 7 is based on a
deductive approach; the results of the reasoning process are presented as a
tree of Boolean expressions using the operators 'and', and 'or', and 'not'.
The root expression is the concIusion to be demonstrated. The intermediate
nodes are Boolean conditions obtained by analyzing the system structure.
The leaves are assumptions (such as preconditions) whose values are known.

10. Avoidance of Functional Faults During Design 253

Figure 10.23 represents such a tree with a conclusion, two intermediate
nodes and five assumptions.

Figure 10.23. Fault tree example

The fault tree method and the associated representations are used here not
to specify the causes of a faHure but the reasons of an expected conclusion.
Let us consider for example, the following procedure specification:

procedure Example (Data: in Type_One; Result: out Type_Two).

Type_Two defines a Boolean condition on the acceptable set of values.
For instance, Result is in the range [Vrnin, Vmax]. By a deductive approach,
we analyze the procedure body using the conclusion on the result. We obtain
a tree such as the one in Figure 10.23. Then, we must deduce from the
constraints defined by Type_One, constraints on A3, A4, A5, A6 and A7, and
finally, demonstrate that the conclusion is always true as Al and A2 = true.

10.7 EXERCISES

Exercise 10.1. Verification ofthe adder

Consider the three-bit adder discussed in Example 10.4), and a design
fault which consists in replacing in each half-adder the NAND gate with a
NOR gate (see Figure 10.5) . Study the faHures induced by this fault
according to each of the three previous verification approaches:

1. by inverse transformation and comparison (functional extraction from the
logical gate structure),

2. by double transformation with an intermediate model,

3. finally, by double descending transformation.

Exercise 10.2. Programming style (C language)

We consider the following function written in C language:

254

Min_Max (int table [5], int B)
{

int i;
int j = table [0];
for (i = 1 ; i<5 ; i+l)

{

% IfB is true, we are finding the min%
if (B)

{ if (table [i] < j) j table [i]
else { if (table [i] > j) j table [i] }
}

return j ;

Chapter 10

}

Analyze this funetion by pointing out the style elements which risk
leading to understanding and expression faults.

Exercise 10.3. FSM synthesis

Build the graph in Figure 10.11 (Example 10.5) whieh deseribes an
extraet of the eoffee maehine's real behavior.

Exercise 10.4. Functional test sequence

Refei to the eoffee distributor study. The expression of our dient' s needs
ean be summarized to 'make money by providing eoffee'. Mter an initial
study, we propose the following informal speeifieation to hirn:

"To obtain a eoffee, the user has to introduee at least 1$, then validate by
pressing on the 'Coffee' button. The ehange is then given and the eoffee
served. If the user has not provided enough money before validating, the
money is returned and the eoffee is not served. The money entered is also
returned if we press on the 'Caneellation' button before 'Coffee'.
Furthermore, the distributor eontains a eertain number of eoffee doses. The
money introdueed has to be returned if there are no more doses in reserve."

Using this informal specification, deduee a funetional test sequenee of
the system to realize.

This sequenee firstly serves the designer and the dient for the
verifieation of the designed system. By defining the input/output
relationships, the test sequenee also provides the distributor' s utilization
scenarios. From this point of view, the definition of the test sequenee after
the specifieation of the produet and its presentation to the c1ient eonstitute a
means of dialogue which permits the verifieation and the good
understanding of needs.

Exercise 10.5. Property research

Using the previous exercise's statement, deduee a fundamental property
which the system's behavior must satisfy. Verify that this property is true.

10. Avoidance of Functional Faults During Design 255

Exercise 10.6. Properties of functional graphs

We return to the graph in Figure 10.16 (Example 10.6). Study its
properties:

1. when we delete state 4,

2. when we add an arc which goes from state 5 to state 1.

Exercise 10.7. Verification of afloating point unit

Here, we are interested by the verification of the circuit presented in
Figure 10.22 (sub-section 10.5.4) according to a simulation approach.
Envisage several scenarios and study their pertinence (capacity to reveal
faults).

Exercise 10.8. Inductiveformalproof

Let A and B be two positive integers, and Q and R the quotient and the
remainder of the division of A by B. Q and R are defined by the property:
A = Q * B + R. Consider the following program annotated by the assertions
Al, A2, A3:

-- Al: A>O and B>O
R:= Ai
Q:= Oi
while R>=B loop

-- A2: A = Q * B + Rand R>=B
R:= R - Bi
Q:= Q + 1i

end looPi
-- A3: A = Q * B + Rand R<B

Show that Al ==> A3 after the program execution. Is this demonstration
a proof that the program is correct?

Chapter 11

Prevention of Technological Faults

Stemming from the design stage, the model called system has to be
transformed into a final product with the aid of technological means which
permit its execution in the context of its environment. Two technologies are
used in the products studied here, hardware technology and software
technology. In the majority of cases, these two technologies cohabit, their
respective weight being dependent on criteria which are often non
functional, such as their speed performance (which favors electronic
hardware) or adaptability (more easily obtained by software). We do not
discuss these choices, but we focus only on the problems of dependability
induced by the use of these two technologies.

This chapter refers to what has been said in Chapter 7 regarding
reliability and its evaluation. Examining the implementation stage, it
continues Chapters 9 and 10 dealing with fault avoidance in the specification
and design phase. Our study focuses on the prevention of technological
faults. Their removal will be tackled in Chapter 12.

11.1 PARAMETERS OF THE PREVENTION OF
TECHNOLOGICAL FAULTS

Technological faults affect a product' s functioning after its creation,
during the production stage, and during its active life. In Chapter 3, we have
already seen that these faults are created by several groups of factors:

• the product's physical characteristics: technology, manufacturing,
structure and assembling,

257

J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

258 Chapter 11

• the environmental characteristics: ageing, temperature, vibrations,
shocks, dust, and also frost, aggression by moistures or 'pirates' , etc. for
hardware, and the evolution of execution resources for the software.

First of all, we give some examples from both technologies in order to
understand the problems, their differences, and their solutions.

11.1.1 Hardware Technology

As said in Chapter 7, the study of hardware faults is essentially based on
statistieal data. This leads to representations by functions, curves and
estimators of the product's reliability criteria. Time (the cause of wearout)
constitutes a fundamental parameter of this criterion: reliability function
decreases with time.

Technology has an important impact on component' s reliability: a given
CMOS technology has a better intrinsie reliability than others, for example, a
better resistance to shorts in the thin oxide structures forrning the MOS
channels, to cuts in metal lines, to crystalline defects whieh affect a
transistor, to electro-rnigrations of metal inducing short-circuits, etc. We
know that the reduction of the component' s geometrie dimensions (shrinking
factors) may have negative effects on the reliability of these components by
amplifying the punctual faults such as local defaults in the serni-conductor' s
crystalline structure.

Of course, the real component sterns from a technologieal manufacturing
process which also influences its reliability. Badly regulated manufacturing
equipment can degrade this reliability. Other important parameters of the
final reliability are the product' s structure and the comrnunieation signals
between modules. Finally, the assembling (connectors, breadboards, etc.) of
the modules influences also the final reliability.

Finally, environmental conditions have a large influence on the product's
reliability. In electronics, we note the preponderant influence of the
temperature. Are also accounted for in the environment' s parameters that
influence the reliability the parameters of the circuit load, such as the
electrical consumption: its increase reduces reliability. Attempting to
improve a final product' s reliability therefore demands the mastering of each
ofthese parameters.

11.1.2 Software Technology

The impact of software technology on product' s dependability is often
unknown or underestimated. Indeed, software is not influenced by time or by
an increase in the extern al temperature. However, once again we find
'technologieal' and 'environmental' aspects quoted for the hardware

11. Prevention ofTeehnologieal Faults 259

technology, as we are going to show in an example.
Consider a 'real-time' application which uses several periodic tasks Ti (of

period Pi) which acquire data from external sensors, treat these data and act
on actuators. Suppose that Ei is the duration of Ti operation. If the task
management is implemented according to a technique called 'Rate
Monotonic Scheduling', we can show formally that the verification of a
relationship coupling the Pi and the Ei guarantees that all the data could be
treated before their deadline. This condition is:

N
LEi / Pi < Ln 2, where N is the number of periodic tasks.

i=l

On the contrary, if we choose a different implementation technology, for
example an on-line task management, using any real-time kernei, the system
can only be verified aposteriori, with many difficulties in establishing
exhaustive tests for the real-time applications. The choice of static (of Rate
Monotonie type) or dynarnic scheduling to implement this set of periodic
tasks therefore has an influence on the trust that we can place in the
software. This example illustrates the impact of the choice of the
implementation on the dependability of software applications.

The optirnization capacity of the compiler used constitutes an example of
the factor associated with the manufacturing or production of the executable
code: according to its performance, the generated code will be faster or
slower, and thus the real-time application' s behavior can change, until
becorning non-conform to its specifications (hence a failure appears).

Figure 11.1. Software implementation technology

Finally, concerning the influence of the environment' s characteristics, we
can again consider a real-time software application. At run-time, this
application interacts with a Run-Time Exeeutive software (or exeeutive

260 Chapter 11

kerne/), both software pro grams being executed on a hardware system (for
example a rnicroprocessor). This structure is illustrated in Figure 11.1. The
behavior and performance of the run-time executive have an impact on the
execution time, and therefore on the application's behavior. As a software
application can have a very long life cyc1e, its hardware and software
execution environment can vary several times during this life. Thus, during
an avionics or automotive system's usefullife, the processor and executive
software will be changed due to the unavailability of previous versions,
improved performance or cost reduction of new versions. The impact of
these changes on the product' s dependability should be considered during
the first realization, in order to avoid failures in the future versions.

11.1.3 Prevention of Technological Faults

Although technologie al faults occur during operation, their eventuality
must however be analyzed from the first stages of the product life cyc1e. For
example, to reduce the appearance of breakdowns makes one choose a high
reliability electronic technology, right from the design stage.

Figure 11.2 shows that the protection actions against technological faults
start at the specification, and continues during design, production, and finally
during operation. Two complementary approaches allow the product' s
reliability to be improved when faced with these technical problems:

• at the executable product' s characteristics level, in order to increase
reliability,

• at the environmental characteristics level, in order to preserve the level of
the previous reliability.

Actually, product' s technological and environmental characteristics are
linked: we choose a technology wh ich answers to the constraints of the
environment. We separate the two approaches here because in many cases
they are not situated at the same level of action or human responsibility.

In this chapter we do not consider the structural approach which, by
using on-line and off-Une redundancy, reduces the probability of failures
appearing, without reducing the technological faults. This approach of
continuity of service acts in masking the faults effect, and does not therefore
belong to fault prevention but to fault tolerance studied in Chapter 18.

Finally, we note that the prevention of technological faults is
complementary to the fault suppression actions exarnined in the next chapter.
These two approaches are often interwoven, in particular by the quality
control wh ich analyzes certain components (techniques c1assified in the fault
removal approach), allowing an ulterior improvement in the final production
(fault prevention).

11. Prevention ojTechnological Faults

Problems

(~· l

~
~./

Solutions

PrevenUo.n

RemovaJ
VeriJiclllioll

PreyeDdoD

RemovaJ
VeriJiclltioll

Villidlllioll

PreYenüon

RemovaJ
Productioll testillg

ToleraDee --_ .•. _---_.
RemovaJ

Figure 11.2. Prevention of hardware faults

11.2 ACTION ON THE PRODUCT

11.2.1 Hardware Technology

11.2.1.1 Reliability Law Comparison

261

Obtaining high reliability products starts firstly with research and use of
techniques which act on the technological parameters in order to improve the
survival of the final product. We know al ready that the different
technological processes wh ich have succeeded during time have brought a
considerable improvement to the product's intrinsic reliability. The
estimated mean time of correct functioning of today' s computers reaches
tens of thousandths of hours, whilst it was only ab out half an hour for the
ENIAC in the 40's!

As reliability is a probabilistic parameter according to time, its estimation
necessitates measurements on sampies representative of the population
analyzed (see Chapter 7). From these measurements, we deduce curves

262 Chapter 11

which are used to compare the products associated with one designed
system. Thus, in the case shown by Figure 11.3, product P2 has a better
reliability than product P 1, as its survival probability is always superior
during time. This improvement results without doubt from the choice of a
better technology, anel/or a better manufacturing process, anel/or a better
assembly, anel/or due to better utilization conditions.

R

1 . __ _ _ .. __ _ -.... -.... -----.

P2 better tban Pt

P2

o time

Figure 11.3. Increase of product reliability

The comparison of the reliability of the two products is not always easy,
as the reliability curves can cut each other. The example in Figure 11.4
shows two products whose reliabilities cross at time T: P2 has a better
reliability from t = 0 until t = T, then it is P 1 which has a better survival
probability. Consequently, the choice between these two products depends
on the mission's duration: for a mission with duration inferior to T, we
would choose the P2 product. After this, the P 1 product is more interesting.

R

1

o T time

Figure 11.4. Compared reliabilities of two product

11.2.1.2 Reliability Mastering

All industrial domains impose reliability standards on the components
used, the severity of which varies from domain to domain. Naturally, the
most drastic are the avionics, space and nucIear domains. The price to pay

11. Prevention ofTechnological Faults 263

(technological and human means, as weIl as the time taken to tune and test)
for these reliability requirements is therefore very high! This cost affects the
design, manufacturing, and also the on-site implementation phases.

Design Choices
During design, the final product' s reliability is influenced by the choice

of appropriate technology. For example, the use of a CMOS technology
which reduces the appearance of flaws and which has less susceptibility to
parasites. Better reliability can be obtained by design rules which impose
constraints on the minimal dimensions of electric lines, transistor channels,
on the gaps between lines and technologicallayers, etc.

Thus, an electronic component can have different reliability levels
according the technological features involved and the way they are used.
Retuming to the ENIAC example, the vacuum tubes were not used in their
fuH power, in order to reduce the number of breakdowns. This property was
already astutely exploited, many years ago, in the Hammond electronic
organs whose reliability at that time was reputed to be excellent.

Production Actions
During manufacturing, reliability is mastered by the use of sophisticated

technical means, precise settings of the manufacturing machine's
parameters, quality control methods at different levels of the chain, special
soldering and assembly techniques, etc.

Reliability Testing
(acceleraud)

RellllbJltty
EyaJuaUon

Deject AIUIlysis

Physical Testing

le Manufacturer

~~ c: ..
c
&.
E
o
u

componenlS

Process
Control

Ii Production \J Testing

Figure 11.5. Reliability & control evaluation

Several operations are led by the integrated circuit manufacturer in order
to evaluate and improve the reliability of the integrated circuits produced.
We can identify 4 operation categories illustrated by Figure 11.5: reliability
evaluation, quality control, process control and production testing. These
operations often use test techniques introduced as fault removal means.

264 Chapter 11

However, these techniques are generally applied to product sampies, not to
remove the defective elements, but to improve the production process in
order to prevent the occurrence of faults of future products.

• The reliability evaluation means subjects sampies representative of the
population of product' s components to accelerated tests, by an increase in
the temperature and/or the power supply.

• The quality control techniques consist of a refined technological analysis
of components taken in the manufacturing chain, in order to determine
the population's quality, and to determine the causes of failures.

• The process control techniques apply tests to the manufacturing
equipment in order to verify their good functioning.

• The production testing means apply physical, chemical, optical and
electrical tests to the components during the diverse stages of the
production chain, and just before they are released to customers.

Reliability evaluation applies principally non-destructive or destructive
accelerated tests in order to estimate the parameters of the survival law of
the population of components. The possible use of destructive test shows
clearly that the aim here is not to detect a particular non-reliable product
from the manufacturing chain, but to reveal a bad reliability of the ensemble
of the products. In the automobile domain, crash tests have the same
objective: to verify the good resistance to shocks during the development of
the car model, and not of the particular car intended to a client.

Refined physical and chemical complementary tests allow mortality
causes to be diagnosed and also to improve the production' s reliability.
These tests are also used by the quality control operations.

The quality control integrates information coming from diverse sources,
in order to verify the product' s quality. This information arises from
measures carried out on the process itself as well as on the products which
stern from it: complete quality control of all incoming materials and
monitoring of all wafer and assembly processes.

Therefore, we subject all or part of the product's components to
reliability assurance tests and quality assurance tests. These tests include
life tests, mechanical tests, thermal tests, lead fatigue, and solderability tests,
as shown by the example in Figure 11.6. Some compliance tests may be
applied by independent organizations, in order to verify that the circuits
satisfy or not given reliability requirements.

The checking and the characterization of integrated circuits are carried
out by varied investigation means. For example:

• extemal inspection with a microscope,

• radiographic inspection,

11. Prevention ofTechnological Faults

• control of the rate of leak ratio in sealed packages,

• detection of free partieies in the cavities of the packages,

• opening the packages and inspecting the dies,

• control of the mechanical quality of the connection wires and dies.

LIFETEST
High Temperature Operation

High Temperature Storage

High Humidity Storage

MECHANICAL TEST

Shock

Constant Acceleration

Vibration

THERMAL TEST

Temperature Cycling

Thermal Shock

Soldering Heat

LEAD FATIGUE

SOLDERABILITY

Figure 11.6. Quality Assurance Test of ASICs

265

The process control becomes a standard in all the production of
integrated circuits. It helps the optimization of reliability through defect
reduction: implementation of a variety of partic1e monitors at each stage of
the manufacturing process to prevent, detect, and eliminate the incursion of
foreign materials into the process. Wafer scanners use laser beams to detect
microscopic partieies on the wafer surface. Laser-based particle counters
measure the number of partieies generated, while local air-borne particle
counters placed at strategie locations near processing or handling areas
measure partieies in the air surrounding the wafers. High sensitive particle
test chips are also used to measure process defect densities and validate
improvements. When a too high partic1e level is detected, partic1e analysis
tools are used to identify their cause by in-depth analysis.

Production testing partieipates in fault removal, and for this reason it will
be analyzed in Chapter 12. However, it contributes also to the increase of
reliability of manufactured products by signaling the manufacturing process
problems. These tests, therefore, can also be used as fault prevention
techniques. The aim of such screening tests is to remove faulty circuits but
also weak circuits able to present infant mortality failures.

11.2.2 Software Technology

In the case of software, the degradation phenomenon does not exist.
However, faults related to the programming technology used (e.g. of the
language) can arise. In order to prevent these faults, the choice of
programming language has to firstly be carried out with precaution.

266 Chapter 11

Secondly, the use of certain of the chosen language's features can be
forbidden. Only one restrained version of the language is accepted.
Following this, mIes impose the way to use the remaining features. Finally,
the evaluation means of the written program' s dependability are put into
place by sampie analysis. Regarding the programming process, their
conclusions allow improvements to be proposed. These four means of fault
prevention associated with the programming language are developed in the
following sections. The prevention of faults relative to the run-time
environment of these languages will be studied in section 11.3 .2.

11.2.2.1 Programming Language Choice

The realization of a system by using a software technology necessitates
choosing a programming language. Once the program has been written in
this language, the implementation is then led by successive stages
(compiling, linking and execution) on which the engineers have few actions.
A well-argued analysis of the languages has to be done. The choice of a
language has to be justified by dependability criteria. For example, the Ada
language is today frequently chosen in numerous domains (aeronautics,
space, nuclear, etc.), not for its original features (genericity, protected
objects, etc.), but for its intrinsic dependability implied by its features.
Without going into an exhaustive study, we simply quote here two examples.

Firstly, Ada offers greatly varied features which permit, for example, to
avoid to confuse two conceptually distinct types having the same
implementation.

Thus, the statements
type Lift_Levels is new integer range 0 ... 9;
type Digits is new integer range 0 ... 9;

define two distinct types which do not allow a type expression to be
assigned to one variable of the other type, although these two types are
implemented in an identical way. In addition, even if these two types inherit
values and operations from the general type integer, they are still distinct.

We give a second example. Numerous programming faults are due to the
use by a component of elements whose access is forbidden. These elements
have strictly restricted access rights to other components. The Ada language
offers several encapsulation mechanisms, which allow elements to be made
private. These elements can, for example, be variables or subprograms.
Packages, tasks, and subprograms are examples of features which permit
such a protection. For instance, a subprogram Child can be included in a
subprogram Father. Therefore, the Father is the only one which can call
the Child.

Procedure Father is

11. Prevention ofTechnological Faults 267

procedure Child is

begin

end Child;

begin

Child; subprogram call

end Father;

11.2.2.2 Restriction of the Features

Onee the language has been retained, its features have to be studied in
order to exc1ude those whieh lead to an increase in the risk of introducing
faults. This reduction of the number of language features is therefore a fault
prevention action. Here again, we eannot go into detail with an exhaustive
study in this book. We will exarnine only two features by showing why they
are dangerous and therefore why their use should be prohibited.

Example 11.1. Shared variables

The programming of multi-tasking applieations ean often lead to the
implementation of communieation between tasks by shared variables. The
behavior induced by the use of features allowing this programrning ean be
hazardous. We consider two variables VI and V2 local to two tasks Taskl
and Task2, and a shared variable s. The first task inerements the shared
variable whilst the seeond deerements it as shown in the following extract:

task Taskl is
Vi:

begin

Vi : = S;
Vi := Vi + 1;
S := Vi;

end Taskl;
task Task2 is

V2:
begin

V2 := S;
V2 := V2 - 1;
S := V2;

end Task2;

268 Chapter 11

Figure 11.7 shows three possible sequences of the execution of these two
tasks. If the initial value of S equals '3', its final value is '2' in case 1, '4' in
case 2, and '3' in case 3. In order to avoid meeting such hazardous
functioning, communication by shared variables will be forbidden, even if
the chosen language authorizes it.

The problem encountered here arises from the use of the copies Vl and
V2 of S, local to tasks Task1 and Task2. Exercise 11.3 shows that reading
or writing directly in a data structure, without carrying out such copies, leads
to other difficulties when the data structures are complex. Exercise 11.4
shows that hazardous phenomena also occur when simple data structure are
used without local copies (s : = S + 1 and s : = S - 1).

Vl:=S;

V2:=S;
Vl:=Vl+1;

S:=Vl;
V2:=V2-1;

S:=V2;

: Vl:=S;
I

V2:=S; i Vl:=Vl+1

Vl:=S; i
V2:=V2-1; i S:=Vl;

i
Vl:=Vl+1; S:=V2; i

!
S:=Vl; i

V2:=S;

V2:=V2-1;

S:=V2; I
\.. Time) \.. Time)~,:",-- __ T ime) '--__ y_----.J '--_ y_--- _ y ___ oJ

Case 1 Case 2 Case 3

Figure 11.7. Use of shared variables

Example 11.2. Goto statement

The goto feature is offered by the majority of programming languages.
Its implementation on hardware does not pose any problems. However, its
use is imperatively forbidden for dependability reasons. The probability of
being the cause of faults is high, as this feature does not allow a dear vision
of control flow. Indeed, it creates a rupture in the interwoven structure of the
control flow. On the contrary, this structuration is favored by:

• statements such as 'if ... then ... else', and 'for', which offer static
overlapping shown in the left part of Figure 11.8, and

• the subprogram whose call mechanism proposes a dynarnic overlapping
symbolized in the right part of Figure 11.8.

The rupture of this structuration by the goto feature is represented in
both cases by Figure 11.8. This rupture is in total contradiction with the two
abstraction concepts indispensable to the understanding of the programs: 'is
composed of' and 'makes use of'.

11. Prevention ojTechnological Faults 269

if... then
.. .
for ... Ioop subprogram subprogram if ... then ... I - L "otoq

... .1 .. .
caUP2 gotoL

l:J
..........

eodP2:" 1
L: . ..

end if end PI.
".

end loop;

~
...
L: . . .

end if;

Figure 11.8. Structured control flow

11.2.2.3 Imposing a Programming Style

The way to use the authorized features is often restrained by utilization
guidelines. The aim of these guidelines is to limit the risk of technological
faults that some uses induce with a high probability.

For example, the use of the statement return X; by a function to return
a value to the calling program cannot be placed as the last statement of the
body of the function . Then, each use of this statement creates a rupture in the
control flow; hence, several uses multiply the number of output points of the
function, making it more difficult to understand. Consequently, a guideline
specifies that the return statement must be the last one in a function body.

We consider the data type FIoat as a second example. Due to rounding
errors, two distinct numeric values can be conceptually identical. This is the
case of 0.999 ... 999 and 1.0. If the use of the 'Float' type has not been
excluded, the comparison between the two real numbers has to be done by
integrating these errors. We will use for example:

if abs(VI-V2) < Epsilon

instead of
if VI == V2

% the two values are equal

11.2.2.4 Programming Process Improvement

Programming automation
The production is principally a human activity where source programs

are concerned, whilst it is mainly automated for hardware products.
Therefore, we seek firstly to prevent faults by automating or by systemizing
the programming stage. For example, a tool can carry out the transformation
of a design model from a determinist finite automaton into a program.

270 Chapter 11

Example 11.3. A simple automaton

We consider the example of the automaton in Figure 11.9. We suppose
that 'Activate', 'Stop', 'Sleep', 'Action', and 'Complete' are 5 services
offered by the component. This component accepts to provide these services
according to its current state.

~------------~. ~--~

Figure 11.9. Automaton

This behavior is transposable in a systematic way into Ada language by:
task body Example is

type Set_of_States is (Sleeping, Waiting, Acting,
Terminating) ;

Current_State: Set_of_States .- Sleeping;
begin

loop
select

when Current_State = Sleeping

or

=> accept Activate do

end Activate;
Current_State:=Waiting;

when Current_State = Waiting
=> accept Stop do

or

end Stop;
Current_State:=Terminating;

when Current_State = Waiting

or

=> accept Action do

end Action;
Current_State:=Acting;

when Current_State = Acting
=> accept Action do

11. Prevention ofTechnological Faults

or

end Action;
Current_State:=Acting;

when Current_State = Acting

or

=> accept Complete do

end Complete;
Current_State:=Terminating;

when Current_State = Terminating
=> accept Sleep do

end select;
end loop;

end Example;

end Sleep;
Current_State:=Sleeping;

This translation can easily be systematized:

271

• introduction of a data type (Set_of_States) which enumerates the
automaton' s states,

• introduction of a variable (Current_State) which defines the current
state, and which is assigned by the initial state,

• introduction of an infinite iteration (loop) which allows us to return to
the selection statement,

• according to the current state, accept the services associated with the arcs
which leave from this state (when Current_State = =>
accept ...), carry out the associated action (do ... end), then make
use of the new current state indicated at the extremity of the arc
(Current_State : = ...).

The pro gram produced is undoubtedly not optimal. For example, the
automatie translation leads to the writing of the assignment
'Current_State : = Acting;' after having accepted the service 'Action',
whilst the state already had this value (when Current_State = Acting).
The automatization itself is not justified by the search for an optimized
program but by the absence of faults in this program.

Programming assessment
As the programming cannot be entirely automated, the pro grams

produced have to be analyzed in order to improve this activity which still
remains essentially human.

This analysis is firstly done on pro gram sampies during development.

272 Chapter 11

However, we do not possess information about potential faults at the origin
of these possible future failures. For this reason, we evaluate if the
constraints imposed on the programming style have been respected: non-uses
of forbidden features, respect of the utilization mIes for the authorized
features. If one of the constraints is not respected, we point it out to the
engineer so that he or she can modify his/her way of working. We know,
indeed, by experience that this non-respect creates a risk of faults. This work
can be carried out on pro gram sampies as we suppose that the bad work
methods are still practiced.

If we possess information regarding the failures of the already
operational programs, the analysis of fault causes allows constraints or
guides to be added to the programming process. Therefore, we advise to
record failures and to maintain a database containing the circumstances and
analysis of causes.

11.3 ACTION ON THE ENVIRONMENT

11.3.1 Hardware Technology

For a given technology, we increase the reliability by mastering the
parameters of the application's non-functional environment. As these
parameters are numerous and varied, it follows that the control means are
also very varied. Thus, as we have already pointed out, the temperature is a
fundamental parameter of the reliability of electronic components:

the reliability decreases when the temperature rises.

There are laws wh ich permit, for a given technological population, the
reliability at a 01 temperature to be determined from established databases at
02 temperature (Henry's abacus quoted in Chapter 7). Different techniques
planned during design, production, and possibly during the application's
implementation, allow the temperature to be controlled and therefore
increase or guarantee a certain level of required reliability:

• a passive or 'natural' control, for example the rotation of an artificial
satellite which avoids having the same side exposed to the sun,

• an active or 'artificial' control by the product' s air condition: this is the
case of microprocessor cooling techniques by aradiator and an air fan, or
computer cooling by water used for ECL technology.

In the same manner, perturbations arising from the environment, such as
particles or electromagnetic phenomena, have to be analyzed very early on;
they lead to various solutions:

11. Prevention ofTechnological Faults 273

• interna! by the choice of technologies which are not sensitive to these
perturbations,

• or external by the use of shielding techniques.

It should be known that the alpha particles constitute a real problem for
DRAM type memory, by provoking the loss of stored data by charge or
discharge of the memory points which are of capacitive type. These
temporary faults are qualified as soft faults (in opposition to permanent
faults which are said to be hard faults); they can affect industrial
applications. In particular, they have been reduced by the use of a passive
protection, a layer of resin applied on the integrated circuit which traps these
partic1es. The importance of the efforts made by companies working for
aeronautic and space applications in order to counter problems of the EMC
(Electro-Magnetic Compatibility) should also be known. International
standards that must be satisfied by electronic equipment are being put into
place, which allows higher robustness against radiation.

Beyond particular points dealing with temperature or radiation, all
operating conditions should be mastered during the creation stages, then
controlled during the operation by supervision and maintenance techniques.

11.3.2 Software Technology

The production of an executable pro gram from a program source, and its
execution in operational phase are entirely automated. The tools used for this
are the following: a compiler, a linker and a Run-Time Executive or Kernel.
They are regrouped under the term of Run-Time Environment. Obtaining
these tools does not require big efforts from the source program designer.
He/she selects them rapidly with the purchase price as the principal criteria,
and then the ergonomy of the interface or the quality of the documentation.
Dependability issues are generally not considered. In the same way, a Run
Time Environment has to be chosen with care, taking the demands for
dependability into account. We are going to present three criteria which
should be studied:

• the existence of Run-Time Environment verification means,

• the research and exc1usion of language features whose diverse
implementations lead to hazardous behavior,

• the definition of constraints on the implementation of the language's
features in such a way which wams against the effect of perturbations
altering hardware resources.

274 Chapter 11

11.3.2.1 Confidence in the Run-Time Environment

The trust attributed to a chosen Run-Time Environment language has to
be justified. Indeed, the presence of a fault in a compiler, a linker, or an
executive can induce a failure in the application. This trust can be
established by tests in which the inputs are constituted of a set of programs
which manipulate the possibilities of the programming language. Due to the
multitude of the possible feature combinations offered by the language, the
realization of exhaustive tests constitutes an enormous and non-direcdy
productive work for the firm. Not being able to carry out these tests, this
firm disposes of two complementary solutions:

• use of a language whose validation procedure for run-time environments
already exists and which is accessible (this is the case, for example, with
Ada language),

• keep as much as possible, during several projects, an already used
environment whose list of usage situations creating erroneous programs is
maintained. This information arises from the rnanufacturer and from the
environment's user groups. This has to be added to the knowledge of the
engineers who are responsible for the pro gram development.

In this last case, even if the environment present flaws, they are identified
and we can have faith in the use of language from which have been
forbidden the yet recorded dangerous configurations. We should point out
that, contrarily to the first solution (environment validation procedure), it is
the compiler' s clients who (unfortunately) are frequently the testers. The
need for dependability therefore justifies the fact that a company refuses to
use the 'last compiler which has just come out' .

11.3.2.2 Hazardous Features

Certain features of languages are not conceptually dangerous. For this
reason, they have been preserved after their study which was exposed in
section 11.2.2.2. However, these features have to be exciuded, due to the
variable behavior they induce in the executable program, according to the
realization choices of the Run-Time Environment.

Pay attention! The real effect of a feature on an executable program's
functioning can vary. This happens not only when passing from one
environment provider to another, but also for two environments which come
from the same provider. These two environments can be distinguished by
different hardware platforms or by different versions on the same platform.

We consider real numbers as a first example. Their rnathematical
definition is very precise. However, a computer cannot transpose this
definition. For example, the series SN = I/I + 1/2 + 1/3 + ... + 1/N is

11. Prevention ofTechnological Faults 275

mathematically divergent whilst it converges when it is translated in the
form of a program. Indeed, when N is big, lIN is assimilated to 0.0. In
addition, the value to which the program converges depends on the
definition of calculation means offered by the Run-Time Executive.

We consider a second example of a program which uses shared variables.
We suppose that no interleaving exists between the used features as
described in sub-section 11.2.2.2. Therefore, there are no design faults.
However, its implementation on a distributed system can be carried out
using several exemplars of the variable. A copy for each machine executing
at least one task which makes reference to this variable will indeed increase
the performance. However, the integrity of the copied values is not always
guaranteed. Only the 'synchronization points' between tasks generally
ensure bringing all the diverse copies up to date. It seems that this situation
cannot be meet in the case of a simple variable (contained in a memory
word) and memorized on a single machine. Exercise 11.4 shows that this
problem can also exist in this case, even on a mono-processor system.

11.3.2.3 Implementation Constraints

In the case of software technology, restrictions can be made to the way a
feature is implemented on a given hardware platform. These constraints
apply for example to the code generated by the compilation of a language
statement. They aim at obtaining a unique behavior and to support the
perturbations of the execution resources. Once again, the demands of
dependability will eventually go against the demands for performance.

To illustrate these constraints, consider the example of the classical
multiple branching statement (statement Case of Ada language, or Switch of
C language).

Example 11.4

case Choice is
when Choice

when Choice
when others

endi

1 => Treatment_li

N => Treatment_Ni
=> Treatment_othersi

Two techniques are generally used to implement this statement.

The first one, called 'branching by address table', uses a table, which, at
every 1 value of the Choice variable, makes the address correspond to
where Treatment_I code starts. If Choice can take more than M values,
with M>N, the addressing table contains the addresses of the start of
Trea tment_Others for the M-N last cases. This solution produces a high-

276 Chapter 11

performing final executable code, as the addressing is direct according to the
1 value of the Choice index.

The second solution treats this statement as a set of nested i f:
if Choice = Choice_l then Treatment_I;
elsif Choice Choice 2 then Treatment_2;

elsif Choice
else Treatment_Others;
end if;

The execution of the code thus generated is a lot slower. Indeed, before
starting the execution of Treatment_I, it should be stated that: Choice "#

Choice_l, then Choice "# Choice_2, then Choice "# Choice_3, ... ,
and finally Choice "# Choice_I-l.

However, if the value of the Choice variable does not belong to the
value intervals (Choice_l, ... , Choice_N), nor to (M -N) other possible
values (branch Treatment_Others), due to a previous erroneous
calculation or due to a fault in the memory containing the value of Choice,
therefore:

• with the first solution, the branching will be carried out anywhere (at a
memory address outside the table, non-specified),

• with the second solution, the erroneous value of the Choice variable will
provoke the execution of Treatment_Others.

In the first case, the program' s real behavior will be hazardous, In the
second case, it is known apriori. Therefore, the Treatment_Others can be
reserved to an error treatment.

11.4 EXERCISES

Exercise 11.1. Component choice

A product can be realized according to two non-redundant and
functionally equivalent structures which use components of reliability laws
with constant failure rate. The first solution SI has:

- 12 components with a failure rate of 10'7,
- 1 component with a failure rate of 10'6,
- and 3 components with a failure rate of 10'5.

The second solution S2 has 4 components with a failure rate of 10'6.

Which one is the best choice from the reliability point of view?

11. Prevention ofTechnological Faults 277

Exercise 11.2. Comparison ofthe reliability oftwo products

Two products, PI and P2, have exponential reliability laws of respective
failure rates Al = 10-5, and A2 = 10-7, at a temperature of 18°C. We suppose
that the failure rate is multiplied by 10 for an increase of temperature of
20°C for the product PI and of 10°C for P2. Furthermore, the products have
a maximum temperature of good functioning of 100°C for P2 and of 120°C
for PI .

For which temperature range does the PI product have a better reliability
than the P2 product?

Exercise 11.3. Shared FIFO

The asynchronous communication between real-time application's tasks
is programmed by using a FIFO list (First In - First Out). This list is
implemented by a data structure composed of an array named Buffer of
size Buffer_Size with two indexes Write_Index and Read_Index.
These indexes respectively represent the index of the first free place in the
array, and index of the next character to read. In the zone of the array
between Read_Index and Wr i te_Index-l, values are stored as shown in
Figure 11.10.

IFIFOI

T WrireJ 1 • Read_Index ·1

D A~Y_M" wri,~ ""~...,
Figure 11.10. FIFO management

We suppose that there is always at least one element in the array and that
it is never full. This array is managed like a circular buffer. Thus, the access
operations Write and Read are programmed by:

Procedure Write{X : in Element) is
begin

Buffer{Write_Index) := X;
Write_Index .- (Write_Index mod Buffer_Size) + 1;

end Write;

278

Procedure Read(X ; out Element) is
begin

X ;= Buffer(Read_Index);

Chapter 11

Read_Index ;= (Read_Index mod Buffer_Size) + 1;
end Read;

Determine the state of the array when:

1. two calls to wri te happen at the same time (the statements of the body
of the procedure Wri te are executed in an interwoven way);

2. a call to wri te and a call to Read happen at the same time (the
statements of the bodies of the procedure Wr i te and Read are executed
in an interwoven way).

What would you conclude about this programming of an asynchronous
communication between two tasks?

Exercise 11.4. Hazards in shared variable implementation

We consider a multi-task application which uses a shared simple type
variable, that is to say memorized in one single memory word. We will also
suppose that all the modifications of this value are carried out directly,
without local copies in the tasks, contrarily to what was presented in seetion
11.2.2.2. No design or programming problems exist therefore, and this
communication mechanism between tasks seems to be without risk. Its
utilization should even be encouraged due to its performance. This exercise
aims at showing that faults are introduced by the implementation of this
mechanism.

We study the implementation of reading and assignment statements for
this variable. We will suppose that the microprocessor offers decrease and
increase statements which act uniquely on the registers. By studying the
code generated by the compiler for the extracts of two tasks, show how this
brings us to the problem discussed in section 11.2.2.2.

Program:
Task 1 ;

1++;

end Task1.
Task 2 ;

1--;

end Task2.

Chapter 12

Removal of Technological Faults

We continue our exploration of the principal groups of protection
methods by now considering dynamic analysis techniques, called here off
line testing techniques. Test sequences are applied to an executable product
during the production and operation stages. This chapter dealing with the
removal of technological faults extends Chapter 11 dedicated to prevention
of technological faults. However, the techniques presented here also allow
the detection of certain functional faults stemming from previous
specification and design stages, faults which occurred despite the protection
means used during these stages. We note that these residual faults should
have been detected earlier, as their detection in the production, or, even
worse, in the operation phase, may question the design and technology
choices. This chapter is principally concemed with hardware products. In
Chapter 13, we will complete this presentation of on-line testing with the
study of several simple structural test methods for hardware and software
systems.

Section 12.1 provides a general overview of off-line testing and the
relationships between the product and the tester. In section 12.2, we focus
our study on the specificity of logical production and maintenance testing.
Finally, the problem of generating tests on logical circuits at the gate level is
considered in section 12.3.

12.1 OFF -LINE TESTING

Test plays a major role amongst the fault removal approaches. In Chapter
10, we have already discussed this point, in regard to the design stage.

279

J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

280 Chapter 12

12.1.1 Context of Off-Line Testing

Here we focus on the production and operation stages (Figure 12.1)
which imply different test methods known respectively as production
testing, and maintenance testing.

Problems

(~)
Solutions

PreveDtioD
;;,'-;,'-;;:::::::.::.=::::::=-_-----

Removal
VerificllIioll

Removal
VerirlCllIioll

Validtllioll

PreveDtioD

Removal
PrO/NCtto" tntIIt6

Toleranu

RemovaJ
Mo;"tnr_ tndI,I

Figure 12.1. Production and maintenance testing

Test is originally an experience led extemally on a real system to confirm
of invalidate a hypothesis or to distinguish between several hypotheses. This
word has been first developed in the biological and psychological domains.
We thus apply stimuli, that is to say a set of sequences constituted of input
vectors, and we observe and interpret the output responses by comparison
with the expected values. In our context, we will subject a product to an
experiment in order to determine if it functions correct1y or not, and
eventually identify the fault or faults affecting it.

Two kinds of tests exist:

• The detection test, which answers the question:
does the product function correct1y?

12. Removal ofTechnological Faults 281

• The diagnosis test, or localization test, or debugging, which answers the
question:
wh ich faults affect the product?

These two test categories are different. They are traditionally linked
according to a scenario illustrated by Figure 12.2 which includes detection,
diagnosis (or localization), and correctionlrepair operations.

~ diagnosis I ~ correctionlrepair I
Test

Figure 12.2. Test mechanism: detection - diagnostic - correction

Finally, the application of a detection or diagnosis test is generally
carried out on a product disconnected from the process to which it is
normally linked during the operation stage. Therefore, we say that this is off
line testing. This is not the only way to proceed, and we will meet other
techniques which test products during their functioning in their natural
environment: this other test approach will be referred to as on-line testing. It
will be examined in Chapter 16, as it is often the first step of fault recovery
in fault-tolerant systems.

12.1.2 Different Kinds of Tests and Testers

12.1.2.1 Test Equipment

The basic context of the test of electronic circuits is given by Figure
12.3. The circuit, called the device under test (or DUn, is connected to an
extern al entity called the tester, or test equipment. This tester applies a test
sequence to the product and observes how the product reacts. According to
the circumstances, the tester is a human operator, a physical system or a
software system.

Tester

Figure J 2.3. The tester

282 Chapter 12

This situation correspond to off-chip testing, because the resources are
allocated externally. On the contrary, on-chip testing uses embedded test
resources. We will exarnine this new and developing approach when
studying the Built-In Self-Testing (BIST) techniques (in Chapter 14).

12.1.2.2 Test Variety

Investigation techniques allowing a circuit to be tested are numerous. We
can act on the circuit and observe the results by contact probing (electrical,
and mechanical), or non-contact probing (electron-beam or laser).
Investigation means can be internal (special test connectors and pads,
scanning by electron-beam or laser) or external (normal input/output pins or
special pins used for testing purpose only).

In electronics, we often meet the word 'test' in numerous different
situations. In order to show this diversity, we take the particular case of the
production of electronic equipment used in an aeronautic application. This
equipment comprises integrated circuits designed and manufactured by a
serniconductor manufacturer. Figure 12.4 illustrates the different stages of
this particular cyc1e and the verification and quality assurance actions
conducted by the various agents involved in this process. These tests can be
useful in fault prevention as weH as in fault removal. We have already noted
the tight links existing between these two dependability approaches.

Design
Veri.fication

ReUability Evaluallon

Quallly Control

Reliability Testing
(acceler3led)

De/eet Analysis
Physical Testing

Component
Design

Je
Manufacturer

Alpha & Beta
Tests

Component Process
Fabrication Control

Production Testing

Input Testing Equipment
Manufacturer

IC Integration I
Production Testing

User
Maintenance Testing Mointenonce I

Figure 12.4. Examples of different test operations

12. Removal ofTechnological Faults 283

These verification operations are firstly carried out during the design
stages of the components considered here. These operations have already
been presented in Chapter 10. Before the final commercialization, the
components are subjected to compliance test to ensure their adequacy to the
specifications. Then, these components are released to a "friendly" user
(Alpha test), then, the scope of their use is enlarged to a still controlled
group of users (Beta test). Additional conformity tests can be processed by
external organizations or clients.

The IC manufacturer subject manufactured components and production
machines to a certain number of tests during the manufacturing process and
after manufacturing to ensure that the components will be of good quality
and reliability. On the one hand, these operations concern the reliability
evaluation and the quality control (by means of reliability accelerated
testing, defect analysis, physical testing), and the process characterization
and control already introduced in Chapters 7 and 11, regarding fault
prevention. On the other hand, we meet the production testing, which is
analyzed in this chapter. All the tests carried out in the normal
manufacturing chain are applied to the majority of products, if not to all of
them, and they have to be non-destructive. On the contrary, the quality
control tests, and reliability evaluation tests are applied to significant
sampies of the components. They can be destructive, notably when we want
to identify the fault at the origin of an observed failure.

The manufacturer of the final equipment integrates the components after
having subjected them to tests specific of the application. As for Ie
production, compliance, alpha, beta, and conformity test procedures can be
applied to the produced equipment. Then, the manufacturer naturally carries
out a production test of his/her final equipment. Finally, a maintenance test
is applied to the equipment during its active life, for example by the airline
company using the equipment.

We complete this presentation in the following sections by considering
only production and maintenance testing.

12.1.2.3 Production Testing

The production tests of the electronic components are the responsibility
of the manufacturer of the serniconductors.

We essentially meet four types of such tests and therefore technological
investigation means illustrated by Figure 12.5: the parametric test, the
continuity test, the logicalor functional test, and a group of diverse
techniques called here 'others'.

1. The parametric test considers the electrical aspects of the circuit,
according to various power and load conditions: supply, drive and leakage
currents through the pins, impedance values, noise immunity, and dynamic

284 Chapter 12

aspects of component switching. For example, we measure the currents and
voltages of a sequence of input/output signals, and we draw waveforms
wh ich are then compared to those of the data sheets. From a dynamic point
of view, we can analyze the functioning of a component at different
temperatures (-55°C, 25°C, 125°C). The IDDQ testing measures the supply
current of eMOS circuits. Defect-free CMOS circuits have very low levels
of current during quiescent states. On the contrary, these current levels are
higher in the presence of a silicon defect. SO, IDDQ testing detects the
physical defects that create a conduction path from the power supply to
ground, hence producing an excessive current.

2. The continuity test ensures that the electrical links between the
components are correct: chips and their packages, printed circuit boards,
motherboards, and various kinds of cables and connectors.

3. The logical test (also called functional test) checks the logical function
wh ich has to be ensured by the circuit; this is the type of test which is the
main subject of this chapter.

3. Other types of tests can also be applied to components: visual inspection,
mechanical pin tests, corrosion tests, etc.

Types of tests Impedances, eurrents,
• ~ load influenee, etc.

~ Parametnc L ., Speed, signal patterns, ete.

~ Continuity ~ . Impedances: connectors,
~ Logical or function~ backplanes,

~ Others ~ Printed Orcuit Boards, ../l ~ ",ppo'" d, IC, ""

mecbanicaJ. visual check the funelion
inspection

Figure 12.5. The four categories of production testing

Some of these tests are sometimes carried out with environmental
constraints such as the temperature or the electric supply; however, these are
non-destructive burn in tests . Figure 12.6 gives an example of test cyde of
an ASIC production. This test cyde integrates a screening for infant
mortality by a 4 hours electrical bum-in at 125 °C and at elevated voltage.

Furthermore, we find the term schmoo plots wh ich defines a logical test
wh ich is applied by making certain parameters vary, such as the power
supply voltage andlor the signal frequency. From this experiment, the correct
functioning domains are deduced.

12. Removal ofTechnological Faults 285

The integrator of the electronic components used in the final product' s
manufacturing also subjects these components to input (incoming) tests.
These electric or logical tests are often of 'burn-in' type, in order to
eliminate the weak components. Therefore, they enter in the category of fault
prevention already considered in Chapter 11.

WAFER FABRICATION
ELECTRICAL TEST (100% components)

Funetional Test

oe Pararnetric Test

AC Test at low VDD

ASSEMBLY
BURN-IN (100% components) ~ 4 H at 125°C. + Elevated Voltage ~I---t

ELECTRICAL TEST: oe Parametrie Test

Functional Test

AC Test at low VDD

Critical Path Test

!JASSEI>? RO" return to Bum-In
Gudged by % of defectives and fail category)

yes

INWAREHOUSE INSPECTION

Figure 12.6. Example oftest flow for ASIC devices

12.1.2.4 Test Equipment

-

Each of these test categories implies a very specific and complex test
equipment (or tester) aiming at storing and processing information, driving
(and extracting) signals to (and from) the tested product thanks to various
circuits: bed of nails, high definition probes and electronic interfaces,
switching matrices to propagate the signals, and so on. These testers are
often very expensive: we can quote costs of testers around 5M$! They are
used in various production domains: electronic components, automatic
systems, computing systems, communication systems and computer
networks, etc. Certain of these testers are products manufactured and sold by
specialized companies; others are specifically developed for particular
applications (for example, proprietary Automatic Test Equipment in the
aeronautical domain).

Of course, the complexity, costs and the importance of tests and testers
have lead to the elaboration of standards for the description of test sequences
and their application by the testers.

We quote the STIL standard (Standard Tester Interface Language
normalized IEEE P1450) which is a language describing test patterns and

286 Chapter 12

application protocols in standard generic form and the IEEE P1500
(Embedded Core Test) which is used for application of tests to embedded
cores: test-description language, test-control mechanisms and peripheral
access mechanisms.

Another example of the standardization of test equipment is the VXI
(VME eXtensions for Instrumentation) which is a multi-vendor industry
standard (IEEE 1155-1992). This standard is supported by numerous
instrument and test equipment manufacturers (like Tektronix and HP). It
perrnits the connection of numerous instruments such as waveform
generators, analog-digital converters, relay matrices and drivers, digitizing
counter/timers, specific simulation and fault injector modules, etc. It is
notably employed in the auto motive and avionics test application.

In the integrated circuit test domain, we find a large number of
companies which manufacture specific testers:

• Testers designed to address design verification and prototype test:
companies such as ASIX, Cadic, HP, HPL, Hilevel Technology, IMS,
Tektronix, Texas Instruments, etc.

• Production testers: Advantest, Ando, Fujitsu, GenRad, Megatest,
Mitsllbitshi, Sentry, Tektronix, Teradyne, Toshiba, Trillium, etc.

12.1.2.5 Maintenance Testing

Some test production equipment and methods are employed for
maintenance testing. However, the test objectives and constraints are
generally different. In particular, the investigation means is more reduced
than during production, and we are mainly interested in diagnosing the faults
detected in order to proceed to repair them efficiently. These characteristics
will be defined in the next section in relation to logical tests.

LOGISTIC ASPECTS
Stock management
Equipment management
Man-power management

MAINTENANCE Work management

SYSTEM TECHNICAL ASPECTS
Experimental approach
Model-based diagnosis

Figure 12.7. Computer Aided Maintenance

The maintenance calls for various operations: research of documentation,
fault diagnosis, management of replacement parts, repair, and final system

12. Removal ofTechnological Faults 287

test. Two categories of Computer Aided Maintenance (CAM) computing
tools assist the maintenance team (Figure 12.7):

• Logistics: management of human resources, stock and budgets,

• Technical: rnaintenance techniques assisted by computer or systems
which help the diagnosis.

Various classifications of the maintenance testing approaches have been
proposed, according to the point of view considered: knowledge about the
system and/or the faults and failures, type of information (certain or
statistical), type of involved techniques (inductive or deductive), etc. We
adopt a simple classification based on two groups: the experimental
approaches, and the model-based approaches.

Experimental approaches
The experimentalapproaches, also called empirical associations, are

based on knowledge of faults or errors, failures and their relationships. These
relationships between observed symptoms (failures) and the list of possible
causes (faults/errors), and sometimes tests to be executed to precise the
actual cause, are stored in a knowledge database.

When a failure occurs, an expert system or a human operator determines
the real causes using the database. As this analysis does not require any deep
knowledge on the product behavior or structure, it is called surface or
shallow reasoning. The term reasoning by association is also used.

The main problem with this approach deals with the definition of the
knowledge database. 1t is constituted from two sources of information.
Firstly, it uses experimental feedbacks from exploitation: the maintenance
agents communicate information about real failures and their causes found
by their own analysis. Secondly, this knowledge is produced by an analysis
of the product before its use. This analysis involves two kinds of methods:

• 1nductive methods such as the FMEA. Starting from supposed fault (a
fault model is supposed known), the induced failures can be determined.

• Deductive methods, such as the Fault tree Method (FTM). Starting from
imagined failures, their causes as faults or errors are determined.

In practice, the two methods are used together: the database contains
initial pieces of information obtained by an analysis of the system; this basic
knowledge is then extended by experimental feedback from operation.

Model-based approaches
The model-based approach es do not explicitly assurne any fault or error

model. Hence, no relationships between failures and faults exist apriori.

288 Chapter 12

These relationships are established for each failure to be diagnosed, using
the system modeling: specified behavior, designed structure, etc.

The occurrence of a failure and the determination of the causes are
established by a comparison of the modeling of the actual behavior or
structure and the corresponding modeling of the faultless system. For this
reason, this approach is also called diagnosis based on deep knowledge, or
diagnosis based on structure andfunction.

To make the diagnosis easier, a diagnosis algorithm, or diagnosis
process, is provided. 1t defines firstly, modeling tools, such as the diagnosis
fault tree introduced in sub-section 12.2.4. 1t defines secondly, tasks or steps,
an example of which will be given in section 13.7 of Chapter 13 dealing with
structural testing, as this diagnosis method needs knowledge on the system
structure. Certain tasks can use for instance the application of fixed or
adaptive test sequences.

To conclude, experimental approaches are mainly used when
associations between faultlerror models and failure models, such as in
Electronics. The model-based approaches are efficient when such
associations cannot be provided as database. The term experimental
approaches refers to established knowledge, and does not imply additional
experiments on the product, such as test sequences which can be used in
model-based approaches.

We must also mention that the techniques based on these approaches can
be used off-line, that is after a failure occurrence in a system which is
stopped, or on-fine, that is during operation (self-diagnosis). In practice, both
approaches are often used together, and are partially implemented in the
system (for instance, error detection only), and handled off-line.

12.2 LOGICAL TESTING

We will now focus on the logical test issues during the production and
maintenance stages.

12.2.1 Logical Testers

12.2.1.1 The Three Basic Families of Testers

In order to simplify our study, we suppose:

• that the test has one single sequence (called input sequence) constituted
of n input vectors applied to the product « ei»,

• and that the tested product responds to this sequence by an output
sequence of n output vectors « Si ».

12. Removal ofTechnological Faults 289

Each vector ej is called elementary test vector. The test sequence is the
list of all test vectors. Sometimes, the test sequence represents the input
sequence only. The test can be constituted of several sequences with or
without previous product initialization, and their length (number of vectors)
is not necessarily the same. We should note that numerous products do not
satisfy the simplistic rule of '1 input vector - 1 output vector' . For example a
microprocessor does not respond immediately to each applied input vector.
To deal with this case, we introduce the notion of 'no value' ,as one of the
normal output values. In addition, the tester may only look at output data at
certain times during aperiod; this is usually called strobing technique. Thus,
we do not observe the outputs in a continuous manner. For example, when a
test vect'or is applied to a microprocessor, it can provoke a sequence of
interna! operations (it is the . case when a microprocessor executes an
instruction); then, the output data given by the microprocessor is sampled at
the end of this sequence (hence, after a certain number of c10ck pulses).

Three different logical test approaches exist: with a reference list
(illustrated by Figure 12.8-a), with a standard (or referent) product (Figure
12.8-b), and by signa tu re analysis (Figure 12.9).

Tester Input Sequence
Tester

Input Sequcnce ... ~
? /" 1 ß..j

" ~
....

SP.l ... Oulput Sequcncc P jI

~ " '+ R .' I" , /
~~ "Output Sequences ,~
~ e e Reference

a) Test v.ith refererx::e list b) Test v.ith referent r:rOOlO

Figure 12.8. Test with reference list and referent product

Tester Input Sequence

Figure 12.9. Test by signature

290 Chapter 12

12.2.1.2 Test with Reference List

The tester applies a test sequence and compares the output sequence
delivered by the product with a predefined reference list (stored in the
tester's memory). This is known as a determinist test whose sequence is
obtained either automatically (algorithmic test generation) or manually
(thanks to the designer's 'know-how'). This approach is the most efficient,
but it is not the most used due to the difficulty in determining the test
sequence; this has been mentioned in Chapter 10 for design verification.

12.2.1.3 Test with Referent Product

The tester simultaneously applies the input vectors to the tested product
and to a standard product (or referent product) which is supposedly fault
free. The comparison between the two obtained output sequences allows the
tester to decide if the tested product functions correctly. The applied test
sequence is often random, or pseudo-random. The random aspects of these
sequences can also be constrained by information about the product' s
functioning or structure: for example, we choose the inputs which are the
most frequently applied to the product during its useful life, or sub
sequences allowing to enter in aburied part of a multi-level sequential
system (case of a microprocessor), etc.

The expected outputs do not have to be known apriori, contrary to the
previous approach. This technique is greatly used, as it is simple to carry out.
The advantage of not requiring knowledge about the expected outputs is
important. In Chapter 10 we have already explained the difficulty to obtain
these output values in some cases. However, this technique is based on the
trust that we can bring to the standard referent product. Moreover, it is not
always possible to dispose of a reference exemplar of the tested product.

12.2.1.4 Test by Signature Analysis

With the test by signature analysis, the tester does not have any precise
reference about the expected product' s output values. It treats these values
by a reducing mathematical transformation (compaction) to extract a
signature whose likelihood establishes the correctness of the product' s
functioning. This technique originates in the test by observation of
characteristics of some signals of analog electronic equipment. Thus, to test
a television set, we can ex amine with an oscilloscope the waveforms of
signals present in certain predefined places, in order to detect certain faults.

This technique offers the advantage of being able to reduce the length of
the output sequence to analyze. The complexity of the tester is drastically
reduced. This is why this approach develops today in the frame of integrated
test Built-In SeifTest (BIST) examined in Chapter 14.

12. Removal ofTechnological Faults 291

This technique applies also to software systems. The signature is defined
by property on some data. When the property is tme, the program is
considered as correct, and when the property is false, the program is said to
be incorrect. For instance, the type of an output parameter defines a
property: the output values must belong to the range specified by this type.

The main drawback of signature analysis approach is a sometime large
limitation in the fault coverage. Indeed, the satisfaction of the defined
property does not guarantee the absence of faults in the product. For
example, let us consider a product regulating the temperature of a car
radiator. The type is an integer included in the range [0, 100]. If a fault
blocks the data delivered by the sensor at 20DC, the sampled value satisfies
the type property, while the actual value is 105DC, leading to a failure of this
regulation product.

12.2.2 Test Parameters

The main test issue is the determination of the test sequence. Several
parameters allow choosing test methods appropriate to assigned objectives
and to existing or affordable means. These parameters characterize:

• the test sequence generation: facility of the generation of the test
sequence, cost of the associated means (humans and tools),

• the test sequence quality: its length or number of test vectors (wh ich
conditions the test duration), and its efficiency in terms of fault coverage
rate (that is to say the percentage of faults revealed by the test).

As previously mentioned, two distinct missions can be assigned to the
tester: detection and diagnosis . The detection test identifies the product' s
state as 'good' or 'bad'. The diagnosis test refines the analysis and
deterrnines the elements affected by faults. Hence, it is more complex: the
test sequences are much longer, and their obtaining is more difficult.

The test sequences are determined by automatie or manual test
generation methods. These methods can be split into two distinct groups:

• with fault model, when we try to detect the effects of faults and to
diagnose the faults relevant to a given model,

• without fault model, when no precise hypothesis is made on the type of
faults considered.

The notions of faults associated with a technology have been introduced
and explained in Chapter 5. We should remember that the traditional term
'fault model' in reality often covers classes of eITors (regrouping classes of
faults) called error models. Thus, the basic fault model for logical circuits is
the single stuck-at '0' or at '1' faults of the inputs and outputs of the logical

292 Chapter 12

gates which constitute the circuit studied.
The methods of the first group often apply to systems, whose detailed

structures are known, for example, the electronic circuits whose
implementation technology is mastered by the manufacturer. We can
therefore judge the quality of the test (test evaluation) by the coverage
criteria, which is relative to a precise fault model.

The fault coverage of a test sequence is the ratio between the number
of faults detected and the total number of faults contained in the fault
model.

For example, if we consider the previous simple stuck-at 0/1 fault model
of a logical circuit with a total of w gate inputs and outputs, the coverage of a
test detecting d faults is c = d / (2.w); each line can be stuck either at '0' or at
'1' .

On the contrary, the second approach (without fault hypothesis) concerns
the products for which we do not know any precise and representative fault
model; this is frequently the case with software. The test sequences are
therefore not determined from faults which can affect the structure, but from
specifications which define the expected behavior. We will discuss this with
regard to the efficiency of such sequences in section 12.3.1.2.

Some logical test methods with fault models for hardware and software
products will be introduced in Chapter 13. Again, a complete and detailed
presentation of the hardware and software test methods would necessitate an
entire book.

The off-li ne test therefore concerns the production and utilization stages.
In these two stages, the problems raised and the solutions used are not
exactly identical. We are going to successively ex amine the production test
associated with the production phase, then the maintenance test associated
with the operation phase.

12.2.3 Production Testing

As already noted, the production test essentially concerns the production
of hardware systems (complete circuits or equipment). Due to the constraints
imposed by the production rates of electronic components, the manufacturer
generally applies a detection test which is as short as possible. This is a test
with fault model obtained using a fIXed sequence. The expected input

vectors ei and output vectors Si are known. We note Vi = (e;. Si). The n
vectors of the sequence are applied one per one, and each time we compare
the output delivered by the product with the expected output. The product is
reputed to be 'good' when it passes the n vectors with success. On the
contrary, it is reputed to be bad as soon as it provides a different response

12. Removal ofTechnological Faults 293

than the expected value. This test, sometimes called GO-NOGO, provides
therefore two sets of products: those qualified as 'good' and those qualified
as 'bad' (see Figure 12.10).

Test Sequence

i+KO
OK ~

correct
answer

V n-l

Va

wrong
answer

I:::::::J ...
Good Bad

Figure 12. /0. Detection testing

Let us note that a different approach could be taken to test with adaptive
sequences, which are defined dynamically, taking the previous results of the
test into account. The adaptive testing is essentially used for diagnosis and
will be discussed in sub-section 12.2.4.3.

coverage (%)

100 I--...,.--r----""*---
70 acceptance

level

o
o 1 2 length of the

sequence

Figure 12.11. Fault coverage

For a production, the yield is the statistical percentage of good products
on the total number of manufactured products. The average duration of the
test depends on the proportion of defective manufactured products.

Production constraints lead electronic component manufacturers to
demand test sequences with limited duration (e.g., a component' s test should
not go over 10 seconds). Then, there is a (negotiated) reduction of the fault

294 Chapter 12

coverage which may become inferior to 100%. Figure 12.11 shows that the
sequence length can be reduced from i (optimal value of the test at 100%) to
j<i vectors, if we accept a reduced coverage to 70% of faults.

Consequently, the product buyer has to be very careful and verify:

• the number of components which are effectively tested (we speak here of
test at 100% when all the components leaving production are tested),

• the fault coverage of the applied test,

• and the fault model considered.

Example 12.1 illustrates the notion of efficiency of a test sequence
according to the fault coverage. Example 12.2 analyzes the influence of the
fault coverage on the production yield.

Note. The length of the test sequence, and therefore the cast of the test
applied to the product, can be one of the reasons justifying big differences in
component prices. A component from the same production chain could have
a higher price than another one, due to the fact that it has been subjected to a
deeper test. Therefore, the client pays for the justified supplementary trust
he/she can place in this product, that is to say its dependability.

Example 12.1. Test coverage of a NAND gate

Let us consider a 3-input NAND gate (Figure 12.12) and a 'single stuck
at 011' fault model. We firstly analyze the exhaustive test sequence
constituted of the 8 input vectors, from 000 to 111. Each input vector tests
some of the 2x4 single stuck-at 0/1 faults.

Figure 12.12. Three-input NANO gate

The fault tahle (or coverage table) of Table 12.1 shows all the faults
detected by the 8 input vectors: on each row, the symbols 0, 1, and -,
respectively indicate the detection of a stuck-at 0, a stuck-at 1, or no
detection of the corresponding line (columns a, b, c, and d). For example, if
the input vector (011) is applied, we detect the stuck-at 1 of input a, and the
stuck-at 0 of output d, as the output equals 0 instead of the expected 1.

It should be noted that, for the moment, the determination of faults
detected by a vector is done by a simple comparative analysis of the
functioning with and without faults. More efficient methods will be
presented in the next chapter.

12. Removal ofTechnological Faults 295

Input vectors Test coverage

abc a b c d

000 - - - 0
001 - - - 0
010 - - - 0
01 1 1 - - 0
100 - - - 0
101 - 1 - 0
1 10 - - 1 0

111 0 0 0 1

Table 12.1. Fault table

From this table, we can deduce the coverage curve corresponding to any
given test sequence. For example, the left part of Figure 12.13 shows the
coverage curve of the exhaustive sequence. The first vector (000) detects one
fault of the 8 possible faults. The following vectors (001 and 010) testing
exactly the same fault, the coverage is not improved: it remains at 118, We
must wait for the last test vector (111) to reach a 100% fault coverage.

Let us now examine the optimal test sequence which has 4 test vectors:
<011, 101, 110, 111> (the determination of this optimal test sequence will be
considered in Chapter 13). The second part of Figure 12.13 shows that each
vector in this sequence brings the detection of new faults.

Fault coverage

100% 8

7

6

5
4

3
2

1

o

-l=tt±E ==-----'----L
-+--+---i-t=P -----:- -=P-!-

. . . . j---T--t--l --[[-1--1.---
4o -o!-""'i---·t-·-+-·-t-- I ---- --1---+--+---

t : .;:

000 001 010 Oll 100 101 110 111
Exhaustive
sequence

: i i

Oll 101 110 111
Optimal
sequence

Figure 12.13. Fault coverage of two test sequences

Input
Vectors

296 Chapter 12

Example 12.2. Production test coverage vs. yield

The test of the components of a given integrated circuits manufacturing
chain has the following characteristics:

• all the components are tested with a fixed test sequence,

• the fault model is the set of the permanent stuck-at '0/1' of the
inputs/outputs of the logical gates,

• the sequence covers 70% of these circuit's faults: c = 70%.

From this data we deduce that, if the statistical yield of this production is
y = 95%, a probability exists p = (1 - c).(l - y) = 0,3 x 0,05 = 0,015 that a
component affected by a fault is however declared as 'good' when the test is
issued. This result is the number of statistically defective components whose
faults have not been detected. Exercise 12.3 comes back to this study.

12.2.4 Maintenance Testing

12.2.4.1 Corrective, Preventive, and Evolutive Maintenance

We have already pointed out in Chapter 7 that the maintenance is an
operation integrated into the utilization stage of the product: the product' s
functioning is stopped for a test, and eventually, a correction or repair action
is made if a fault is detected and if the product is repairable.

The decision to carry out maintenance operations depends on the product
use. In certain cases, we decide to test the product because a failure has been
noticed during its operation. For instance, we ask for repairing a household
appliance or a hi-fi equipment which is defective. This is known as
corrective maintenance. On the other hand, in other cases, a policy of
systematic and periodic maintenance is practiced, even if the product does
not show any sign of failure. This is the case for example in avionics where
the equipment is checked systematically with strict and predefined
scheduling after a given period expressed in number of flight hours. This is
known as systematic preventive maintenance. The maintenance action can
also be decided after the occurrence of some events detected on-line, for
example when the temperature becomes excessive. This case corresponds to
conditional preventive maintenance.

Maintenance often has a far wider meaning than just a simple test,
notably in the software domain. This implies operations which tend to
improve or make the product evolve according to new constraints (e.g.
increased performance) or new functionality (e.g. offering new services).
This is known as evolutive maintenance.

12. Removal ofTechnological Faults 297

12.2.4.2 . Detection and Diagnosis

Everything that has been said in the previous paragraph regarding
manufacturing tests is of course valuable in the case of maintenance tests.
However, the detection requirements (measured for example in terms of fault
coverage) are often greater whilst the time available to test is also greater.

In addition, it is often necessary to push the investigation further in order
to diagnose the fault or faults which affect the repairable products, before
repairing them. This is known as diagnosis (or localization) testing.

The diagnosis testing supposes knowledge about a more or less refined
fault model, according to the nature of desired investigation: MOS transistor
level, IC level, PCB level, etc.

This kind of test is more complex to obtain and its duration is much
longer than the detection test. Indeed, this test must not only signal failure
but also provide information which allows the internal cause to be deduced.
The detection test tries to cover a maximum number of faults with the
minimum number of test vectors. In the case of Example 12.1, the vector
(111) covered four faults (stuck-at 0 of lines a, b, and c, and stuck-at 1 of
line d). All faults detected by an input vector are said to be pattern
equivalent faults, that is faults provoking the same failure. When dealing
with diagnosis test, we want to split these faults into separate classes. For
example, is it possible to distinguish between the 4 previous faults?
Unfortunately, as we will study latter, some faults cannot be distinguished
from the outside of a circuit: such faults are said to be system equivalent
faults. This is the main issue of diagnosis techniques.

Traditionally, and for reasons of operation duration, the maintenance test
has two successive stages:

• detection testing, which allows the 'good' or 'bad' functioning of the
product to be known rapidly,

• diagnosis testing applied if the previous test reveals a failure, in order to
find the faults responsible and then correct them.

Figure 12.14. Maintenance testing

When the diagnosis test is made, the products which present faults are
repaired by technicians who change the defective components. After this

298 Chapter 12

repair, it is advised to re-apply a detection test in order to ensure that the
repair has not introduced new faults. This test is called a non-regression test.
Figure 12.14 illustrates the complete maintenance cyde which presents the
four previous operations.

12.2.4.3 Fixed and Adaptive Diagnosis Testing

Two different test categories allow fault diagnosis:

• fixed diagnosis testing illustrated by Figure 12.15 a),

• adaptive diagnosis testing illustrated by Figure 12.15 b).

The fIXed diagnosis testing records all the product' s responses (output
values) in the form of a vector, called signature, containing n elements. Each
element of this vector corresponds to the response of one test vector: if the
product's outputs are correct, we write 'good' (noted OK), if not we write
'bad' (noted KO), coding when possible the different forms of incorrect
responses. If the signature contains 'good' elements only, the product is
correct. On the contrary, it is necessary to analyze the signature to localize
the fault or faults with the help of a diagnosis tree that will be described in
sub-section 12.2.4.4.

answers
OKIKO

VI oklko

V2 oklko

V3 oklko

Signature

V .. :1 oklko

V. oklko

Diagnosis

a) fixed sequence

Diagnosis

b) adaptive sequence

Figure 12.15. DiagnQsis testing

The fixed diagnosis testing is often questionable. To illustrate the
criticisms, imagine a doctor who asks his/her patient a fixed list of
predefined questions. Such a diagnosis method can lead to questions that are
irrelevant, or without any answer. In reality, a doctor adapts his questions to
the previous patient' s answers to obtain rapidly a precise diagnosis. This

12. Removal ofTechnological Faults 299

tecbnique is known as adaptive diagnosis testing. Tbe tester reacts to tbe
product' s good or bad response at eacb applied test vector: tbe next vector
depends on tbis response. Tbis approacb is more efficient in terms of test
lengtb, as tbe diagnosis tree is developed as tbe test progresses, but tbe test
sequence is a lot more difficult to elaborate.

12.2.4.4 Diagnosis and FauIt Tree

Basic principles
In tbis sub-section, we consider a product, a fault model, and a test

sequence. Tbe first test vector of tbis sequence detects a sub-set of tbe fault
model. Before tbe application of tbis pattern, eitber tbe product is faultless
eitber one of tbe fault of tbe fault model is present. We note F tbe fault set
plus tbe fault free case. Tbe application of tbe test to tbe product splits tbis
initial F set of tbe model into two complementary classes: faults detected by
tbis vector (noted D lin Figure 12. 16-a) wben tbe product gives an incorrect
answer (noted KO, tbe test 'fails'), and faults not detected by tbe vector, or
faultless product (noted D l' in Figure 12.16-a), in tbe opposite case (noted
OK, tbe test 'passes'). For tbe moment, we suppose tbat an incorrect answer
given by tbe product does not allow distinguishing between tbese non
detected faults. After tbese two test vectors are applied, tbe faults detected
are tbe union of tbe two sub-sets D1 and D2 (Figure 12.16-b and -c). Tbe
coverage of a test sequence is 100% if all tbe faults belong to at least one set
Di. However, tbis test sequence execution cannot identify tbe existing fault.

~F ~F ©F D2

01' 02' D'

a) Pauern I b) PUllern 2 c) Pallerns I + 2

Figure 12.16. Fault detection

Tbe diagnosis fault tree technique extends tbe previous approacb by
using tbc pieces of information provided by tbe fault partition made by all
tbe vectors. Hence, after application of tbe two first test vectors, tbe F set is
split into 4 sub-sets (see Figure 12.17) according to tbe consecutive results
oftbe two tests:

• DlnD2 for a test result <KO, KO> (tbe two tests failed),

• DlnD2' for a test result <KO, OK> (tbe first test failed and tbe second
one passed),

300 Chapter 12

• D1 'rJ)2 for a test result <OK, KO> (the first test passed and the second
one failed),

• D1 'rJ)2' for a test result <OK, OK> (both test passed: no fault revealed) .

Figure 12.17. Fault partition

These four cases can be represented with a diagnosis tree (Figure 12.18),
which is here a binary tree. If aleave of this tree contains only one fault, the
signature of the test answer leading to this leave identifies this fault. On the
contrary, if aleave contains several faults, they are said to be pattern
equivalent, i.e. relatively to the test sequence. Another test vector rnight split
these faults. If no test vector can separate this sub-set into smaller parts,
these faults are said system equivalent according to the external
controllability and observability. A diagnosis sequence is a complete
distinguishing sequence if all resulting faults classes contain system
equivalent faults.

Notes. Sometimes, some parts of the diagnosis tree are 'impossible', that
is to say, some sub-set intersections are empty. Consequently, a diagnosis
tree can reveal 'impossible' leaves. We will encounter such cases later.

F
Pattern 1 pass7 ~I (KO)

Fault sub-set Dl DI'

Pattern 2 °1 \KO °1 ,\0
Fault sub-set DI'n D2' DI'nD2 DlnD2' DlnD2

Figure 12.18. Fault tree

Example 12.3. Diagnosis of a AND gate

Let us consider the 2-input AND gate represented in Figure 12.19.
If the ab = 01 vector is applied, the normal output equals '0'; observing a

'1' at the output can result from a stuck-at' l' fault of the a input or a stuck
at '1' of the output c. In order to know which one of these two faults is

12. Removal ofTechnological Faults 301

present, a second test vector must be applied, for example '10': if the output
again presents an error (value '1') the fault affects c, if not it affects a. We
note that it is impossible to distinguish the stuck-at '0' faults of a, band c, as
the output has the same value no matter the vector applied at the input.

I : ----IDt--' I
Figure 12.19. AND gate

General diagnosis tree
Whatever the type of diagnosis used, whether fixed or adaptive, the test

sequence carries out a partition of the considered model' s faults into several
distinct classes. The diagnosis sequence is complete if each class contains a
single element or a group of system equivalenffaults. Till now, we supposed
a simple OKiKO answer to each test vector. In the general case, more
complex situations may occur, with several classes of bad answers to each
test vector. The combination of all the situations corresponding to the
applied test vectors develops in the form of a tree wh ich possesses as many
layers as there are test vectors. Bach node, (application of a test vector), has
as many outgoing arcs as there are possible answers.

Sei of
possible faults

OKOK KOKO

.@ OKKO KOOK ~
-@~ i 4

Fault partition
into 4 sub-sets

Figure 12.20. Fault partition implied by a test vector

Thus, for a circuit which has two outputs zl and z2, four cases are
possible during the application of any test vector (Figure 12.20):

• the two outputs are correct (situation noted as "OK OK' in the figure),

• the first output zl is good and the second z2 is erroneous (,OK KO'),

302 Chapter 12

• the first output z1 is erroneous and the seeond is good ('KO OK'),

• the two outputs z1 and z2 are erroneous ('KO KO').

Eaeh of these responses eorresponds to disjoint situations: disjoint event
sets, with or without the presenee of faults. This operation is illustrated in
Figure 12.20 by a set partitioning: the set F of established possibilities
before the application of test i is split into 4 smaller sets (Fj, j = 1, .. , 4)
aeeording to the produet' s response to the test veetor. The union of these
resulting sets reconstitutes the initial set F.

The suecessive applieation of n test veetors therefore partition all the
initial possibilities (no fault or each one of the fault model) into increasingly
redueed different c1asses. We will analyze an example in Chapter 13.

12.3 PRINCIPLES OF LOGICAL TEST GENERATION

This seetion establishes the prineiples of the determination of test
sequenees for logic circuits modeled with gates. We first expose in sub
seetion 12.3.1 the general problems of the logical test. Then, in sub-seetion
12.3.2 we propose an intuitive test generation method, based on path
sensitizing, to find the veetors detecting a fault of a eombinational eireuit
deseribed by gates. In sub-sec ti on 12.3.3 we present methods allowing to
evaluate the fault eoverage of test sequenees (jault grading); they are
eomplementary to the test sequence generation methods. Sub-seetion 12.3.4
synthesizes the two previous approaehes to define an algorithm for
automatie test pattern generation. Finally, in sub-seetion 12.3.5 we diseuss
the problem of sequential cireuit testing.

12.3.1 Logical Testing

12.3.1.1 Maiß Approaches

The aim of this seetion is to introduee the different approaehes used to
determine the test sequences, and to show their relative difficulties. Whether
automatie or manual, test sequenee generation is an operation which is often
eomplex, even for eombinational logie systems (without memory).
Numerous methods of test sequenee generation have been imagined and
applied. They ean be ordered according to several criteria:

• The modeling level of the produet to test:

~ funetionallevel,

~ struetural level,

12. Removal ofTechnological Faults 303

» structured-functionallevel.

• The refinement level of the fault model employed (the absence of fault
model being a limit case).

• The method to determine the test sequence: algorithmic, randorn, etc.

From a practical point of view, five approaches deserve our attention:

• Exhaustive test (without accurate fault model),

• Functional test (without accurate fault model),

• Toggle test (without accurate fault model),

• Random and pseudo-random test (without accurate fault model),

• Algorithmic structural test (with fault model).

The exhaustive test is a systematic approach. It consists in applying all
possible vectors of the input domain! Therefore, this is a 2n -vector sequence,
which increases in an exponential manner to test a combinational circuit with
n inputs. This type of test is only interesting for circuits having a reduced
number of inputs. In the case of sequential circuits, that is to say circuits
whose behavior depends on an internal state, the sequence can be
prohibitive, as all the state values must be taken into account. For example,
the test of a simple 32-bit counter would require more than one hour with
elementary tests of 1J.lS.

The functional test already evoked for detecting functional faults during
the design stage (Chapter 10) is the universal test tool, whatever the nature
of the product. If, for example, the circuit is an adder, we would execute the
addition of two numbers and we would compare the result with the exact
value of the calculation. The structural model and the fault models are not
used. Universally and intensively used, this simple method is far from
satisfying the specialists, as the fault coverage is unknown.

The Toggle Test is a variant of the simulation which analyzes the
structure and seeks to make each component, line or variable evolve in all its
states: for example, each line will have at least once the value '0' and the
value '1'. With regard to the simulation, the improvement comes from the
structure's exploitation and the activation of the components. However, we
can show that the Toggle Test does not guarantee 100% coverage of the
traditional hardware fault models in electronics (this will be done in
Example 12.4).

Random and pseudo-random test select test patterns randornly, or by
using some heuristic, and use fault simulation to determine the faults
detected by each vector. Test vectors are selected and added to the test
sequence if they detect any previously undetected faults. The test generation

304 Chapter 12

process is stopped when some required fault coverage level or computation
time limit is reached. This method finds test patterns for the easy-to-detect
faults quickly, but it becomes less and less efficient as faults are removed
from the fault list and only the hard-to-detect faults remain.

In the algorithmic approach, a specific Automatie Test Pattern
Generation (A TPG) algorithm is used to generate a test for each fault of a
fault model associated with a structural model of the circuit. Most of the
ATPG algorithms can be proven to be complete; that is to say, they are
guaranteed to find a test for a fault, as long as such a test exists. This is the
only efficient approach to reach high fault coverage rates.

Note. An efficient combined method for solving the A TPG problem uses
firstly statistical methods to find test vectors for the 'easy-to-detect' faults on
the fault list, and then switches to an algorithmic method to find test vectors
for the remaining 'hard-to-detect' faults.

12.3.1.2 Functional and Structural Testing

Testing methods can be split into two groups, taking the considered
system model into account: funetional or struetural model. Their
comparative advantages and disadvantages are illustrated in Figure 12.21
and discussed afterwards.

Functional testing

Knowledge: functional modd

110 sequence
* , Comparison with the functioning

of the executable product

Structural testing

Knowledge: structural model
faultmodd

Test generation from the structure
with fault coverage

I-+@+O
Advantages: Simple, general, no interna!

knowledge nor fault models
Drawbacks: unknown efficiency

o

Advantages: mastering of fault coverage
Drawbacks: complexity, fault model pertinence

Figure 12.21. Functional and structural testing

The funetional test sequenee aims at processing all possible functioning
cases of the system, and thus detects all possible faults by revealing their
effects on the product behavior. However, only a sub-set of all possibilities
are generally activated, assuming that they are representative of the wh oie
functionality. For instance, all the values of a float parameter cannot be

12. Removal ofTechnological Faults 305

exercised. So, the float domain is split into functioning classes and only one
value of each class is used for test purpose. Unfortunately, it is possible that
two different parts (circuits or programs) of the system structure are used to
run two different values of the same class!. Thus, one part only will be
exercised and not the second one wh ich can contain many undetected faults.
More generally , the efficiency of a functional test sequence concerning the
detection of actual faults in the product is not known.

Thanks to the fault coverage notion, the efficiency of a structural test
sequence can be assessed by a grade. However, the pertinence of the
considered fault model must be discussed. Besides, the choice of a very
refined fault model impacts the test sequence generation: high difficulty to
obtain the test sequence which has generally a prohibitive length. For
example, it is extremely difficult to master the test generation of a computer
at MOS level! In conclusion, a comprornise has to be found between the
degree of the fault model's high precision and the test complexity (difficulty
of obtaining the sequences and length of these sequences).

The production and maintenance tests are essentially faced with
technological faults. The structural approach completes the junctional
approach introduced in Chapter 10 for the design test. In numerous cases, the
test engineer starts with the functional verification sequences developed by
the design engineer. Following this, he or she completes this sequence by a
structural test approach.

Fault model

Figure 12.22. Context of structurallogical test

In the following sub-sections we develop the problem of obtaining a
structural test at the gate level. We consider a logical circuit structured into
gates and a fault model which can affect it (Figure 12.22). We assume that
each fault is a single stuck-at '0' or '1 ' of gate inputs and outputs. The tester
applies certain values to the primary inputs (that is to say external to the
circuit) and it observes the values produced at the primary outputs (that is to
say external to the product). From this hypothesis, the detection test problem

306 Chapter 12

consists in finding a sequence of input vectors which, by observing the
primary outputs, allows the following question to be answered:

1s the circuit without fault, or is it affected by one of the fault model?

The length of the obtained test sequence is important, as it has
consequences on the time spent to test a product. Unfortunately, the
determination of minimal test sequences having a high coverage is
intractable for complex circuits. Thus, we often accept reduced fault
coverage, in order to obtain sequences of a reasonable length.

12.3.1.3 Fundamental Steps of the Test Process

The complete test development and application cyc1e has three steps as
illustrated in Figure 12.23:

1. test pattern generation, using any method, manual or automatie (ATPG),
algorithmic or random, with or without a fault model,

2. test validation, based on test evaluation (quantitative approach) or fault
grading, which allows the efficiency of the previous sequence to be
checked by using independent methods (generally by fault simulation)
from those used for test generation,

3. test application with the help of a tester, as already mentioned.

The two first steps are frequently used in an iterative manner. The
generation of a test sequence is therefore an incremental process which
gradually builds the test sequence.

The following sub-sections enter into more detail about the test
generation and fault grading methods of circuits at the gate level.

CD
n
®
n
®

• Test Pattern Generation
~ sequence
high internal knowledge

• Test Validation
~ coverage: fault grading
high internal knowledge

• Test Application
low system knowledge

.. ManuaJ I Automatie (A TPG)
Aigorithmie I Random Methods
with I without fault model

.... Fault simulation:
~ level: electrical, logic, functional ...

Technique: exhaustive, fault sampling
Feedback from the user
Fonnal methods (Identification)

.. Test equipment
Test procedure, language

Figure 12.23. The three test steps

12. Removal ofTechnological Faults 307

12.3.2 Determination of Input Vectors Testing a Fault

The goal is to find a set of test vectors which ensure the required fault
coverage. It should be known that the generation of a test sequence of a
combinational circuit is a 'NP complete' mathematical problem.

Amongst the structural methods of the detection test generation, the path
tracing approach (or path sensitizing) is the best known.1t allows vectors to
be found which detects a given fault. This approach was popularized by ffiM
with the D-Algorithm proposed by J-P. Roth in the 1960s. It was then
diversified and improved by numerous techniques such as Lasar (Logic
Automated Stimulus And Response), Podem (Path Oriented Decision
Making), Fan, Tops, Socrates, etc.

What is remarkable with these path tracing methods is that, associated
with design methods facilitating the test (exarnined in Chapter 14), they have
been extensively used for computer testing for more than 30 years!

In Chapter 13 we will study an intuitive method based on path tracing.
This method allows the fundamental problems of test sequence generation to
be c1early understood, such as problems linked to fault controllability and
observability in logical structures.

Whatever the method used, the research of circuit test vectors do not
necessarily converge. Indeed, some circuit faults are not detectable
externally to the product; hence, the product tolerates these faults which do
not directly lead to a failure. In that case, the product has passive
redundancy, already been described and illustrated in Chapter 8. Passive
redundancy can result from a voluntary action such as the Triplex fault
tolerant structure (analyzed in Chapter 18), but it can also and very often be
introduced in a totally unintentional manner by the product creation process.
In Chapter 13 we will show some examples of the negative influence of
passive redundancy on test detection and diagnosis.

12.3.3 Fault Grading

12.3.3.1 Principles

In the previous sub-section, we considered methods to obtain input·
vectors detecting given faults. Fault grading is an approach which aims at
finding the coverage of a given input test sequence, that is, to evaluate this
test sequence. Two main groups of methods have been proposed:

• methods by structural analysis which study the faultless circuit and
deduce all the faults whose presence produces failures,

• methods by fault simulation which compare, by simulation, the faultless
circuit' s behavior with the circuit affected by faults of the fault model.

308 Chapter 12

The techniques based on structural analysis determine all the faults
detected by a given input vector (or sequence). Therefore, the fault coverage
is deduced automatically. A simple approach will be discussed in detail in
Chapter 13. It is based on a backward circuit analysis, from the primary
outputs towards the primary inputs, in order to find all the detected faults.
Even if the technique presented is specific to a gate model and a stuck-at
fault model, its study is interesting to understand the general issues.

Fault simulation regroups a large variety of techniques based on
structural simulation with faults injected from a fault model : the tools are
called fault simulators. The principle of this approach, often called fault
injection, is illustrated in Figure 12.24. It consists in applying the test
sequence to be evaluated to a simulated model of the system studied, and
injecting faults from the fault model. If the obtained output with a fault is
different from the faultless circuit's output, this fault is noted as 'detectable' .

Testsequence
Fault

Coverage:
relative namber

.of detected faults

Figure 12.24. Fault grading by fault simulation

This approach is greatly used, as it is relatively simple to implement and
can be adapted to numerous situations (system modeling and fault model).
However, it involves a lot of processing and memory size; hence, it requires
high performance computers and uses long run times. Indeed, it is necessary
to apply the test sequence for each fault of the fault model injected in the
system modeling. This leads to the simulation of millions of events.
Numerous variants of fault simulation algorithms and implementations have
been proposed in order to improve its performance (parallel processing, etc.).

In the next sub-sections, we analyze the fault grading methods based on
fault simulation (sub-section 12.3.3.2), and we introduce the principal
computing methods implementing fault simulation (sub-section 12.3.3.3).

12.3.3.2 Fault Grading by Fault Simulation

The methods presented in this section are used in today' s IC Computer
Aided Design tools. There are three main families of fault grading

12. Removal ofTechnological Faults 309

approaches based on fault simulation techniques: 1) probabilistic, 2)
deterministic, 3) and statistical. These three families are compared in Table
12.2 according to 4 criteria: cost, speed, accuracy and diagnosis efficiency.
The assigned grades are justified afterwards.

ProbabiUstie

eost Low High Medium

Speed Fast Siow Fast

Accuracy Fair Best Good

Diagnosis Good Best Poor

Table 12.2. Comparison of fault grading approaches

1. Probabilistic fault grading (PFG)

The probabilistic fault grading method provides an estimation of the
fault coverage rather than an exact determination. It is a fast and relatively
inexpensive method elose to conventionallogic simulation. The associated
tools can be used on the same platform as the one used for design, which
elirninates the needs for netlists and test vector conversions. The principle is
based on an analysis of values wh ich appear in different nodes, that is to say
the interconnection lines between the system' s structural elements such as
the gates, flip-flops, etc. The node activity is evaluated in terms of
controllability and observability. The diagnosis provides a list of nodes
which have a weak activity. The approach can be implemented as an
interactive tool: the engineer uses this tool, searching to improve the
testability of the less active nodes. However, since it makes no use of the
strobe placements used by the physical tester which tests the real component,
PFG may provide wrong information: a fault may be deelared as observable
when, in fact, it will not be observed due to a lack of strobing at the
necessary time.

The analysis of the results provided by the PFG shows that the results are
almost sirnilar to the results obtained by more accurate methods. However,
this small difference may be unacceptab1e for high fault coverage
requirements.

2. Deterministic fault grading (DFG)
Deterministic fault grading is the most accurate of the three studied

methods. It compares the simulation results of a faulty design (a copy of the
design with a fault injected) with the outputs coming from the original
design. If differences are found between the results of these simulations, the

310 Chapter 12

injected fault is declared as detected. The ratio of detected faults to the total
number of potential faults is used as a measure of coverage. This technique
requires a lot of time and computing resources, as each possible stuck-at
fault is injected into the design model and processed by a new
simulation. Several different variants to DFG have been proposed to improve
its efficiency. These methods include various simulation algorithms:

• grouping of equivalent faults, also known asfault collapsing,

• and making use of customized hardware platforms (accelerators).

Fault collapsing is a general technique used for reducing simulation time
by identifying equivalent faults and simulating only one fault for each
equivalence class. Before the fault-collapsing, it is often interesting to check
if any of the nodes remains at either a '1' or a '0' during the test period. If a
node always stays at '0', then a stuck-at '0' on the node cannot be detected.
Similarly, a stuck-at' l' cannot be detected on anode that is always at a '1'
level. No-activity faults and any collapsed faults that depend upon them are
usually counted as non-detected. Checking for no-activity nodes can
significantly reduce execution time during early stages of a test-pattern
development where these kinds of faults are very likely.

In general, the implementations on general-purpose processors tend to
run slower, but at a lower cost. Test accelerators are customized hardware
wh ich ron much faster, but the hardware costs can be prohibitive.

Other factors can improve the accuracy of DFG implementations. These
include propagation delay simulation, an increased number of simulation
events, and actual strobe-placement information of the real test.

With respect to diagnosis information, DFG is efficient to providing the
actual status (detected or not) for each potential fault in the design. Various
reporting formats are typically provided for determining which parts of the
design require the most improvement. In some implementations, information
is also available which indicates effectiveness of each test vector to detect
faults. Reordering the vectors and removing the unnecessary ones may
optimize test patterns.

Fault dictionaries associate vectors (or sequences) with their detected
faults. They may be generated from the results of DFG, helping in the
diagnosis of probable causes during failure analysis of failed devices.

3. Statistical fault grading (SFG)
A strong reduction in the cost of DFG can be obtained by applying

deterministic fault simulation to sub-sets of the potential faults of the given
fault model. By choosing a random sampie of these faults, statistical fault
grading provides a close approximation of the DFG results, while requiring
only a small fraction of the ron time. The confidence interval of the results is

12. Removal ojTechnological Faults 311

determined by the size of the taken sampie.
In theory, SFG provides the speed and cost advantages of PFG, while

providing accuracy offered by deterministic techniques. However, since only
small portions of the potential faults are actually investigated using SFG,
diagnosis information is very limited.

If the purpose in fault simulation is to simply obtain an accurate measure
of the effectiveness of the test patterns, a DFG run might be appropriate.
However, if the aim is to make use of the results to increase fault coverage to
a certain target level, several iterations may be required. The low cost and
fast run times of PFG are better suited to this type of activity. In most cases,
cost and time are very important factors, but potentially inaccurate results
cannot be tolerated. Therefore, a combination of both PFG and DFG is
advised.

12.3.3.3 Fault Simulation Implementation

Fault simulation is the base to most fault grading methods. The
implementation choices of the fault simulation have an impact on the
performance of the fault grading tools. We will introduce the four main
approaches: serial, parallel, deductive, and concurrent fault simulation.

1. Serial Fault Simulation
The less complex fault simulation algorithm is serial jault simulation.

Essentially, it involves automating aseries of logic fault simulations. Prior to
performing them, it is necessary to first process a conventional logic
simulation of the faultless system modeling by the test sequence inputs, to
get and store the fault-free states of the test nodes at the strobe time-points.
Then, faults are selected one at a time from the fault model. Each fault is
applied to the circuit modeling and a logic simulation of the faulted circuit
modeling is performed. The faulted test values are compared with the stored
reference values. If a difference exists, the fault is flagged as detected. Then,
the pro gram proceeds to the next fault. If the faulted logic simulation reaches
the last strobe, the fault is undetected.

The method has the advantage of easy implementation as hardware or
software tools. It has the dis advantage of longer run times than most of the
more sophisticated methods.

Several improvements that can be made to optimize serial fault
simulation in term of speed. The first improvement deals with the
optimization of the logic simulation algorithm and data structure (memory
size, execution speed). Serial fault simulation can also be used as a first
approach prior to development of a faster and more sophisticated method.
Indeed, all of the front-end and back-end coding for fault-data input, fault

312 Chapter 12

selection, fault injection and initialization could be developed and debugged
for serial simulation. This serial simulation version can then be used as a
prototype to verify the answers of more sophisticated versions that folIows.

2. Parallel Fault Simulation

Parallel fault simulation takes advantage of the fact that each of the
faulty circuits has the same topology as the reference circuit. Only the node's
states are different. The basic idea is to group together the states of the
reference circuit and several faulty circuits into a single word, a 'state word'.
Then, the simulator treats globally these words in one pass instead of treating
each case separately. This method was originally designed for simulators
with simple unidirectional gate-level simulation. However, it can be
extended to handle more sophisticated components.

Parallel fault simulation was used in some of the earlier generation of
fault simulators (TEGAS, LASAR, Hll..O-2, FMRSIM, and EBNR
programs). There are several limitations to this method. An increasing
number of circuits running in parallel may reach the point from wh ich the
performance decreases. This c1assical phenomenon associated to parallel
processing is due to two effects:

• All of the parallel faulty circuits have to be simulated until the last circuit
of the group has its fault detected, or until the testing is completed. With
serial simulation, analysis of each faulty circuit can be stopped as so on as
its fault is detected.

• The more circuits are analyzed in parallel, the greater is the likelihood
that an entire state word will have to be computed and updated for only
one of the faulty circuits. In extreme cases, parallel simulation becomes
like a group of serial fault simulations.

Ignoring the topological constraints that parallel fault simulation
imposes, the industrial experiences shows that the method is still limited in
speed to at most about 30 times faster than serial fault simulation. In fact,
depending upon the circuit and the test pattern, it may be less than an order
of magnitude faster than an optimized serial fault simulator.

3. Deductive Fault Simulation
Deductive fault simulation can simulate a relatively large number of

faults in one pass. Instead of computing signal values for all considered
faults, this method computes signal values for the fault-free circuit, and
deduces the faults that will cause each signal to have a value different from
the value of the fault-free circuit. This method is ideal for two-valued
simulation (0/1), and it has been extended to handle the unknown value (0, 1

12. Removal ofTechnological Faults 313

and x). For each analyzed element of the structure, the deductive simulation
method determines the output fault-free values and local fault lists, from
their input values and incoming fault lists. The fault-free values of an
element output are computed whenever one or more of its input fault-free
values change. The output fault list is computed whenever any of its input
fault-free values or fault lists changes.

One problem involved is that some faults on variables which propagate
back to the same input variables (loops), must be deleted from fault lists. If a
fault-free signal is unknown, no information about faulty value of that signal
is maintained in deductive simulation. Therefore some loss of information
may occur.

4. Concurrent Fault Simulation
The basic idea of concurrent fault simulation is to simulate the reference

circuit, while at the same time simulating many faulty circuits. The
efficiency is improved by simulating only the section of each faulty circuit
that differs from the reference circuit. Its high efficiency is due to the fact
that, in most cases, the node states of each of the faulted circuits are nearly
identical to the corresponding states in the reference circuit. Since each
partial faulty-circuit simulation will be quite fast, this method will only be
efficient if many faulty circuits are run concurrently with the reference
circuit in order to share the overhead of the reference circuit simulation.

The concurrent fault simulation algorithm is potentially the most efficient
and fastest method for fault simulation. Its main drawbacks are:

• the implementation is more complex than for the other methods,

• it may require much more computer memory to run efficiently, compared
to other methods.

5. Comparison
The performance of fault simulation algorithms is important because it

can consume many hours of CPU time for rather small circuits. A
comparison of parallelfault simulation and deductivefault simulation shows
that the second method is faster, but the first one is better for small, highly
sequential circuits.

Another important point is that the deductive fault simulation is more
pessimistic than parallel and concurrent fault simulations. Parallel fault
simulation and concurrent fault simulation are equivalent in accuracy.

314 Chapter 12

12.3.4 Test Pattern Generation of Combinational Systems

12.3.4.1 Optimal Test Sequence Generation

The obtaining of an optimal test sequence in terms of number of vectors
(length) is a complex problem. To understand this problem, we can start with
the analysis of simple n-input gates; it shows that n+ 1 test vectors are
necessary. For example, the minimal test sequence of a 2-input AND gate is
<01, 10, 11>, and the minimal test sequence of a 2-input OR gate is <00, 01,
10>. Example 12.4 performs such analysis for a 3-input NAND gate. From
these basic experiments, it is generally not difficult to derive minimal test
sequences of small circuits, such as in Example 12.5.

In a more general manner, the research of a minimal cover in a cover
table calls for operational research methods such as Branch and Bound
methods. These methods are only of interest for understanding test problems.
Indeed, they are very complex and the determination of a cover table is
intractable for industrial circuits . Hence, we will propose a heuristic
approach to test pattern generation in next sub-section.

Example 12.4. Optimal test sequence 0/ a NAND gate

We consider again a 3-input NAND gate test with a single stuck-at fault
model (see Example 12.1 in sub-section 12.2.3). We had proposed a minimal
test sequence: < 011, 101, 110, 111>. How can this sequence be obtained?
The goal is to find a minimal set of input vectors detecting all the faults. For
this, we start with the cover table (see Table 12.3) already obtained.

Input vectors Test coverage

abc a b c d

000 0

001 0

010 0

o I 1 0
100 0

101 0

1 1 0 0

1 I 1 0 0 0

Table 12.3. Coverage table

A test sequence with 100% fault coverage must provide a '0' and a '1' at
least once for each column in this table. We see that, in order to test the

12. Removal ofTechnological Faults 315

stuck-at '0' and the stuck-at '1' of input a, it is necessary to take the test
vectors 011 and 111. We can easily see on the table that these two test
vectors detect all faults except, the stuck-at '1' of b and c input. The test of
these two remaining faults requires taking vectors 101 and 110. Therefore,
there is only one optimal test sequence.

Note. The minimal Toggle Test sequence for this NAND gate is <000,
111>. This sequence obviously does not test all the considered faults: it only
tests 5 of them: aO, bO, co, cf, and i (ao represents the stuck-at 0 of line a).

Example 12.5. Optimal test of a small circuit

Let us consider the simple AND-OR circuit of Figure 12.25. In order to
detect all stuck-at faults of this circuit, each AND gate must receive at least
the input vectors 01, 10 and 11, and the OR gate must receive the input
vectors 00, 01 and 10. Additional constraints must be added to propagate the
errors to the output f. For example, we must not apply 11 simultaneously to
both AND gates. Exercise 12.6 invites you to make this study. The optimal
test sequence has 4 test vectors: TS = <110, 011, 010, 101>.

a __ -I

b,--1
f

C __ -I

Figure 12.25. AND-OR circuit

12.3.4.2 Heuristic Test Pattern Generation

Typically, the obtaining (automatic or semi-automatic) of a test sequence
which ensures a given coverage rate (for example 80%) combines two types
of methods which were introduced in the previous sections: the test
generation and the coverage evaluation.

Indeed, a test vector obtained for the detection of a given fault also
detects a set of other faults. We look for this set of faults by a coverage
assessment of the test vector chosen to detect the first fault. Then, we delete
all these faults before restarting the search for another test vector to detect a
fault not yet revealed. This process is repeated as long as necessary, that is to
say until the fixed fault coverage objective has been reached. This procedure
was introduced and used by ffiM. It was then used and irnproved by
numerous other authors and companies.

316

ATPG Algorithm

Suppress {Fjh

~ {FJli ~stmtnt®ITV i TVI
~ TV2

'

Chapter 12

J'Vn
{TVj } i L..-_-'

Add TVi vector
to the sequence

Figure 12.26. Test sequence generation

Figure 12.26 illustrates this algorithm with the alternative use of two
tools from ffiM: D-ALG for the determination of a test vector wh ich detects
a given fault, and TEST DETECT to look for faults covered by a given
vector. At the beginning of the algorithm, the set of faults to test, F, is made
up of all the faults of the fault model, and the test sequence is empty. We
choose a fault Fi and, by using D-ALG, we look for an input vector TVi
which detects it. This is the first vector of the test sequence. Then, this test
vector is applied to TEST DETECT to determine all detected faults. All
these faults are removed from the set of faults F. This process is re-iterated
with another fault to test, until the set of faults to be tested is empty.

With this method, the optimality of the obtained test sequence cannot be
guaranteed. Heuristics allow faults to be chosen in a way that accelerates the
test generation process and obtains shorter test sequences.

This iterative process often starts with a functional test sequence coming
from the product' s design stages (Chapter 10). The electronic circuit
specialists affirm that these functional sequences typically provide coverage
rate from 50 to 70 percent.

12.3.5 Test of SequentiaI Systems

12.3.5.1 General Problem

In reality, very few logical circuits are totally combinational: this is the
case of certain calculation circuits, codingldecoding systems, or code
transformers. On the contrary, the majority of circuits are sequential, that is
to say the outputs depend on the inputs and also on the internal state
(notions of memory or time). Consequently, it is important to question about
the adaptation of methods previously exposed, or to imagine specific

12. Removal ofTechnological Faults 317

methods intended to sequential systems. Despite the numerous studies which
have been carried out, none of them has led to efficient or accessible
methods. We can quote the example of the method based on formal
identification of an automaton (system behavior) to provide a test sequence
at system level. This approach which makes not precise hypotheses on fault
model was first studied in the 1960s for electronic systems. It is still studied
at system level, for the conformance testing of communication protocols.

Why is the sequential system test so difficult?

On the one hand, the research of test sequences becomes very complex in
the case of synchronous circuits (special variables called clocks control the
time evolution of the circuits), and terribly much more in the case of
asynchronous circuits (the circuits reacts asynchronously to events applied
to the primary inputs). Unfortunately, some faults can increase the number of
internal states, transforming a sequential synchronous system into an
asynchronous system, and even provoking oscillatory behavior.

On the other hand, these sequential system' s controllability and
observability problems often lead to test sequences which have a prohibitive
number of vectors! Indeed, a small changing in the event occurrence date
may disturb the behavior. Consequently, the test sequence must take this
large number of situation into account.

Numerous methods have been proposed to test complex sequential
circuits such as micro-controllers or microprocessors. They use functional
approaches based on high level modeling tools, such as HDL. Functional
fault models are implicitly or explicitly attached to these models. A classical
example is the STG (State Transformation Graph), which can be deduced
from a HDL description of a system. A path sensitizing method is then
applied to this graph to determine a test sequence.

The test of complex circuits, whether combinational or sequential,
generally find empirical solutions based on functional sequences which are
then improved using processes using together fault simulation and the
manual research of new test vectors. The only satisfactory solutions to this
problem use BIT type techniques presented in Chapter 14.

Example 12.6 proposes a study of a simple synchronous circuit which
links fault generation at state graph level and fault coverage at gate level.

In the next sub-section, we will consider the very special case of RAM.

Example 12.6. A MOORE synchronous sequential circuit

Figure 12.27 shows an example of a Moore type sequential synchronous
circuit whose outputs only depend on the circuit' s internal state. This circuit
has one input x and one output z. It is described at a behaviorallevel and at a
logical level. The behavioral model is a 4-state automaton. This model has
been implemented as a logical circuit with 1 INVERTER, 5 NAND gates

318 Chapter 12

and two D Flip-Flops. The coding of the 4 states is shown in the figure .

• FSMlevel

q yl y2
1 0 0
2 0 1
3 1 1
4 1 0

x

Figure 12.27. Test of sequential circuits

In Chapter 5 (Exercise 5.3), we have analyzed this circuit and deterrnined
some failures associated with two faults altering the logical structure.

We consider now two functional test sequences associated with the
automaton level which are defined from the initial state '1':

• the first sequence of length 4 goes through an the graph's states:
TSI = <0 1 1 0>,

• the second sequence of length 9 goes through an the graph's arcs:
TS2 = <01 101 1001>.

A fault simulation at logical circuit level has been carried out with the
help of the VeriFault program of the CAD Cadence industrial tool. It gave
the respective coverage rate: 65% for the first sequence and 92% for the
second one. We notice that a 'functional' type test sequence established at
the automaton level does not test an the single stuck-at 0/1 faults. The
structural approach at the logical or electronic level is necessary to complete
the test and guarantee 100% coverage. Exercise 12.7 comes back to the test
of this sequential system at the state graph level.

Note. A 100% fault coverage rate is not a certainty of the total absence of
creation faults and breakdown faults due to ageing. The meaning of this rate
is relative to the system model and the fault model being considered. We
detect an the considered situations which transform these faults into errors in
this system model.

12. Removal ofTechnological Faults 319

12.3.5.2 Test of Random Access Memory

A Random Access Memory (RAM) is a special sequential circuit which
stores words of fixed length. It has two access modes: write to enter one
word at a given address, and read to extract one word from a given address.
Logically speaking, a RAM can be represented as a collection of registers
(first diagram of Figure 12.28).

I-bit-cell

prows

qcolumns

Figure 12.28. RAM representation

So, a first simple functional test sequence can easily be imagined: aseries
of known words are sequentially written, and then sequentially read and
compared to the original words; then the same test is applied with the
complementary pattern. This 'linear' test sequence of length N = 2n+1 is
unfortunately not excellent to detect real internal faults. Indeed, a physical
memory does not conform to the previous model. To rninirnize the silicon
surface, it is organized as a square matrix (p rows x q columns) of
elementary bit-cells (second diagram of Figure 12.28).

The physical study of real circuits has revealed different classes of
possible hard and soft faults creating different classes of errors: one cell, one
row, one column, address errors, but also mutual influence between cells
and, even worse, data sensitive errors which depend on the bits 0/1 which are
stored in the neighborhood of a given cell.

Several methods have been proposed to detect such fault classes. Their
complexity in number of test operations (readlwrite) is generally relative to
their coverage. Let us just mention some of these methods wh ich take the
electronic technology into account to be closer to the real faults:

• checkerboard 011: the matrix is written with acheckerboard pattern, read,
and the operation is repeated with the complementary pattern;

• marching: the matrix is initialized with a pattern (e.g. O's), then each bit
is successively read, complemented, written back, and read again, in
increasing order of the bits, and finally in decreasing order;

• walking columns: the matrix is initialized with a pattern (e.g. O's), then
the first colurnn is written to the complementary values, the matrix is

320 Chapter 12

read, and this process is repeated by shifting the column pattern to the
right; this technique can also be applied to a diagonal whose pattern is
shifted to the right in the matrix;

• galloping or ping-pong: the cells are partitioned into several groups
called contamination group; for example, if the contamination group of a
cell is the column, after initializing the matrix, each cell is successively
complemented and, each time, all the cells of its column are read.

12.4 EXERCISES

Exercise 12.1. Signature testing

A component tester applies a sequence of 1024 input lO-bit vectors to a
device under test (OUT) having 10 inputs and one output. The circuit
answers to this input sequence with an output sequence of 1024 bits. A
sequential compaction treatment is applied to this output sequence in order
to produce a 16-bits signature. So, the lO24-bit stream is split into 64 16-bit
words noted Ai. These successive words Ai are 'accumulated' in a 16-bit
register R by an XOR logical vector operation: R = R E9 Ai.

1. Which c1asses of failures cannot be observed with this technique?

2. From this, can we deduce the electronic component' s fault c1asses which
have not been tested by the tester?

Exercise 12.2. Toggle test sequence

Consider an adder whose logical gate schema is given in Figure 12.29.
Find the shortest possible input sequence which sets each gate

input/output line to '0' and to '1'.
We will refer to this exercise in the next chapter, in order to evaluate the

efficiency ofthis toggle sequence.

Figure 12.29. Full adder

Exercise 12.3. Test 0/ components

Imagine a component production chain whose yield is y = 90%. We
suppose that we apply a test sequence to each produced component (test of

12. Removal ofTechnological Faults 321

100% of the components). This sequence has n test vectors, each one having
a duration of 1 time unit. The sequence has a coverage rate of c = 80% of
faults of the fault model considered. We also assurne that the defective
components are detected on average after nl2 test vectors.

1. Determine and analyze the expression of the average test length.

2. Calculate the rate of defective produced components wh ich are declared
as 'good' by the test.

3. We now suppose that only t = 70% of the produced components are
tested. Refer to the previous two questions.

Exercise 12.4. Fault coverage

We consider a NOR gate with 3 inputs, a, b and c and one output d.
Analyze this gate's functioning when affected by single stuck-at 0/1 faults of
the a, b, c and d signals.

1. Find the test sequence having the shortest length (this sequence will be
called optimal test sequence).

2. Trace the coverage curves of i) the exhaustive test sequence, ii) the
optimal test sequence, iii) a toggle test sequence.

Exercise 12.5. Simple fault diagnosis

Continue the fault analysis of the NOR gate in the previous exercise in
order to distinguish the different faults.

Are certain faults non-distinguishable, that is system equivalent?

Exercise 12.6. Optimal test sequence

Analyze the circuit of Example 12.5 to find the optimal test sequence(s),
according to a single stuck-at fault model. Justify any test vector choice.

Exercise 12.7. Sequential circuit testing

We consider the synchronous sequential system in Figure 12.27. We
suppose that the initial state is state 1.

1. Check that the input sequences proposed in paragraph 12.3.5, STI and
ST2, respectively explore all the states and all the arcs of the graph. For
each sequence, determine the sequence of the states and the outputs
produced for each sequence.

2. Follow the logical evolution of the signals on the logical circuit for the
same test sequences. Is each line of the circuit set to '0' and to '1'
(consequently is it a toggle test)?

3. Comment on the problem experienced in detecting all the circuit single
stuck-at faults.

322 Chapter 12

4. Discuss the hypothesis conceming the initial state (state 1) of this
sequential system. How can we guarantee that the system is really in state
'1' at the beginning of the test?

Chapter 13

Structural Testing Methods

In the previous chapter we carried out a general presentation of the
various methods, which allow the suppression of technological faults during
the manufacturing and the operation stages of the lifecyc1e of the product.
We will now magnify some of the technical aspects of structural testing,
focusing on hardware and software technologies.

In a first part (sections 13.1 to 13.5), we analyze some simple methods
that are based on fault models. Thenl we consider the techniques of structural
testing that do not explicitly make reference to fault models (sections 13.6
and 13.7). Finally, section 13.8 presents mutation testing which covers both
aspects, either with or without fault model.

13.1 GENERATION OF LOGICAL TEST BY A GATE
LEVELSTRUCTURALAPPROACH

The functional test aims at exercising all possible behaviors of a system
to detect the presence of faults by observation of the outputs. Hence, all
faults activated by these behaviors are detected. Structural testing takes the
structure of the system into account by analyzing all possible behaviors of its
elementary components. We have already developed the interest of structural
testing. We have also highlighted the precautions that must be taken
concerning the interpretation of the coverage rate which provides a measure
for the efficiency of test sequences. In this chapter, we go deeper into the
structural testing methods for hardware and software technology.

In accordance with the technology, these techniques are initially
distinguished by the way that we observe the behavior of the components
within the structure.

323

J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

324 Chapter 13

Concerning software technology, structural testing attempts to activate
every possible component of the structure. This test is not apriori based on
precise hypotheses about the faults or the errors that might affect the
program. The activation is characterized by a property on the functioning of
the components. Let us consider the simplest example of activation: "a
statement has been executed". The considered component is the statement;
the property on its functioning is the fact of being executed. The
corresponding coverage rate will measure the efficiency of the sequence,
which is equal to the number of components for which the property is true
divided by the total number of components. The number of statements
executed divided by the total number of instructions in a program is an
example of coverage rate.

On the other hand, the structural testing of electronic systems is mainly
based on fault or error models. A good test sequence should be capable of
activating the faults in the model that are present in the system, and of
propagating an immediate or primitive error induced by this fault or
associated to the error model. For example, a structural test sequence for a
circuit modeled at gate level will have to detect the stuck-at 0/1 errors (error
model) of each of the constituent gates.

The second approach is much more precise than the first one, but it is
based on strong hypotheses that must be valid.

• First of all, it supposes that faults or errors do not affect the structure of
the system, or modify it only slightly. For example, a connection between
two components Cl and C2 cannot be suppressed and replaced by a
connection between Cl and a component C3.

• Secondly, it supposes the knowledge of a realistic error model.

ln the case of logical level models of electronic systems, these two
hypotheses are acceptable. First of all, the chosen faults do not affect the
structure. They uniquely concern the functioning of the components, such as
the logic gates. Furthermore, the misfunctionings are known and can be
characterized by an error model (such as the stuck-at errors). Finally,
experience has shown the relevance of these two hypotheses for
manufacturing and operation phases. Unfortunately, these two cases are not
true for software models or abstract models of electronic systems (HDL,
Petri nets, etc.). For software technology, design faults modify the structure
of the system in an unpredictable manner (there is no faultlerror model).

Certain techniques attempt to benefit from the two points of view. The
studies concerning mutation testing of software draw their inspiration from
the approach adopted in electronics. For example, we measure the efficiency
of a test sequence by evaluating its capacity to detect the replacement of a
'+' operator by a '-' operator in an arithmetic expression. Thus, we do not

13. Structural Testing Methods 325

change the structure of the program but we conceive a known modification
of the behavior of an operator.

First of all we are going to study the techniques of structural testing that
are based on error models. They will be illustrated by means of an error
model of 'stuck-at' type that affects a structural model of a circuit at gate
level. We are successively going to: determine the test sequences that allow
us to uncover the presence of errors of this model that corrupt the system
(section 13.2), evaluate the errors of a model that are detected in the system
by a given sequence (section 13.3), define a diagnosis sequence that allows
us to localize a particular error, which is apart of the model and affects the
system (section 13.4), then study the influence of passive redundancy on the
detection and the diagnosis of these errors (section 13.5).

The next two sections (sections 13.6 and 13.7) assurne no faultlerror
models. The principles of the techniques presented will be illustrated by
software applications. Section 13.6 tackles the structural test without fault or
error models, and section 13.7 introduces the diagnosis methods without
fault or error models.

Finally, we present the technique of mutation testing in section 13.8. We
thus show how the techniques that are based on error models have
influenced the testing of software applications.

13.2 TEST GENERATION FOR A GIVEN ERROR

In this section we present a test generation technique, which allows the
detection of faults/errors that belong to a given model. We refine this
presentation by considering a system modeled by logical gates (NOT, AND,
OR, NAND, NOR, XOR) and affected by single stuck-at 011 faults.

13.2.1 Principles of the Method

An input vector applied to a circuit detects a fault that affects this circuit
if it satisfies three conditions: First, this input must induce an active signal
that reaches the component affected by the fault. Then, this signal must
activate the fault by transforming it into a local error. Finally, this error must
be propagated in the structure of the system, until it reaches at least an
output where it will be observable by the extemal tester. In this way, we
want to artificially provoke the activation of a fault as an observable failure.

We will analyze a simple and intuitive procedure, calledpath sensitizing,
for the search of the test vectors that detect a given fault f belonging to the
fault model. This procedure, illustrated by Figure 13.1, has four stages:

1. activation of the fault as a primitive error (f -+ e),

326 Chapter 13

2. backward propagation or tracing, towards the primary inputs, in order to
find the input vectors producing the preceding activation,

3. forward propagation along a chosen path, in order to allow the
observation of the primitive error at the outputs of the circuit,

4. justification or consistency operation which verifies that the local actions
implied by the preceding steps are coherent in the whole circuit, and finds
the input vectors that satisfy them.

I i=i ===::;------'>: J
I, I ,---

~~ .. -...... :1'f+ e - d ...

InpUl< 8 XO 1 Cl ';UlpU"

._--~ ~~--, .. ····~e· .. · .. ·.J
..... _ .. __ .. _-----_._----------------

Figure 13.1. Procedure for testing a fault

The actual implementation of this procedure is explained below with the
help of an example. It can lead to the exploration of adecision tree where
several choices are possible: the choice between several error propagation
paths, or the choice between several values of certain variables. When these
choices exist, the previous four-staged procedure must be re-iterated. If no
solutions are found at the end of the procedure, it means that the fault is
undetectable.

13.2.2 Activation and Backward Propagation

First of all, we have to activate the fault f into an eITor e and find the
input vectors that allow this activation. This stage is calledfault activation.
When the fault is a single stuck-at 1 (respectively 0) of a line, we must set
this line to 0 (respectively a 1). Hence, the fault is activated as an eITor. This
means that without fault the line takes the value 0 (respectively 1), and when
the fault is present this line takes the value 1 (respectively 0). According to
the case, we can either retain the symbolic notation e, or specify the fault
type by writing: 1-+0 or 0-+ 1. This eITor e is called primitive or immediate
error.

Next, we perform a backward propagation (or backward tracing) to
attempt to propagate this knowledge back to the primary inputs. This

13. Structural Testing Methods 327

knowledge is defined as constraints, specifying expectations on line values
to activate the fault.

Example 13.1. Fault activation and backward propagation

Consider the small circuit in Figure 13.2, and the fault f, stuck-at 1 of
line d. To activate f, we must place a 0 value on this line, which is the output
of the AND gate. This constraint is now propagated backwards, and we find
three possible values to put on a and b: 00, 10 or 01. At the end of these two
first stages, the fault has been transformed into an error on line d: an
expected value 0 which becomes a 1 when the fault is present in the circuit.
We see that the input c still has no constraint.

Figure 13.2. Fault activation

13.2.3 Forward Propagation

Now, the primitive error must be propagated to the output so that it is
observable by the extern al tester. Theforward propagation stage consists in
expressing the local constraints which allow the propagation of the primitive
error, from gate to gate, along one or several paths. When a propagated
error, noted ei, reaches one input of a given gate, we have to do one of the
following, according to the situation:

• if we want that this error propagates through the gate, we must find
appropriate values to apply to the other inputs so that ei passes and gives
another error ej,

• if we do not want that this error propagates through the gate, we must
find values to apply to the other inputs in order to maintain the output of
the gate at its fault-free value.

The second case is desired if we want to control the error propagation
along a predefined path.

This error propagation mechanism is analog to the propagation of electric
signals (raising or falling edges or pulses) through the logic circuit. Figure
13.3 shows examples of error propagation constraints through logic gates.

According to the type of gate that is crossed, the output error is 'in phase'
(noted e) or 'in phase opposition' (noted e') with the input error (noted e) .
The first case corresponds to the crossing of an AND or an OR gate, whereas

328 Chapter 13

the second case cOITesponds to the crossing of an inverter gate such as the
NAND or the NOR gate. For example, to allow an eITor to cross an AND
gate, all other inputs must be set to value '1' (which is the neutral element of
AND); therefore, the eITor passes through the gate and gives an eITor having
the same characteristic (it is called 'in phase'). On the other hand, the XOR
gate always allows an input error to pass through, the output eITor being of
type e or e', according to whether the second input has the value '0' (neutral
element of XOR) or '1' .

;=8 ?

I &tu<=. ~I

:=D- e
Propagation e --t e:t, ez ••• en

e ------fQ;L e
O~ e'
1

error blocking propagation

Figure 13.3. Error propagation constraints

In a very general way, the errors can propagate themselves along several
paths. The 'mother' eITor (primitive), which is produced by the first
activation of the fault, thus gives birth to several 'daughter' eITors that
propagate themselves along separate paths. When they re-converge on the
same gate (reconvergent fan-out structure), we have to examine multiple
eITor propagation across the reconvergent gate. Hence, a symmetrical gate
(AND, OR, NAND, NOR) propagates two eITors 'in phase', and blocks two
eITors in 'phase opposition'. For example, let us consider an AND gate that
receives two eITors in 'phase opposition', 1-+0 and 0-+ 1. In the absence of
a fault, the output has the value 0 (1 AND 0), and when the fault that
provoked these errors arises, we also have 0 at output (0 AND 1). Therefore,
this eITor is not observed at output.

Example 13.2. Error propagation

Let us consider again the example of the stuck-at 1 fault at line d of the
small circuit in Figure 13.2.

To reach the output, the primitive eITor e (0 -+ 1) must pass through the
OR gate. We must therefore place a value '0' at the input ofthis gate, i.e. the
primary input c. Hence, we obtain three test vectors: (abc) = (000, 010, 100).
The induced failure is a 0 -+ 1 (z = 0 if the fault is not present).

13. Structural Testing Methods 329

OOla=Dd e~
OlOb . ~Z

c .ft:-

Figure 13.4. Error propagation

13.2.4 J ustification

The three previous steps have led to the establishment of constraints on
the values of certain primary inputs and/or intemallines of the circuit. The
consistency or justification operation checks that these local constraints are
compatible and find the value of the test vectors, if they exist.

Example 13.3. lustification

To illustrate the problem of compatibility or non-compatibility of local
constraints, let us analyze the small circuit in Figure 13.5. We assume that
an error e occurs at line a. The propagation of this error at outputfbrings the
local constraints '1' and '0' noted in the figure. Nevertheless, these two
constraints are incompatible, since the OR gate (noted A) cannot have an
input value 1 and an output value 0 at the same time. Hence the justification
procedure reveals an inconsistency. To conc1ude, no test vector may
propagate the error as a failure. This error e is not detectable, because it
corresponds to a passive redundancy.

e
3--............

e'
1O---f

c--~

Figure 13.5. Consistency

13.2.5 Complete Study of a Small Circuit

Example 13.4

Now we are going to illustrate the previous four steps with a complete
example. Consider the circuit in Figure 13.6, and the stuck-at 0 fault of li ne
111, noted a in the figure.

330

a --,1,---'1

b ...;2~-r--I

3
c

8
d -----I

Figure 13.6. Gate structure

13.2.5.1 First Step: Activation of the Fault

Chapter 13

f

g

To activate the fault as a primitive error, the test vector must produce a
value '1' at line 111 without fault. Thus, the occurrence of fault a will
provoke an error noted e at line 111: '1' without failure, which becomes '0'
when fault a occurs.

13.2.5.2 Second Step: Backward Propagation

Now let us see how to satisfy this constraint from the primary inputs. We
go back (by backward propagation) from line 111:
111 = 1 -+ 15 = ° and 16 = 0, wh ich implies b = 12 = 0 and c = 13 = O.

The situation after execution of these two stages is shown by Figure 13.7.

f

g

Figure 13.7. Steps 1 and 2

13.2.5.3 Third & Fourth Steps: Forward Propagation and Consistency

Let us come back to error e. Two paths, P 1 (lines 11 - 10 - 13 - 17 = j)
and P2, (lines 11- 15 - 18 = g) are candidates to propagate it, respectively on
fand on g (Figure 13.8). We must successively try to propagate the primitive
error through each path, then the two simultaneously, since we wish to find
all the test vectors detecting this fault. If our objective is to find one test
vector only, the procedure is stopped once a test vector has been found.

13. Structural Testing Methods 331

a

b
2

3
c

8
d

Figure 13.8. Two propagation paths

Path P10nly
The error e must first of all cross an OR gate: e is observable as an error

e1 at the output of this gate if line 19 has the value '0'. If it had the value '1'
then the output of the OR gate would be '1', and the propagation of error e
would be halted! An error e 1 is therefore produced at 113 at the input of an
AND gate. To cross this gate, and finally reach the output, line 114 must be
set to '1' . This last value blocks any propagation along path P2. Let us sum
up the propagation constraints, which are called path sensitizing: 19 = 0,
114 = 1. These constraints must now be propagated backwards to the primary
inputs to complete the test vectors and see if some inconsistency situations
occur (for example the same line simultaneously taking values '0' and '1 '):

• 19 = ° implies 11 = ° OR 12 = 0, which is satisfied since 12 = b = 0;

• 114 = 1 implies 112 = 1, requiring 17 = ° OR 18 = 0, which is satisfied, as
c = 13 = 0, thus 17 = O.

ConcIusion: the path Cl can propagate the error at output ffor four test
vectors noted symbolically: (a b c d) = (- 0 0 -) . The fault provokes a '0'
instead of' l' onf(failure).

Path P20nly
Error e has to cross a NOR gate giving g. This propagation requires that

line 116 be equal to '0' . If not the output 18 would be forced to '0' and the
error would not pass to g! Let us see ifthe constraint 116 = 0 can be satisfied:
by going backwards in the circuit, this implies 17 = 1 and 18 = 1; however, 17
has the value '0' since 13 has the value '0', thus it is impossible. Thus, no
test vector allows detecting the fault at output g.

Path P1 and path P2
It is impossible to propagate the original error simultaneously through

these two paths. Actually, we have just seen that the propagation condition

332 Chapter 13

onj is that the line /12 is set to '1', and the propagation condition on g is that
the line 12 is set to 'O'! Therefore, the error is not observable simultaneously
at outputsjand g.

To sum up, the fault a is detectable on output j by the four test vectors
(a b c d) = (- 00 -).

13.2.5.4 Notes

The previous analysis has revealed a single decision level tree, which has
three branches corresponding to the choice of two paths that are able to
propagate the errors: P J alone, P2 alone, and P J+P2. As a general rule, other
decision nodes can be induced by backward and forward propagation
mechanisms. Thus, Exercise 13.2 proposes the analysis of a fault that is
more difficult to test, because it implies several choices, and thus lead to the
exploration of adecision tree of severallevels.

The reader rnight have noticed that the followed procedure is not very
efficient to treat this fault. Indeed, at the end of step 2 (see Figure J 3.7), we
could have exploited the obtained values by a backward propagation: a logic
'0' on line 12 implies a logic '0' on line 19; a logic '0' on line 17 implies a '1'
on lines /14 and /16, which forces output g to logic '0'. Thus, the 4 test
vectors are very easy to deduce. This re mark shows that the simple path
sensitizing method presented can be improved. For example, the path tracing
based PODEM method uses an implicit vector enumeration by an orderly
search algorithm. Exercise 13.3, proposes to analyze and improve astrategy.

13.2.6 Test of Structured Circuits

Still restricting oUf study to the case of combinational circuits, we will
now briefly exarnine the case of structured circuits. Let us consider a simple
2-module structured circuit represented in Figure J 3.9.

Observability

;npub d ~M~ F ;npub

Controllability

Figure J 3.9. Structured circuit

Each module is supposed here to be individually completely testable
(completely controllable and observable); the question is now to test these

13. Structural Testing Methods 333

modules from the primary inputs and outputs of the whole system. Module
MI is fully controllable from the inputs, but not necessarily fully observable
from the primary outputs. Conversely, module M2 is fully observable from
the primary outputs, but not necessarily controllable from the primary inputs.
Therefore, defining a test sequence that will test the complete circuit is not a
trivial issue. This testing problem is illustrated in Exercise 13.9 with a circuit
made up of two full-adders in cascade to form a 2-bit number adder.

13.3 DETERMINATION OF THE FAULTSIERRORS
DETECTED BY A GIVENTEST VECTOR

We are still considering a structured system and an error model, and we
will illustrate the proposed method on a structure of logic gates and a stuck
at 0/1 error model. We assurne that we are given an input vector from which
we want to know the errors that it detects. Applied to a complete test
sequence, this technique allows the evaluation of its coverage rate: fault
grading by structural approach.

13.3.1 Principles of the Method

We are going to study a simple and intuitive method based on a structural
analysis of the circuit using a propagation technique conducted in two steps
(Figure 13. 10): forward simulation, and backwardfault analysis.

I o

Figure 13.10. Determination of the coverage of a test vector

1. We establish the values of all the lines of the circuit structure by a
forward simulation.

2. We go backwards in the circuit by means of a back ward fault analysis
along the paths or the logical layers, and each time we establish the faults
that are detected.

334 Chapter 13

A conventional simulation implements the first step. The second stage of
the method consists in going back from the primary outputs to the primary
inputs across the logic gate structure, in order to identify the faults that are
detected and those that are not detected.

Figure 13.11 shows some examples of 'backward' analysis of logic
gates. Output line c of the analyzed gate is supposed to be observed by the
tester, and we are looking for the faults occurring in the circuit or the input
errors that are detectable on c. Thus, in the case of an AND gate having (0 1)
as input, we detect the stuck-at 1 of c, the stuck-at 1 of a, and nothing on the
input b (this 'non detection' is noted by the symbol '-'). For the considered
input configuration (0 1), we can say that, from an 'observational' point of
view, the stuck-at 1 fault of ais 'equivalent' to the stuck-at 1 fault of c.

a, b & c are known

~ ~
-+ find detectable faults?

: ~I·'" o 0 o I
I l~ c

P o~ ~
a b 1 1

a c I EI:) I
1

0
0

Figure 13.11. Backward analysis

The general principle of this method is therefore to exploit the
observational fault equivalence by backward analysis of the logic structure.
When a line cannot propagate any error, we also cannot detect any fault on
all the components situated before this line. Indeed, a fault that is situated
before this line will have to be activated by an error, and then this error must
be transmitted up to the line in question. Now, by hypothesis, this error
cannot be propagated further. This property allows the simplification of the
analysis process, as we will see in the example that is treated later on.

This method is applied quite easily if the circuit does not have any
reconvergent fan-out structure, that is to say if it does not have any signal
that diverges on different paths before returning to a same gate. If such a
case occurs, this procedure poses some problems, and a particular treatment
must be carried out in order to detect any faults that are situated before the
divergence points. Figure 13.12 illustrates this problem. A stuck-at 0 fault at
line d provokes an error noted e J which is propagated along the two paths
and arrives at lines a and b (errors ez and eJ). These two errors will be
neutralized by the AND gate, which provides output c = 0 with or without

13. Structural Testing Methods 335

the fault. Thus, this fault of line d cannot be detected, whereas 'backward'
analysis by observational equivalence would discover that this fault is
detectable, since the fault of line a is detectable. In such cases, we have to
consider whether the failures situated backward from the divergences can
produce multiple error signals. That case will therefore be treated separately.

u
v

Figure 13.12. Reconvergent fan-out

13.3.2 Study of a Small Circuit

Example 13.5

c

Let us consider again the circuit of Example 13.4 represented in Figure
13.13, and let us suppose that we apply the input vector (1000).

Figure 13.13. Fault coverage example

First of all, we note that this circuit has 3 cases of reconvergent fan-out:

• the signal on line 12 takes 2 paths before reconverging on the OR gate
giving the signal on 113: (14 - 19) and (15 - 111 - 110),

• the signal on line 13 takes 2 paths before reconverging on the AND gate
producing the output/: (16 -111 -110 -113) and (17 - 112 -114),

336 Chapter 13

• the signal on line 13 takes 2 paths before reconverging on the NOR gate
producing the output g: (16 -1l1 -1l5) and (17 -1l2 -1l6).

In Figure 13.13 we have represented on each line the value obtained by
normal forward propagation (step 1). From the values obtained by this first
step, we go back from the outputsjand g, and we indicate the faults that are
detected or are not detected in the circles (step 2). In this way, we detect the
stuck-at 0 faults of lines 117, 114, 113, 112 and 111, and the stuck-at 1 faults of
lines 118, 16, 15 and 13. We detect nothing on the other lines (marked -). The
lines located before the divergence points are studied separately. The stuck
at 1 fault of line 13 propagates itself on a single path (which leads to j): it is
therefore detectable. On the other hand, the stuck-at 1 fault of line 12 will
create 2 eITors at 14 and at 15. These two eITors propagate themselves and
arrive in phase opposition on the OR gate creating the signal on 113: they
therefore neutralize each other and this failure is not detected on output g.

13.4 DIAGNOSIS OF A TEST SEQUENCE

Without going into details about the diagnosis test, we are simply going
to present the principle of a technique and analyze the distinction capability
of a test sequence applied to a small circuit. This will allow us to explain the
role of a diagnosis tree.

13.4.1 General Problem of the Diagnosis

The problem of a diagnosis test has already been introduced in Chapter
12 (in section 12.2): from the observation of the responses of the product to
the applied test vectors, how can we deduce the fault/eITor that is present?

Figure 13.14 provides some simple diagnosis examples allowing some
faults to be distinguished. In order to distinguish the stuck-at 1 faults a. and ß
of the first gate (AND), we look for a sequence that firstly detects the
presence of one of these two faults (test vector 10, noted TV1 = 10 on the
figure), and then separates them (second vector TV2 = 00). Hence, the
resulting distinguishing sequence is DS = <10, 00>. The reasoning is similar
for the OR gate. By performing this analysis for several fault pairs, we
realize that some faults cannot be distinguished. Thafis the case of the stuck
at 0 of the inputs / output of an OR gate, or of the stuck-at 1 of the I10 of an
AND gate, or the stuck-at opposite values of the input and output of an
INVERTER. These faults are system equivalent.

It is not sufficient to only consider the faults of an isolated component.
Next, we must ex amine every single fault of the components of the circuit. A
complete diagnosis (or distinguishing) sequence will have to classify all the

13. Structural Testing Methods 337

groups of faults that can be distinguished; each group is a set of system
equivalent faults. p aTV=JO aß: TV = 01, 10,00

b c ~ distinguishing sequence: DS = < 10, 00 >
1 a

a~
0:: TV =01
ß: TV =01,10,11

b C

distinguishing sequence : DS = < 01, 11 > o a

Equivalent ~~ hp Caults

Figure 13.14. Diagnostic of gates

13.4.2 Study of a Small Circuit

Example 13.6

Let us consider onee again the cireuit of Example 13.1 (Figure 13.15)
with a classic single stuck-at '0' or '1' fault model. We apply the following
fixed diagnosis sequenee: DS = <110, 010, 100,011>.

Figure 13.15. Diagnosis of a small circuit

The faults deteeted by these 4 veetors are indicated by Table 13.1: thus,
the input veetor (abc) = (110) detects the stuck-at '0' of the lines 1,2,4 and
5. The symbol '-' indieates that the veetor deteets no failure of the line. This
table was obtained by applieation of the path sensitizing method presented in
seetion 13.2. The eonsidered fault model eomprises 10 faults (stuck-at '0' or
'1' of eaeh of the 5 lines). The circuit is either faultless (this is noted by the
symbol <»), or affected by one of these 10 failures; this gives 11 situations.
The applieation of the veetor V 1 separates these possibilities into two
groups:

338 Chapter 13

• {1°, 2°, 4°, 50} if the response of the circuit is incorrect, that is an the
faults belonging to the first row of the table,

• {<p, 11, 21, 3°, 31, 41, 51} if the response of the circuit is correct, that is an
the other situations.

Lines 1 2 '3 4

~~i fest ' abc ~

VI 110 0 0 - 0 0
V2 010 1 - 1 1 1

V3 100 - 1 1 1 1

V4 Oll - - 0 - 0

Table 13.1. Fault coverage of a 4-vector test sequence

Then, we successively perform the same analysis for the 3 others vectors,
and we gradually construct the binary diagnosis tree displayed in Figure
13.16. The considered test sequence thus partitions the 11 possible cases into
7 c1asses. We note that two c1asses possess several faults: {31, 41, 51} and
{ 1°, 2°, 4°}. In fact, the faults of each one of these groups are not
distinguishable: they are thus system equivalent.

Imp. Imp.

pO, 20, 40}
{31, 41, 51}

Figure 13.16. Diagnosis tree

Hence, the proposed test sequence provides a complete diagnosis, which
means that the c1asses of distinguished faults ({ <p}, {30}' {21}, {1 1}, {3 t. 4 t.
51}, {1°, 2°, 4°} and {50}) are an the c1asses of system equivalent faults.
Moreover, this sequence is optimal in number of test vectors. Since the
circuit is combinational, we can exchange the vectors without changing the

13. Structural Testing Methods 339

final classes; thus if we remove any vector, some of the distinction classes
that are obtained are no longer equivalence classes.

13.5 INFLUENCE OF PASSIVE REDUNDANCY ON
DETECTION AND DIAGNOSIS

Now we analyze the influence of passive structural redundancy (Chapter
8) on the test of logic circuits. By definition, passive redundancy implies
undetectable faults. From the user's point of view, this situation can appear
satisfactory: he/she does not have to preoccupy himself/herself with faults
that never disrupt the good working order of the product. Such an argument
is false, as we will show by the use of some simple examples. First of all, the
manual or automatic search for test vectors detecting undetectable faults is a
cause of loss of time and money. Secondly, the majority of protection
methods are based upon simplified hypothesis such as the 'single fault'
assumption. Passive redundancy can mask the existence of faults that can be
accumulated over time. This is calledfault masking. Passive faults can:

• mask the detection of 'activable' faults (a fault being able to bring about
a faHure is not detected by the tester), as illustrated by Example 13.7,

• distort the diagnosis of 'activable' faults (the tester is mistaken when
identifying the presence of a particular fault when it is another fault), as
illustrated by Example 13.8.

Example 13.7

Let us assurne that a non-detectable stuck-at 1 fault occurs in the circuit
of Figure 13.17 (fault noted a in the figure). Since it is not detectable, it can
occur and then remain in the circuit for a very long time without posing any
problem nor being detected at the time of the maintenance test operations.

Detection Masking a ---I

CL : undetectable
ß : detectable by

ab=OOor 10

b--r-r-I

Figure J 3.17. Detection masking

f

To understand the loss of detection, we consider a stuck-at 0 fault, noted
ß in the figure, which is detectable by two test vectors (00 and 10). We

340 Chapter 13

suppose that we have chosen vector 10 for the maintenance test sequence. If
this fault ß occurs whilst a is already present, the result of the test is always
'correct' and therefore the fault ß can no longer be detected by the test
sequence. We say thatfault ß is masked by the passive fault a .

Example 13.8

In order to understand the loss of diagnosis, we propose the circuit in
Figure 13.18. As for the previous example, we assurne that a passive fault,
noted a, is present in the circuit, perhaps for a very long time. Now let us
consider two detectable stuck-at 0 faults, ß and y, which are distinguishable
by the diagnosis sequence <11,01>. If the fault ß occurs whilst ais already
present, this sequence erroneousl y diagnoses the presence of y instead of ß!

Note. This situation corresponds to the presence of two single faults,
which violates the dassic single fault assumption. Actually, the first non
testable fault a appears at time t, and, from this moment, the probability of
having a second failure increases with time. Such situation is quite possible.

Diagnosis Masking

a : undetectable
ß : detectable by: ab = I J on f

ab=OJ ong

y : detectable by ab = 11 on f

~ Distinction <11, 01>

a """T---1 "»-----'''''''

a
J

Figure 13.18. Diagnosis error

(

g

13.6 DETECTION TEST WITHOUT ERROR MODEL.
APPLICATION TO SOFTWARE

13.6.1 The Problem of Structural Test without Error Model

In electronics, an error model defines error dasses (for example that of
the stuck-at) due to various causes: design errors of the components,
hardware faults due to ageing, etc. Bach dass represents a perceptible
physical reality that has been established by experience/experiment (notion
of pertinence of the models). Furthermore, a model identifies generic errors
appropriate to the technology and not to the product studied. For example,
the stuck-at fault can occur in a gate constituting the product, whatever the
functionality offered by this product. In the case of software technology,

13. Structural Testing Methods 341

such generic error classes are generally not considered, since they are not
acknowledged as representatives of situations that are commonly
encountered.

Nevertheless, the methods of structural testing for software are based
upon types of elements that the test sequences must activate. For example, if
we consider statements as the type of element, a structural test sequence will
look to execute all the statements of a program. If this is the case, we will
allude to a 100% coverage rate. As previously mentioned, the coverage rate
of the sequence will be the number of elements (of the considered type) that
are activated by the execution of the sequence, divided by the total number
of elements of this type in the pro gram.

Even if the terminology (coverage rate) is identical to that employed in
electronics, the sense given in the software domain is different. In
electronics, this level represents the percentage of the errors in a class (fault
model) of which detection is guaranteed; in software, no precise link has
been established with technological faults. We can say that the higher the
value of this level, the more important the probability of detecting possible
errors will be, since the sequence will have activated more elements.
However, a level of 100% can be associated with a sequence that does not
really detect 100% of the present faults. Even this sentence can be contested,
since we do not know the set of possible faults, and thus the reference base
that helps us to define the percentage of actual fault coverage.

Let us consider the following function:
function F(A, B: in float) return float is
begin

return (A+B)/(A-B);
end Fi

The execution of F(5,3) provides a level of 100% when 'statements' are
the type of elements considered, whereas this function contains an activable
design fault raised by calling F with identical values (A = B) if this case has
not been included in the specification.

Thus, the fact that all the statements have been executed increases, in an
unjustified way, the trust that we could have. On the other hand, the fact that
all statements have not been executed increases, in a justified way, the
mistrust that we should have. Actually, the fact that it may not be possible to
execute some of the statements in the program frequently uncovers a design
fault. This situation however can be intentional, for example, as a result of
library usage in which only some of the functionalities are voluntarily
employed, or because of the presence of redundant mechanisms that were
introduced for tolerance reasons, wh ich are only activated when errors occur.

In order of implementation complexity, we consider as type of elements:
statements, branches and paths, and conditions. We will indicate the
increasing degree of the verification of these methods that are besides

342 Chapter 13

generally demanded according to the increasing degree of dependability
required. In the case of the requirements of the DO-178B standard applied to
avionics systems, the following is appropriate. The software at level 1 (not
critical) does not require the use of structural testing, those at level 2 require
an statement test, for level 3 a branch test is necessary, and at level 4, which
is the highest, a conditional test is required.

13.6.2 Statement Test

The statement test sequence must provoke the execution of all the
statements of the pro gram. Let us consider the following fragment of
program:

if X <= 0
then

else

end if;
if X = 0

then
else

end if;

x .-
Y .-
X . -
Y .-

X .-
X .-

-X;
2 ;
1-X;
1;

1;
X+1;

1

2

3

4
5
6

The figures following the '--' sign are comments which will be used in
our analysis.

If we execute this pro gram fragment with the value -3 and then + 1 for X,
we obtain coverage of 100%. Let us indicate that there are tools that are
integrated into the execution environments of computer languages that can
save and therefore highlight the statements executed.

Generally, we do not initially try to establish a specific activation
sequence. We use the input sequence of the functional test sequence already
defined for functional verification. The fact of not considering the output
values shows that the software structural test is not used to detect failures of
the product. If some of the statements of this program are not executed by
this sequence, then that proves:

• either that the functional test sequence was incomplete and that certain
behaviors were not evaluated,

• either that the design choices have lead to treat in a singular manner the
behaviors that are considered as functionally equivalent,

• or that there is redundant code, for example to implement mechanisms for
fault tolerance.

In order to illustrate the second case, let us consider that we have two
functions Small_F and Big_F at our disposal. Both of these functions

13. Structural Testing Methods 343

calculate the same result F according to two different methods (or
algorithms), respectively weIl adapted to the case where the value of the
parameter X belong to the interval [0.0, 1.0] or if it is greater than 1.0.
Therefore, the designer will undoubtedly write:

if X <= 1. 0

end if ;

then F .- Small_F(X);
else F := Big_F(X);

If the product (the complete pro gram) behaves differently if X <= 7.5 and
X> 7.5, then the functional test sequence can execute the program with X
=7.0 then 8.0 and finally 7.5 for the 'limit tests'. In this case, the statement
'F: =Small_F (X) ;' will never be executed. Hence, the implementation of
Small_F can contain a fault that we must try to detect. This example thus
shows one of the interests in structural testing.

13.6.3 Branch & Path Test

Wehave just shown that the test of statements constituted a contribution
to the evaluation of the functional test sequences. However, the supplied
coverage level is of little significance. Let us consider the following extract:

if x>o.o then

99 statements in sequence

else ... 1 statement
end if ;

If we execute it with X = 1.0, we provoke the execution of 99 of the 100
statements. The level of 99% seems very satisfying, whereas evidently, we
have only tested half of the situations: 'X> 0.0' has been examined but not
'X <= 0.0'. In fact, the statement test makes the hypothesis of the
independence of the statements, wh ich is not the case in this program. In the
previous example, the execution of the first statement automatically implies
the other 98 statements that are in sequence.

The statements in sequence are now grouped together by branch and only
the branches are examined.

Figure 13.19 shows a representation of the branches from the extract of
the program that is provided in sub-section 13.6.2. The statement test
explained in the previous sub-section leads to the state paths that follow:

• X=-3:1,2,4,6,7,

• X=+I:I,3,4,5,7.

Thus, all the branches are covered (2, 3, 5 and 6) by this branch test.
This coverage level is more significant than the previous one, since it takes

344 Chapter 13

the sequential dependencies between the statements into account. However,
this test does not consider the dependency (or non-dependency) between the
branches. For example, the state sequence 1,2,4,5, 7 is not activated by the
2 attempts (X = -3 and X = +1) when it could correspond to a particular
behavior that potentially leads to a faHure.

X :-l-X;
Y:-l;

X:=-X;
Y :=2;

Figure 13.19. Branches of a program extract

The path test is devoted to the study of paths. We are therefore looking
for a test sequence that provokes the execution of all the control graph paths
of the program. For the previous example, the 4 possible paths are: 2 then 5,
2 then 6, 3 then 5 and 3 then 6. The sequence X = -3 then X = + 1 therefore
covers only 50% of the paths (2 out of 4). The path test thus seems
preferable. However, it must be practiced with care.

First of all, all the control paths are not necessarily execution paths. In
the previous program extract, if we replace the second test x = 0 by x = -
1, then the path 1,2,4,5, 7 will ne ver be executed. This is because if X <= 0
the execution of x : = -x gives X a positive value, which will therefore
never be equal to -1. In fact, the conditions for branching are not
independent. If numerous relations exist between the conditions and the
branches, then the actual number of execution paths is relatively low.

Secondly, the duration of such tests can be intractable, in particular if the
program has loops and nested control structures. Actually, the number of
paths increases in a combinatorial fashion. An article presented an example
of a pro gram that contains 2 'while' loops of which we assume that there is a
maximum of 12 iterations, 2 'case' statements (equivalent to 'switch' in the
C language) and one 'if' statement. For this program, we assume that the
execution of a path requires 1 nanosecond. The study showed that an
exhaustive path test would require 4000 years.

13. Structural Testing Methods 345

13.6.4 Condition & Decision Test

We use the term condition for a Boolean expression which does not
contain any Boolean operator ('and' , 'or' and 'not'). 'A>B' where A and B
are float variables is such an example. We use the term decision for a
combination of conditions (or of decisions) with the use of Boolean
operators. 'A>B and B>C and not Cond' where Cond is a Boolean variable
is an example of adecision.

The ConditionlDecision test (CIDC for 'ConditioniDecision Coverage')
is dose to the structural toggle test seen in Chapter 12 since it considers that:

• the decisions must take the value True and False at least once,

• the conditions must take the value True and False at least once,

• the input and output points of the components (subprograms, etc.) must
be executed at least once.

This last condition aims at detecting components that are not used or in
which the execution never terminates.

Let us consider the following program extract:
If A=B and C2 and D>3 then ...

We have 3 conditions (A=B, C2, and D>3) and one decision ('A=B and

C2 and D>3 '). Let us consider Table 13.2 that contains the values of the 3
conditions (the first three columns). We deduce from these first 3 columns
the values of the Decision. In this situation, we obtain a total coverage
conceming the conditions and the decisions that take the values True and
False. Thus, to acquire a test that gives a coverage of 100%, it is sufficient to
take the values a, b, c2 and d for variables A, B, C2 and D such that a = b, c2
= True and d > 3, then such that a 1= b, c2 = False and d ~ 3.

Condition/Decision test does not try to obtain all the possible Boolean
combinations but:

• to cover all the branches by assigning the values True and False to the
decisions,

• to cover all the situations of the conditions.

A=B C2 D>3 => Decision

True True True True

False False False False

Table 13.2. Condition & decision test

346 Chapter 13

The CIDC is the ConditionlDecision Coverage. It measures the
coverage, taking the three previous element types (conditions, decisions,
1/0) into account. The MCIDC test for 'Modified ConditioniDecision
Coverage' adds a fourth requirement to the 3 previous ones:

each condition in adecision must be shown to independently
affect the result 0/ the decision.

In the previous case, the 3 conditions and the decision have taken the two
possible values True (respectively False) but not independently: 'A = B' and
C2 and D > 3 were simultaneously True or False, wh ich gave a True
decision (respectively False). To achieve the previous requirement, we must
modify a single condition at a time so as to show the impact on the decision.
An example is developed in Exercise 13.14.

The achievement of the structural test sequences, in particular of the
CIDC and MCIDC type, is difficult; since it must be able to control the
modification of the values of the internal variables from the external inputs
of the program. This is a controllability problem that has already been
highlighted.

13.6.5 Finite State Machine Identification

Structural testing methods used to check pro grams are not based on
explicit fault models. After the presentation of the statement, branch, path,
decision and condition testing techniques, we must say that implicit fault
models exist. Indeed, the control flow of a pro gram can be expressed by a
Finite State Machine (FSM) whose transitions are labeled by decisions and
inputs. The introduced structural coverage rates in fact aim at measuring
how achanging in the control flow FSM due to any fault can be detected.

Consequently, test sequence generation can be processed by finding
inputs/outputs which identify the control flow FSM.

13.7 DIAGNOSIS WITHOUT FAULT MODELS

13.7.1 Principles

The diagnosis method presented in section 13.4 assumes the knowledge
of a possible fault or error model. For each of the faults or errors of these
models, the failures of the system are deduced in the same way as the trees
that associate each failure with primary faults or errors. Thus, the
'experimental approach' also called 'empirical associations' assumes apriori
the knowledge of the faults, failures and their relationships. Then, when a
failure occurs, the potential faults are then examined.

13. Structural Testing Methods 347

Such techniques are not relevant when software technology is concemed,
as the lists of faults or classes of faults that may actually exist cannot be
exhaustively defined. To handle such a situation, the 'model-based
diagnosis' technique does not assurne apriori any knowledge on the
software failures and faults. It takes aposteriori the occurred failure into
account, analyzing two system models:

• what is expected, such as the system specification,

• what exists, such as the software structure (design models, program, etc.).

A failure violates an expectation whose causes must be found in the
existing system structure.

A diagnosis method aims at guiding the engineers during the diagnosis
process. Taking the previous pieces of information into account, this process
helps to find the fault being at the origin of the failure.

The proposed diagnosis method is divided into four steps:

1. highlight the error,

2. elaborate hypotheses on the causes,

3. confirm these hypotheses,

4. verify these hypotheses.

In the following sub-sections, each step is defined and its practical use is
studied. We will show that the main difficulties in handling these steps come
from the lack of knowledge on the actual system functioning before the
failure occurrence. To obtain such pieces of information, checks of the
system functioning are processed at run-time and data are stored. These two
activities are known as system instrumentation. The checks aim at
confirming the correct operation of the components or to signal error raising
at run-time. The data will be useful at diagnosis time to obtain the same
conclusions, improving the knowledge on the actual functioning. The
instrumentation technique will be introduced in Chapter 16. In this section,
requirements on the instrumentation, which makes the handling of each step
easier, are introduced.

Let us note that this diagnosis approach can be applied to any product
(hardware andlor software) modeled at system level.

13.7.2 Highlight the Erroneous Situations

The first step consists in highlighting and studying the assumed failure
from which we may conclude that a fault exists. This phase is important, as
the engineer must be sure that a diagnosis is necessary. Two reasons stop the
diagnosis process.

348 Chapter 13

First reason. The analysis establishes that the detected erroneous
situation comes from a defective use of the system. For instance, the user or
the environment had previously lead the system in astate where occurring
interactions cannot be handled as such a situation was not specified. This
conclusion does not mean that no action has to be undertaken. Without doubt
we will have to specify the contents of the user manuals so that the
interactions offered by the system are more explicit. The specifications of
the system can also be modified to improve the ergonornics so as to make
the understanding of the state of this system and of the actions authorized
clearer. Some mechanisms, which increase the robustness of the system to
the undesired interactions, will have to be specified as weIl. However, these
actions do not concern the search for a fault, since the system conforms to its
specifications.

Second reason. The analysis highlights an incorrect instrumentation. We
encountered systems whose functioning was correct but a failure was
detected due to an erroneous instrumentation such as a too restrictive
assertion on its expected functioning.

The study of the erroneous situation is very important, as it also specifies
the problem to be solved. The conclusions of such a study will be the basic
information handled during the following steps. In particular, this study must
specify the cireumstances of the failure by detailing the state or the
sequences of states of the environment which led to the failure. This study
must also provide an image of the internal state of the system, at that
moment. This prelirninary work is essential, since for many software
systems the main difficulty is rediscovering the precise context of operation
for the system. This context often corresponds to some very particular
situations that were not imagined by the designers.

The operation configurations can be deduced from the observations that
are made by the user. This information is often not precise, since the user
does not pay special attention to it (he/she does not expect apriori any
failure when it oeeurs). For these reasons, we reeommend the planning of a
data saving mechanism that charaeterizes the state of the operation requests,
or the history of these requests in the case of a sequential system.

The context of the software system also includes the internal state of the
system. If the identity of the current statement is useful, other pieces of
information are useful as weIl. It concerns the state of the components of the
system (objects, variables, ete.). This information can be quantitative, that is
the eurrent values of the variables. This is obtained from saved data or
deduced from them. This information can also be qualitative, that is the state
of the correct functioning of the eomponents. This correct functioning is
eonfirmed by the implementation of detection mechanism for erroneous
states, for example by means of assertions. These two types of information

13. Structural Testing Methods 349

are often correlated. For example, if we save the value of the variable that
designates the index of the top of a stack, this quantitative information also
provides qualitative information about the state of the stack: empty, full or
between the two, Pushed when it was full, etc.

13.7.3 Elaborate the Hypotheses

From the erroneous situation, that is the failure and the occurrence
context, hypotheses on the causes are examined. Taking the program
structure into account, the engineer searches for the states previously
processed by the pro gram to detect an internal erroneous one.

The main difficulties are quantitative as well as qualitative.

Quantitative difficulties. The pro gram contains numerous statements
whose backward recovery induces numerous possibilities. The engineers
must be able to select a few numbers of them to continue their analysis. For
instance, to handle backward simulation from the last statement of the
following program extract, the engineer needs to know if the 'then' or 'else'
part was processed.

if A>B then
else

end ifi
A:=A+li

Moreover, only in few cases the execution of a statement possesses a
single antecedent. For example, if we know the value of A after the
execution of A: =A + 1 i, we can deduce the value of A before this execution
(A has the value A-l). Generally, elasses of possible values must be
manipulated. For example, if the branch then was definitely executed, the
variables A and B can previously contain all the values such that A>B.

Qualitative difficulties. Whereas the pro gram provides structural
information (statements are assembled by control structures), the elaborated
hypotheses must concern more abstract notions such as "this subprogram
provided a wrong result". A link between these two types of information has
to be rnaintained throughout the analysis. For example, the knowledge of the
values retumed by the parameters allows us to make a conelusion about the
subprogram erroneous behavior.

At the end of this process, the provided hypotheses are program states
whereas the fault that causes their occurrences at run-time is a structural
notion. For instance, a constant value is incorrect or the Boolean condition is
A>=B instead of A>B, etc. are structural notions. As no realistic fault models
exist for the software technology, the deduction of a fault from a given
erroneous state cannot be done automatically. However, to make this last
step easier, the elaborated hypotheses must be elose to the actual fault.

350 Chapter 13

13.7.4 Confirm the Hypotheses

The previous backward simulation leads to multiple hypotheses. Most of
them are only potential. The confirmation stage of the hypotheses endeavors
to show that an error hypothesis effectively leads to (or does not lead to) the
erroneous situation. A direct simulation performs this research. We execute
the system from the hypothesis.

The first difficulty comes from the fact that the information that acts as
the starting point of the simulation is often expressed in constraint form: f
does not return a correct result or the value of X is less than 1.0. Thus we
have to perform a simulation that uses qualitative data (the first example) or
uncertain data (the second example).

Here again, the program complexity makes high-level simulation
necessary. For example, we will not execute a subprogram but assume that
its execution provides a correct result. This assumption must be argued
about. The instrumentation is therefore useful once more. For example,
thanks to the checks that were carried out on-line, or from saved
information, we deduce a certainty on the correction of the subprogram.

Whatever the simulation level we consider, the structure of the pro gram
describes multiple processing possibilities. For example, an if then else
offers two choices. Similarly, it can be necessary to know the effective
number of iterations that are executed by a loop. Pieces of information must
be available to reduce the choices.

If the simulation handling does not lead to the assumed erroneous
situation, the studied hypothesis is wrong. To reduce the time spent reaching
this conc1usion, the incoherent situations that come from the hypothesis
should be detected as soon as possible. In particular, the simulation is
stopped if it leads to states that could not occur. The instrumentation data are
one again useful to detect such a situation. For example, if the hypothesis
leads to show that the program requested the opening of a val ve or affected a
variable to some value, while these facts did not occur, this contradiction
shows that the hypothesis is false. This conc1usion is obtained without
processing the simulation from the fault up to the failure.

13.7.5 Verify the Hypotheses

The previous analysis concerns one erroneous situation and the recent
past of the system life: from the hypothesis to the error. However, the useful
life of the system may be longer. So engineers use knowledge on this
previous activity to confirm or not the assumed hypotheses. For instance, let
us consider the following hypothesis: the subprogram P does not correctly
calculate a result in certain circumstances. If P was previously called on

13. Structural Testing Methods 351

numerous occasions in the same circumstances without any problems, then
this hypothesis is probably false.

When industrial applications are concerned, such a conc1usion is
unfortunately not always true. Even if the program structure cannot be
changed at run-time, a lot of transient phenomena exist. For instance, they
rnay due to hardware faults or software temporal problems. For example, an
interrupt occurs whose handling consumed CPU time, increasing the
execution duration of a given preempted task. The fact that the interrupt was
raised during the task execution may be rnasked, thus making the
understanding difficult of the task execution duration delay. Other hardware
software interactions are at the origin of such phenomena. For example, the
presence of cache memory changes the execution duration of the executable
code instructions. It has an effect on the application behaviors that rnay be
perceived as hazardous. Here again, this cause is not understandable when
the hardware platform characteristics are unknown.

13.8 MUTATION TEST METHODS

13.8.1 Principles and Pertinence of Mutation Methods

A program mutation consists in modifying its statements so as to obtain
a new program called mutant.

The modifications used in practice are first-rate; they affect a single
element. Various types of modifications have been proposed. They constitute
fault models and concem different features.

• Constant values are changed by taking other values. For instance, in the
case of areal constant, we shift the placement of the decimal point
forward. For example, 3.14 is replaced by 31.4.

• Identifiers are replaced by others of the same type if the language is
strongly typed (Ada, Pascal). In the case of languages that allow implicit
conversions, such as the C language, an identifier can be substituted by
another one, even if their types are different. For example, in the
statement "X=Y;", Y oftype float is replaced by I of type integer.

• Operations are replaced by other operations that have operands and
results of the same type, if the language demands the respect of types.
This applies to arithmetic operators (+, -, *, etc.), but also to logic
operators (or, and).

• The called functions are replaced by others that have the same number
and the same types of parameters.

352 Chapter 13

• The flow of control is modified. For instance, by adding a negation
operator in front of the conditions that are associated with the branch tests
(it) or loop tests (exit conditions). For example, "if ((A+B < C) and
(A < D» then . . . else ." is replaced by "if not ((A+B
< C) and (A < D» then . . . else . . .".

• Statements are removed.

The question of the representativeness of such fault models immediately
comes to mind. These models generally correspond to no realistic faults. The
promoters of this technique confirm this. It is actually unlikely that a
designer obtains a correct program by means of a single mutation to the
original program. However, this technique presents a number of interesting
features. Even if the faults that are used by mutations are not realistic, the
errors that these faults induce are generally significant. The mutation
technique therefore allows us:

• to validate the error detection mechanisms by instrumentation of the code
(see Chapter 16),

• to validate the test sequences.

This last aspect is developed in the next sub-section.

13.8.2 Mutation Testing Technique

The mutation technique is used to evaluate the test sequences. For each
mutant, we check that the test sequence is capable of activating the fault
introduced and propagating the induced error up to the outputs. If the
mutation cannot be detected by the sequence, this sequence must be
improved. However, this improvement is not always possible. First of all, the
modification of the pro gram by certain mutations does not lead to a fault.
For example, let us consider the extract of the following pro gram:

Number_of_Ernbedded_Passengers =
Nurnber_of_Registred_Passengersi

for (N=l; N < Nurnber_of_Ernbedded_Passengersi N++)
{ . . . }

If a mutation transforms in the for loop, Nurnber_of_Ernbedded_
Passengers by Nurnber_of_Registred_Passengers, then there is no
fault detectable.

In other situations, the mutation effectively creates a fault, but the
redundancies do not allow to activate an error or to detect it at the outputs.
We will say in hoth cases that the mutated program is equivalent to the
initial one, which means that its behavior is not influenced by the mutation.

13. Structural Testing Methods 353

Under these circumstances, we do not have to try to modify the test
sequence since no improvement will be obtained. The performance of a test
sequence is therefore measured by the number of mutations that are detected
divided by the total number of applicable mutations, in excluding the
mutations leading to equivalent programs.

Evidently, this technique is only tractable if we dispose of a tool that
automatically injects the faults one by one, re-executing the test sequence
and noting the detected faults. In addition, the types of mutations that are
considered must be few in numbers. For example, a program containing 500
uses of the '+' operator will create 1500 mutants if we modify each use by
'-', '*' or '/'. If a program contains 15 integer variables, each used 10 times;
the total number of mutations is 15*10*14 = 2100.

Finally, certain mutations give properties to the program that make the
test difficult. Let us consider for example, the following extract:

for (1=1; 1<=N; 1++) { ... }

with the mutation which replaces the identifier N by the identifier I, thus
the execution of the loop can become infinite. This can cause an omission of
a result, which cannot therefore be compared to the expected one.

In spite of these difficulties, this evaluation method of test sequences is
quite appropriate, not as a result of the representativeness of the faults that
are considered by the mutations, but as a result of the representativeness of
the errors that these faults induce. Two types of experiments showed this.

• First of all, a test sequence a test sequence was established, having a
complete coverage of the set of mutations, for a preliminary version of
the pro gram. Then, this test sequence was applied to a second version that
was developed from the same specifications, but by another person. Most
of the faults that were present in this second version were detected.

• Secondly, the mutations can be applied two by two instead of one by one.
We therefore show that the initial sequence also detects almost all of
these situations. This experiment would aim to conclude that the
sequence is capable of detecting the errors that come from complex
faults, if those are considered as the combination of simple ones.

A similarity exists between the evaluation of the mutation software test
methods and the evaluation of electronic test methods that have to detect the
stuck-at 0 /1 errors. We saw in the previous chapter that this evaluation was
carrled out by methods that are based on the simulation of faults, that is, by
injection of faults. These errors have also been shown as significant. They
are due to physical faults that are not taken into consideration since they are
too diverse and complex for an observation of the system at logic level.

However, we have to repeat that the faults considered are not
representative. Therefore the sequences obtained by the mutation testing

354 Chapter 13

technique are useful in the detection of the presence of faults thanks to errors
that they provoke, but not to the diagnosis of these faults. For example, a
piece of a sequence could have been introduced to reveal the transformation
of a '+' operator into '-'. If the sequence is applied to the initial program, no
error should be detected. The detection of an error, by means of this
sequence slice, in another version of the pro gram does not allow us to
deduce the presence of a fault which changes a '+' operator into a '-'
operator in such a place in the program. In fact, the structure, i.e. the
statements of the tested program, is undoubtedly very different to that of the
original pro gram.

The evaluation of a test sequence by the mutation technique requires the
sequence to raise an error (controllability problem), but also to propagate it
towards the outputs (observability). The weak mutation testing only
possesses the first requirement. Indeed, it assumes the presence of internal
detection mechanisms to signal the error detection, such as those of
instrumentation that will be developed in Chapter 16. Only the
controllability capability of the sequence is therefore evaluated. This
technique is also useful to measure the performance of the detection
mechanisms implemented in the application, for instance to recover errors by
a fault tolerance mechanism.

13.9 EXERCISES

Exercise 13.1. Test of a small circuit

Consider the small circuit in Figure 13.2.

1. Apply the method seen in section 13.2 to find all the test vectors for each
of the stuck-at '0' or '1' faults of this circuit. Draw the resulting fault
table and comment the coverage efficiency of the different input vectors.

2. Prom this fault table deduce an optimal test sequence, i.e. a test sequence
detecting all faults and having a minimal number of vectors.

Exercise 13.2. Test vectors detecting a fault

Consider again the circuit studied in Example 13.4. Apply the structural
test method studied in section 13.2 to find all vectors testing the stuck-at 1
fault of line 11. The procedure here is more complex, since in stage 2 of the
backward propagation several input values can satisfy the constraint. These
possibilities must then be considered successively. Hence, a loop must be
added to the basic procedure.

13. Structural Testing Methods 355

Exercise 13.3. Analysis of test procedures

Let us consider the circuit of Figure 13.20. We want to find, by a path
sensitizing approach, one test vector which detect the stuck-at 0 fault of the
output of gate D.

a--;::::==~==fR'
b
c

d

Figure 13.20. NAND-gate circuit

1. The following procedure is proposed:

AllIines are set to 'x' (unknown) state.

f

- Input a is set to '0', and a propagation (simulation) is performed towards
the fault location: B = 1, C = 1, D = 0, so the fault cannot be activated;
hence we make a backtracking in the input assignment.
Input a is switched to '1', and a propagation is performed that brings
nothing, as B and C stay unknown.
Input b is set to '0', and a propagation is performed: B = 1.
Input c is set to '0', and a propagation is performed: C = 1, so the fault
cannot be activated; hence we make a backtracking in the input
assignment.
Input c is switched to '1', and a propagation is performed: C = 0, D = 0,
so the fault is activated as an error e.
Analyze this procedure and complete it in order to find one test vector.

2. The following procedure is proposed:

Alliines are set to 'x' (unknown) state.
- To activate the fault, D is set to 1, and we backtrace this information

towards a primary input: one input of gate D must be set to '0'
We choose to set B to '0', and we backtrace this information: all inputs of
gate B must be set to '1'.
We choose first the hardiest case, i.e. to assign A to '1', and we backtrace
this information.
We chose to set b to '0', and we perform a forward propagation towards
the fault of this information: B = 0, so the assignment is inconsistent; we
abandon this path and try another one with the assigned values of the
primary inputs.

356 Chapter 13

- Gate C is set to '0', this information is backtraced: all inputs of gate C
must be set to '1'.

- Input a is set to '1'.
- Input c is set to '1'; now the fault is activated as an error.
- We want to propagate the error through gate E: there is inconsistency.
- We make a backtracking in the primary input assignment.
- Input c is switched to '0', and we perform a propagation: C = 1, so there

is inconsistency, and we continue the backtracking on input b, c being
now set to 'x' again.
Complete this procedure in order to find one test vector. Can this

procedure be improved?

Exercise 13.4. Fault coverage of a test vector

1. We apply to the circuit of Exercise 13.2 the input vector (a b c d) =
(l 00 1). Find by structural analysis all the faults covered by this vector.

2. Is the preceding vector a good test vector? Analyze the structure of the
circuit in order to find test vectors having the highest test coverage (best
number of detected faults).

Exercise..13.5. Diagnosis of a circuit

Let us consider again the circuit of the previous exercise.

1. Look for a simple test sequence that at best distinguishes the three faults
in the group {2°, 5°, 11 1 }.-

2. Draw the diagnosis tree of the following test sequence;
TS = <1000, 1001,0110>.

3. Is this sequence significant?

Exercise 13.6. Complete diagnosis of a small circuit.

From the fault table obtained in Exercise 13.1, deduce a minimal
sequence which performs the best diagnosis testing.

Exercise 13.7. Logical test of some faults of a full-adder

This exercise invites you to test the full-adder of wh ich the logic diagram
is given again in Figure 13.21.

1. Find all the input vectors which test the stuck-at '0' fault a in the figure.

2. This fault has already been studied in Exercise 5.2 of Chapter 5. In what
way is this functional approach different to the present structural path
sensitizing approach?

13. Structural Testing Methods 357

3. A functional fault transformed the two EXCLUSIVE OR gates into
IDENTITY gates. 1s it possible that a test vector that was found In

question 1) can test this fault, which is not a stuck-at fault? Why?

a _--r::::::-l
b ~--+~~

g

Figure 13.21. Full Adder

Exercise 13.8. Functional test and toggle test 0/ a Jull-adder

1. Find a very simple functional sequence of two vectors to test the full
adder of the previous exercise. Find the stuck-at faults detected by this
sequence.

2. Complete the previous sequence in order to obtain a toggle type test
sequence (such a sequence was found in Exercise 12.2 of Chapter 12).

3. Complete the previous sequence to test all the stuck-at faults of the
circuit.

Exercise 13.9. Test 0/ a structured circuit

Two full-adders (FAI and FA2) are connected in series as shown in
Figure 13.22. This structured circuit adds two 2-bit numbers, (al, a2) + (bI ,
b2), and produces a 3 -bit result, (SI, S2, S3). An input carry cO (set to ° in
our case) can be used to put in cascade several circuits, in order to constitute
an n-bit adder.

S I 2

"I bl :l2 1>2

Figure 13.22. Structured adder

We suppose that each full-adder is completely tested by the following
test sequence made of 5 input vectors (a, b, c) : <001,010, 100, 110,011>.

358 Chapter 13

1. Is it possible to apply such a sequence to each module from the primary
inputs and outputs?

2. From this study, deduce a complete test sequence that ensures the
detection of all faults in this circuit.

Exercise 13.10. Diagnosis study ofthefull-adder

Draw the diagnosis tree of the input sequence <000, 010, 111> applied to
the full-adder of Exercise 13.7. Is this sequence a good diagnosis sequence?

Exercise 13.11. Complete test sequence of a circuit

A very simple logic circuit of 3 inputs (a, b, c) and 1 output (j) is
depicted in the following figure.

Figure 13.23. Complete test of a circuit

Find a test sequence that detects all the single stuck-at 0/1 failures of the
inputs / outputs of the gates in this circuit.

Exercise 13.12. Redundancy analysis

We consider the circuit described by Figure 13.24.

4 a

2 6
b f
c

3
13

5 7 9
g

Figure 13.24. Redundancyanalysis

1. We want to determine the passive structural redundancies of this circuit.
You will address this question by two different approaches:

• by an algebraic Input-Output study,

13. Structural Testing Methods 359

• by drawing the fault table of this circuit.

2. Find the conditions leading to the masking of fault detection, and the
conditions leading to the masking of diagnosis.

Exercise 13.13. Structural testing 0/ a program

A program, written in e, is aimed at regulating the temperature of the
engine of a car in the range [OOe, 90°C] (function named 'regulator').

1. Analyze the functioning of this pro gram.

2. Define some functional test vectors.

3. Analyze the coverage of these test sequences.

Program:
int modify_temperature(int temperature, int action,

int duration)
/* int temperature, action, durationi */
{

int final_temperature, ti
switch (action)

}

{

case 1: / * Heating * /
final_temperature = temperaturei
for (t=Oi t<durationi t++) final_temperature++i
return (final_temperature) i

case 2: / * Cooling * /
final_temperature = temperaturei
for (t=Oi t<durationi t++) final_temperature--i
return (final_temperature) i

default: final_temperature = ternperaturei
return (final_temperature) i

#define heat _a_ little 10
#define heat_much 20
#define cool _a_ little 10
#define cool_much 20
/* ** */
int regulator(int initial_temperature, int
heating_state, int fan_state, int variation)
/*

variation

return

o faulty
1 OK
o a little bit
1 much
the final temperature if the
regulation is possible
-3000 if the regulation is impossible

360

*/
{

int temperature, final_temperature;
if ((initial_temperature > 0) &&

Chapter 13

(initial_temperature <90))
return(initial_temperature);

else {
if ((initial_temperature <0) &&

(heating_state==l))
{

temperature = initial_temperature;
while (temperature <0)

{

if (variation==O)
temperature =

modify_temperature(temperature, 1, heat_a_little);
else temperature =

modify_temperature(temperature, 1, heat_much);
}

final_temperature = temperature;
return(final_temperature);
}

if ((initial_temperature > 90) && (fan_state==l))
{

temperature = initial_temperature;
while (temperature > 90)

{

if (variation==O)
temperature =

modify_temperature(temperature, 2, cool_a_little);
else temperature =

modify_temperature(temperature, 2, cool_much);
}

final_temperature = temperature;
return(final_temperature) ;
}

if ((heating_state == 0) I I (fan_state 0))
return(-3000) ;

}

Exercise 13.14. MCIDC testing 0/ a program

We consider the following fragment of a pro gram:

If (A=B and C2 and D>3) then Action; end if;

Define the sequence of values that must be taken by the conditions and
the decision so as to realize the M CIDC test.

FOURTHPART

FAULT TOLERANCE MEANS

After having considered the fault avoidance techniques in the third part
of this book, we now tackle the dependability means that are relative to
fault tolerance.

First of all, we dedicate Chapter 15 to Error Detecting and Correcting
Codes, which constitute a fundamental base for most techniques used to
design fault-tolerant products. Thus, this chapter aims at introducing the
notions developed after.

Then, Chapters 16, 17 and 18 present in a progressive way the
principles, interests, and issues of fault tolerance: on-line testing systems,
fail-safe systems and fault-tolerant systems.

Finally, in Chapter 19 we compare the various approaches that have
been studied throughout the book to synthesize their contribution to
dependability improvement.

Chapter 14

Design For Testability

Faced with the ever-increasing complexity of testing, scientists have
developed several methods and techniques to make test pattern generation
easier, as weIl as to decrease the length of these sequences in order to reduce
the testing duration, by acting on the product design.

14.1 INTRODUCTION

14.1.1 Test Complexity

The prodigious historical evolution of computer technology, concerning
hardware as well as software, has lead to products of increasing complexity.
According to the Moore's empiricallaw, this complexity has been multiplied
by 2 every 1.5 years! Current integrated circuits have millions of transistors,
hundreds of I10 pins, and dock frequencies greater than one gigahertz, with
feature sizes around 100nm. The cost of today automatie test equipment is
several million dollars, and it might be growing exponentially to cope with
the next generation of 1Cs. According to an SIA (Semiconductor Industry
Association) report, the cost of testing future chips using conventional
methods should rapidly be superior to the cost of manufacturing these chips.
The same dilemma is developing with software applications, where the
complexity is also increasing considerably in embedded applications
(millions of statements). For this technology, the cost of testing increases
exponentially; it is now frequently higher than the design cost.

1t follows that the testing of products integrating both electronic
components and pro grams has become rapidly prohibitive, even impossible,
as illustrated by Figure 14.1.

361

J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

362 Chapter 14

"':" ' . . .

• More components
Technological ~ • More complexity : multiprocessors,

Evolution ~ networks

• Less observability/controllability

Problems: VLSI

~ LSI

• test generation MSI

• size of test sequences SSI
I I •
1 10 100 1000 10000

Duration of lest generation in H

Figure 14.1. Test complexity

The off-line test, which was analyzed in the previous chapter, poses two
kinds of problems:

• At the test pattern generation level, that is for the search of a test
sequence:

~ Which method must be used so as to obtain a test sequence?

~ What is the cost of this search, in terms of study duration and of
invested finances?

• At the test application level:

~ What is the cost of the testing equipment?

~ What is the length of the sequence (point which is connected to the
duration of the test)?

Systems that are 'easily testable' bring fundamental contributions to
answer these questions. After explaining the principles of such systems (sub
section 14.1.2), we will specify the means that allow the modification of the
designed product (section 14.2), then that allow the design of easily testable
products (sections 14.3, 14.4 and 14.5). To finish this chapter, we will show
the evolution from off-line to on-line testing (section 14.6).

14.1.2 General Principles of Design For Testability

14.1.2.1 Testability

On the basis that testing is a difficult challenge, we pose the question:

Is it possible to design and manufacture a product that is easy to test?

First of all, let us specify what we mean by 'easy to test'. This concept,
involves testability criteria and underlies two distinct yet linked properties:

14. Design For Testability 363

• the easiness with wh ich we can generate a test sequence satisfying some
quality properties,

• the easiness with which we can apply this test sequence to the product.

Tester

Figure 14.2. Easily testable systems

Test quality
The general test context comprises the product expressed by a model, a

fault model, and a test sequence applied to this product by a tester (Figure
14.2). The quality of the test sequence is quantified by two attributes already
presented:

• the length of the sequence which influences the application easiness
(duration of the test experiment); this attributes often assesses the test
generation easiness;

• the coverage of the sequence which measures the test efficiency to detect
faults of the considered fault model.

Test generation aims at defining a test sequence satisfying the test quality
requirements expressed before. These attributes are useful to choose a
suitable test method. For instance, a random test sequence is easy to obtain,
but its length is generally prohibitive to reach a high coverage rate.

Testability measurement
Now, let us consider the testability by examining the product model. The

easiness with which we generate the test sequence depends on the
complexity of the product (number of elementary components, number of
internal states of sequential systems, etc.), and on the way it has been
structured into interconnected components.

The most important attributes that can be used to measure the testability
of a product are the controllability and the observability.

364 Chapter 14

• Controllability is the easiness with which we can influence the product
functioning so as to apply a given stimulus on an internal component
from the primary inputs (ease of producing an arbitrary signal at the input
of a component by exercising the primary inputs of the product).

• Observability is the easiness with which we can access (to get a measure)
the internal variables and states from the exterior by the application of a
stimulus (ease of deterrnining at the primary outputs of the product what
happened at the output of a component).

These characteristics are linked to the structure of the product, that is to
say, to the way in which it is organized as a system, into interconnected
modules, possibly in accordance with a hierarchy.

Every increase in controllability and observability facilitates the test: this
is the basis of all the methods that are presented in this chapter. Indeed, this
increase allows us to change a fault into an error (controllability), then this
error into a failure of the product (observability) . Figure 14.3 illustrates the
lack of controllability and observability of two poorly testable circuits.

Uncontrollable Unobservable

Figure 14.3. Lack of controllability and observability

Several different groups of reasons can explain why a given product has a
low controllability or observability. First, the design of the product has not
produced an optimal structure (bad method or bad use of the method). We
have already seen that some redundant components cannot be tested
(untestable parts). Unfortunately, these redundancies are extremely frequent
(in the form of reconvergent fan out structures for example) and difficult to
elirninate during the design process. However, some redundancies can have
voluntarily been introduced during the design for good reasons! For
example, gates are frequently added to combinational structures in order to
elirninate the occurrence of glitches; the anti-glitch circuit is then redundant,
and the added gate cannot be tested! We will study some examples of gate
circuits as exercises at the end of this chapter.

Even if the design is optimal according to redundancy (no redundant
components), the resulting structure can be difficult to test, as controllability
and observability properties are not taken into account by most design
methods.

14. Design For Testability 365

It is important to note that the testability of individual components or
parts of a system do not guarantee that the entire system is testable when
these components are working all together. Hence, as we already noticed, the
'unit testing' aimed at testing individual components is a necessary step in
the process of testing a complex system; however, are also required
'integration testing' procedures, which are much more difficult to implement
and manage.

Several methods, not detailed in this book, have been proposed to
evaluate the testability of a given hardware or software system. They are
essentially based on structural analysis of the system, in order to deduce
qualitative estimators. At gate level, the ß1imber of gates (NG) is a rough
approximation of testability measurement of a circuit. Adding the number of
inputs and outputs (NIO) leads to a better measurement (T = NG / NIO).
Much more accurate methods to evaluate the testability of a gate circuit have
been proposed, and some of them have led to evaluation tools. All of them
try to estimate the controllability and the observability of the circuit. These
methods have led to industrial analysis tools, such as SCOAP.

In software, a popular example is related to software quality metrics. The
quality is measured according to several parameters; for example, the
Halstead software metrics is based on 7 parameters: vocabulary, size,
volume, difficulty, effort, errors estimated, and testing time.

Test application
We must note that the easiness of the test application can involve very

technical aspects like the interconnection between the tester and the product
under test: extern al physical connections (connectors, pads, etc.), probes or
other sensors used between the tester and the tested product. This aspect will
not be developed in this book although it can pose major technical problems.
For instance, the occurrence of an output considered as erroneous may not be
due to a failure of the product under test, but due to a parasite induced by the
test environment as wen.

14.1.2.2 Design for Testability

The Design FOT Testability (DFT) strategy (sometimes called Design·
For Test) provides solutions which make the product testing easier. Some of
them act on the structure of the product already designed so as to increase
the controllability and observability, and hence facilitate test generation.
Other ones act on the design of the product by integrating specific
mechanisms which facilitate test application.

We identify four groups of techniques, as illustrated in Figure 14.4:

• ad hoc approach,

366 Chapter 14

• specijic designfor testability,

• Built-In Test (BIT),

• Built-In Self-Test (BIST).

What to do? ..b... • Facilitate test generation
t

7'
• Fatilitate test application

Design For Testability 1. AD HOC approach

(DFT) t\. 2. Specitic design for testability

t ControUability ~, 3. BuHt-In Test (Bl1)

t Observability
4. BuHt-In Self-Test (BIS1)

Figure 14.4. Wh at can be düne?

The first approach is very pragmatic: it uses guidelines and techniques
that are applied either during or after the design stage. However, these rules
do not have a profound impact on the structure of the designed system.
Nevertheless, they bring a significant improvement to testability . On the
contrary, the secand approach requires a huge effort for specific design. The
mechanisms implemented are therefore specific to each system dass, wh ich
makes a unified presentation difficult. We will illustrate theirs principles
with the help of two examples. Concerning the third and the fourth family of
techniques, we da not question fundamentally the design, but we act mainly
on the external interface with the tester. These techniques aim at improving
the cost of the off-Une test by integrating the functions of the tester into the
product. The English term self in the last group of techniques can lead to
confusion with the on-line self-test techniques which are presented in
Chapter 16. Actually, all techniques presented here require the product to be
halted during the test, whereas those presented in Chapter 16 operate in
parallel with the normal function of the system. Nevertheless, we will
encounter on-line implementations of the BIST techniques in high
dependability systems.

These four families are analyzed in the following paragraphs. The ad hoc
techniques are presented in section 14.2. Section 14.3 deals with specific
design for testability methods. The Built-In Test approach is presented in
section 14.4, and the Built-In Self-Test is considered in section 14.5.

14. Design For Testability 367

14.2 AD HOC APPROACH TO DFT

The principle of the Ad Hoc approach is to modify the structure of the
partially or totally designed system in order to facilitate access to it from the
outside. Fundamentally, it is a pragmatic approach to control and to observe
certain variables from the outside. It has frequently been referred to as
'afterthought testability' . Naturally, these basic considerations should lead to
more formalized and efficient methods that cope with testability at the early
stages of the design.

In this section we will introduce the general design guidelines that bring
new characteristics to the system, in order to make its test easier. To
illustrate the application of these guidelines, we develop in sub-sections
14.2.2 and 14.2.3 two software mechanisms that facilitate the observability
and the controllability: the instrumentation and the exception mechanism.

14.2.1 Guidelines

In this section we are going to briefly present seven groups of guidelines
conceming the best practices for improving testability .

Initialization: Add ifnecessary initialization devices

These are reset signals for electronic components, or initialization
procedures for software applications. These devices allow us to place the
system into a known initial state, thus facilitating the test operation. This
initialization is generally necessary to start the test, for instance, to test a
sequential system. It can also be useful to bring back the system into a
predefined state, after the application of a part of the test sequence. When
such an initialization mechanism is not available, a long input sequence must
often be inc1uded in the test sequence to reach a desired known state.

Modularization: Partition the system into small modules loosely and
explicitly coupled (or 'divide and conquer')

A good guideline for system design advises the use of solutions for which
the components are loosely and explicitly coupled. This expresses the fact
that there are only a few dependencies between the components and that they
are c1early visible. For example, the subprogram body has to call a small
number of other subprograms (loose coupling). Furthermore, the values
necessary for the execution of the subprogram or retumed by its execution
must be passed by parameters and not by global variables (explicit
coupling). Such a practice facilitates the test, since we know precisely the
small number of causes that influence the behavior of a component,
(controllability) and the effects produced by this behavior (observability).

368 Chapter 14

Example 14.1. Modular realization 0/ a counter

Consider a 16-bit counter which has one input receiving asynchronous
events (I), and 16 outputs (Q;) expressing the number of input events; the
circuit reacts to the negative edge of I. The test of this counter requires

16
2 = 65536 input vectors: obviously, this circuit is not easily testable. Now,
let us partition this system into two cascaded 8-bit counters, and add a
multiplexer between them, as shown in Example 14.1: when Test = 0, the
circuit behaves as a 16-biy counter, and when Test = 1, we obtain two
independent 8-bit counters. Hence, the test complexity is drastically reduced.
Indeed, the two 8-bit counters can be tested in parallel (l = In with 128
vectors (pulses on I) with Test = 1; then, a last pulse on I with Test = °
checks the link between the two sub-circuits.

Let us note that this solution has not increased so much the circuit
complexity in terms of number of components.

I 16.bit
----. Counter

I 8-bit
Counter

TI

Figure 14.5. Modular realization

8-bit

Hierarchy: Take into account the hierarchy of the design system by
carrying out a bottom-up test process

A good practice for design consists in organizing the constituents into a
hierarchy (electronic components, subprograms, data structures, etc.), so as
to find in the designed system the different levels of abstraction introduced
at the time of design. However, this approach, which can only be
encouraged, dirninishes the testability of the system. In effect, it is more
difficult to modify the value of a variable of a component which is located
deeply in a component tree structure, or to activate one of its features, than if
all the components were at the same level. This sit~ation leads to organize
the test process into several steps:

• the unit test checks individually the low-Ievel components,

• the integration test checks the components of a high er level in the tree,

• thefinal test, or acceptance test, checks the complete product.

14. Design For Testability 369

Bach verification level implements test techniques which assume that the
lower level constituents are correct. Thus, if a subprogram uses 'sub
subprograms' , we will try to cover all the paths in the subprogram body by
considering the 'sub-subprograms' as black boxes.

The bottom-up test brings solutions to the controllability of hierarchical
systems. ActuaIly, the tests applied at a given level must activate the
modules that make up the system at this level, without trying to exercise the
internal structure of these components. These components are therefore
considered as atoms.

Concerning the observability, mechanisms must allow us to
automatically propagate the detection of an error across the design hierarchy.
For software applications, we present in section 14.2.3 the propagation
technique offered by exception mechanisms, wh ich responds to this need.

Mastering of the sequential parts
1. Control the unknown states

Most designed systems do not use all the internal states wh ich are, for
example, defined by flip-flops in electronic design. If, for any reason, the
final product enters one of these unknown states, it is important to known
how it will react. If the behavior is 'trapped' into an uncontrollable sub-set
of states, testing will become impossible. This situation corresponds to
functional redundancy implied by the state coding.

Such rules are given by the companies designing integrated circuits (such
as Programmable Logic Devices) or proposing tools to design them. In
software technology, we encounter the same worry to master unknown
situations. For example, when using a case statement, it is recommended to
always insert the defaul t condition to bring the system in a known state
when an incorrect situation occurs. Let us note that in nowadays hardware
developments, the use of VHDL or Verilog languages mixes hardware and
software issues. Hence, the engineer has to master both set of guidelines.

Example 14.2. Control the unknown states

Let us consider the state graph of Figure 14.6 a). Any design requires at
least 3 internal Boolean variables to code the 6 states; for instance, Figure
14.6 b) shows such a 3-internal variable coding. As a consequence, the
sequential circuit has 8 theoretical internal states (from 000 to 111). This
may lead to some control difficulties. A simple initial reset of the circuit
brings it into a non-defined state (OOO)! If a parasitic aggression induces '1'
values (capacitive charges) in the three flip-flops, then the circuit reaches
state (111).

This problem is weIl known, and it has led to rules that the designers
must follow to control the unknown states. Here, we can control the 2

370 Chapter 14

unknown states by adding arcs leading to state 1 supposed to be the initial
state of the system (see Figure 14.7).

Present state Nextstate
123 123

I 00 I o I 0
2 o I 0 o I I
3 o I I I 00
4 I 00 I 0 I
5 I 0 I I I I
6 I I 0 00 I

a) State graph b)Coding

Figure 14.6. State graph coding

ErronooU5 states Normal functioning

Figure 14.7. Complete state graph

2. Breakthejeedbackloops

As we have already noted in Chapter 12, sequential systems are very
difficult to test owing to feedback loops, wh ich reduce the controllability and
the observability. Hence, it is important to provide means for 'breaking' the
feedback loops. This is achieved by the employment of additional signals
that allow the blocking of these feedback loops. For example, a sequential
circuit thus becomes combinational, which facilitates its test. Figure 14.8
shows an example that uses an AND gate controlled by an extemal blocking
signal. We can thus operate in a step-by-step mode.

LI+-O+-- forcing

Figure 14.8. Mastering the sequential parts

14. Design For Testability 371

We can also want to force certain states in flip-flops by use of forcing
lines (e.g. reset of one or several flip-flops as illustrated in Figure 14.8).

Finally, the insertion of multiplexing functions allows us to control the
links between the modules (illustrated by the second schema in Figure 14.8).

The majority of design guidelines forbid the employment of
asynchronous sequential modules for which the feedback lines are not
controlled by dock signals. In fact, such systems are particularly difficult to
verify and to test. They react asynchronously to extemal events and produce
dynarnic characteristics according to the parameter time. This makes their
analysis delicate, and it is difficult to know their internal state by only
observing the inputs and outputs.

Test points
1. Insert internal test access points

The controllability and the observability -can be artificially increased
thanks to the insertion of internal test points. In the case of an electronic
board, we can add pins or specific connectors linked to the tester by means
of specific measurement instruments. In the case of integrated circuits, we
can add internal pads that are used uniquely at the time of an under-pin test
of the chip with the help of special probes. These techniques have their
equivalence in the software domain. For instance, subprograms can be added
whose call provides pieces of information about the pro gram state. To
illustrate this mechanism, let us give the simple example of a task that uses a
stack through two services, Push and Pop. Let us suppose that the call for the
service Push is blocked while the stack is full, and that the call for the
service Pop is blocked while the stack is empty. The function Stack_State
returns one of the three values (Full, Empty, Partially), which specifies the
state of the stack, but is not useful to the pro gram designer who implements
its application. However, this function provides a means of observing the
internal state of the Stack.

2. Insert external test inputs/outputs

The debugging and the testing of systems are facilitated by additional test
inputs and outputs only handled during test operation. This technique is used
a lot and numerous components (microprocessors for example) or complete
systems have 'secret' inputs/outputs which are only accessible to the
maintenance person. For example, we can control the speed of execution by
suspending the activity of the system in order to withdraw internal
information; another example is the 'step by step' mode which facilitates
debugging.

In the case of software, this possibility is either offered by the execution
resources (run-time executive), or introduced into the applicative pro gram

372 Chapter 14

itself by means of statements which either wait for an acknowledge or which
write various data that allows the trace of execution to be deduced. This last
technique, called instrumentation, will also be treated in section 14.2.2.

These additional pieces of information are used notably for the
debugging of applications that use micro-controllers and software
assemblers. Specific tools exist for test applications, as for example the
electronic logic analyzers and the software debuggers.

Test of redundant parts

The presence of redundant elements in a system is a source of great
difficulty for testing. Actually, by definition, passive redundancy cannot be
transformed into failures and cannot therefore be tested. However, it is vital
to test these redundant parts at the time of maintenance operations, so as to
avoid the masking phenomenon described in Chapter 13.

As already said, a first source of redundancy comes from a non-optimal
design. We will try to remove the redundant components and make clean the
structure. An example is given in Exercise 14.2.

The second category of redundancy results from voluntary actions, for
example to avoid glitches of the signals of an electronic circuit (see Exercise
14.3), or to allow fault tolerance property. It is then necessary to insert
additional resources to access these useful redundant elements during the
maintenance operations. For example, if we use a Triplex type of redundant
structure (studied in Chapter 18), we must be able to deactivate some of
them, so as to test each module individually. Another example comes from
exception handling mechanisms in programs. These mechanisms introduced
in section 14.2.3 allow handling errors. These redundant mechanisms are
therefore never activated in normal functionality (without fault activation).
The fact that we introduce statements provoking a direct raising of these
exceptions allows us to test the exception handlers.

Conclusion

Figure 14.9 illustrates some of the preceding guidelines used to increase
the testability of an electronic product after its design: primary input/output
test lines, internal test points (control), reset signals (forcing), selection and
blocking signals. Although these rules and techniques, which are applied
during or after design, are used a lot in industry, they do not guarantee total
testability . They constitute part of the initial approach to the methods studied
in sections 14.3, 14.4 and 14.5, which are more precise, and more efficient.

In the two following sub-sections, we are going to illustrate two of the
preceding guidelines for software applications:

14. Design For Testability 373

• the data recording performed by instrumentation, wh ich improves
observability of the past or current execution state of the application
(section 14.2.2)

• the exception mechanisms offered by some programming languages,
whose error propagation mechanism facilitates observability of eITor
presence (section 14.2.3).

Selection

~
control ~

Observation
blocking

Figure 14.9. Modification ofthe product

14.2.2 Instrumentation: Data Recording

Instrumentation of software covers two functions:

1. detection of errors occuITing during the operation of the application,

2. recording of data characteristic of the execution state of this operation.

The first aspect will be studied in Chapter 16, since it involves on-line
eITor detection means. These means are principally used as the first stage of
a fault tolerance mechanism. They can also be used to signal, on-line, the
occurrence of an eITor. The associated fault is therefore diagnosable and
correctable after the product has stopped. This is therefore an 'off-line
means'. To make the error easy to observe, it is propagated towards the
outputs of the system thanks to the exception mechanism. This mechanism
will be presented in the next section.

In this section, we analyze the data saving mechanism that
instrumentation offers.

The saved data must provide information about the CUITent execution
state of the program. They can also store the successive states. This storage
of the past is indispensable when we study sequential systems.

This technique is weB known among the programmers who display
information on the screen that concerns:

• the state of the control flow:
printf ("Matrix_Inversion starts i ts execution");,

374 Chapter i4

• the state of data flow:
printf("Variable Delta contains %i", Delta);.

The information saved by the instrumentation mechanism increases the
observability of the system, since it pro vi des values on certain internal
variables. Instrumentation is thus a mechanism that implements the general
guideline 'insert externat test points' presented in sub-section 14.2.1.

For industrial applications, the data are sometimes saved on disk and
more generally in non-volatile memories. This is particularly the case for
embedded systems. The volume of stored data must therefore be very
lirnited. Consequently, the engineer has to choose them with care. This data,
which characterizes the Execution State of the application, have to represent
the state of the objects that make up this application as weIl as the
sequencing state of these objects. In the case of a sequential application, the
instruction pointer (at machine level) describes this last piece of information,
or it is perhaps represented in a more symbolic way. For example, an integer
variable can code the number of the subprograms presently executed: its
value identifies the branch of the flow of control that is executed. In the case
of loops, supplementary information will have to be added in order to store
the iteration number.

The information that is explicitly created by the application is contained
in the declared variables. It is easily accessible to the programmer. Other
pieces of information concerning the state of execution resources also
provide useful data for the control of the execution of the system. They must
be able to be modified (controllability) or read (observability). For example,
these features can concern the internal representation of the data, the
management of interrupts, the management mechanisms of time and of tasks
(for real-time applications). A language such as Ada offers such features
whose standardized description is described in the Ada standard appendices.

14.2.3 Exception Mechanisms: Error Propagation

Theobservability of the erroneous states occurring at software
application run-time is a critical need for the test. For the majority of
languages, the executable pro grams that reach such states continue their
execution without signaling these situations. Hence, the error can
contarninate the system (error propagation). The resulting failure
subsequently makes the diagnosis very difficult. In testing terms, these
situations require the addition of vectors that force the propagation of the
errors towards the outputs so as to make them observable. To avoid this
propagation management from the outside, by the test sequence, certain
languages offer a specific feature called the exception mechanism, which
allows erroneous situations to be handled on-line.

14. Design For Testability 375

When the handling consists in reaching a safe state and resuming to a
normal execution, then the exception mechanism is used to tolerate the fault
at the origin of the error (in Chapter 18). If the handling consists in signaling
this error to the outside world, the exception mechanism is used to facilitate
the test. It is this last situation which is studied in this section and which will
be illustrated by using the syntax of the Ada language.

Example 14.3. Exception mechanism

An Ada component is constituted of 3 parts: the declarative part, the
body, and the exception handler. Let us consider an example:

procedure First is
Declarative part

beg in

exception

Body which contains statements
which may raise error E

when E => ...
end First;

-- Exception handler

An on-line error detection (see in Chapter 16) occurring during the body
execution is signaled by the raising of an exception. In the previous example,
E is the exception identifier, that is to say the error name. When such
detection is done by the execution resources, a predefined exception is
raised. For instance, when an index accesses to an array out of its dec1ared
range, the predefined exception ConstrainCError is raised. When the
detection is explicitly programmed by the application designer, the 'raise'
statement allows a user exception to be raised.

A simple example is given by the following extract:
if Passenger_Number > Aircraft_Capacity then

raise Overbooking;

In the previous example, the First procedure body contains the
statement 'if Condition then raise E;' to signal the occurrence of error E.

When the exception raising occurs, the current control flow is stopped
and resumed at the exception handler beginning. For example, if exception E
is raised by the First body statement execution, the associated exception
handler is immediately executed by the statements following 'when E =>'.

If no exception handler exists, or if a raise statement is written in the
exception handler, the same exception is re-raised at the subprogram call
location. The exception is then propagated, in order to take the system
structure hierarchy into account (guideline 'hierarchy' of section 14.2.1).
This upward propagation mechanism is illustrated by Figure 14.10. For
instance, if the procedure Second calls the procedure First which
propagated the exception E, then a local handler is searched for exception E

376 Chapter 14

in the procedure Second (see Figure 14.11). Otherwise, the exception is
propagated to the subprogram that calls Second, till reaching the main
procedure. Thanks to this mechanism, the program user is imrnediately
informed that an error occurred.

Error 1 AI.

levell • ~ exception ffiechaniSffi
Mt

/ Jf ',.,"
./ exception

.. / / -. propagation
"

.........

Errc 2.1 f
level 2 • ---+ • M2.l M2.2

Figure 14.10. Test generation

procedure Second I ~rocedure First

'-in ~irst' /I!' '-in :a<s. B, 1
... " exception

exception "" when E .. > • ••
when E => ... aise;

~ raise;
end Second; end First;

: Exception propagation

Figure 14.11. Exception propagation

The statements included in the exception handlers may memorize data
before the same exception is re-raised. The following program extract
illustrates such a situation:

exception
when E => Mernorize (Engine_Speed) i

raise Ei
endi

14. Design For Testability 377

These data are chosen in order to provide information on the current state
(at exception raising time), or the backward propagation path, that is the
chain of subprogram calls when the error was reached.

Thanks to the exception mechanism, the errors are propagated up to the
output where they can be observed by the tester. The identity of the error, the
current state, as well as the propagation path are saved by using the
instrumentation mechanism of the previous section, hence facilitating the
diagnosis procedure.

14.3 DESIGN OF SYSTEMS HA VING SHORT TEST
SEQUENCES

A system can be designed by means of several approaches that end up at
final structures which are quite different: electronic components, logic gates,
lines of code, tasks, etc. Studies on the testing of logic systems have shown
that all of these structures do not have the same potentiality regarding the
testability of the resulting product. Specifzc design methods that improve the
testability will naturally integrate all the re marks made in the previous
sections. In this section we want to stress the 'natural testability' of some
structures, without any addition of extra test points or ports. This concept
will be illustrated on hardware and software technologies.

14.3.1 Illustration on Electronic Products

In the case of a combinationallogic circuit, the synthesis called 'linear' is
based upon a mathematical field defined by Galois using the XOR and AND
operators, without any Inverter. This realization wh ich is 'canonical' (only
one realization under this form can represents a given logic function) leads
to circuits with logic gates which have the remarkable property of being
testable with a sequence of fixed test vectors, the length of which is
proportional to the number of inputs. Furthermore, we can obtain circuits
which are testable by a universal test sequence which is independent of the
realized logic function (Reed-Muller structure noted RM). Unfortunately,
this solution is not always satisfactory with regard to other design criteria,
such as the complexity and the response time. Actually, the realization of
XOR gates puts astrain on the cost, in terms of number of transistors.
Moreover, such easily testable circuits have many logic layers, which makes
them slower than traditional circuits.

Now, this approach uniquely has an educational interest. It only has
immediate practical interest for ca1culation circuits (as binary addition is an

378 Chapter 14

XOR function), and coding and decoding circuits used for redundant cyclic
codes.

Example 14.4. RM Structure

Let us consider a logic function 1 of 4 variables expressed by 1 = ab' d'
+ a c' d' + a' b c + b c d (x' is the logical complement of x). Let us assume
that we realize this function under the form of a two layer SIGMA-PI logic
circuit with AND, OR and INVERTER gates, as shown in Figure 14.12.
With the classical stuck-at 0/1 fault model hypothesis, the use of structural
testing methods (Chapter 13) shows that the testing of this circuit requires
the application of 9 test vectors.

a
a ---""'-- a' b'
.....-- d'

b -t>-- b c' -~
d'

c -t>-- c' a'
b

d -t>-- d' ~
c
CI

Figure 14.12. SIGMA-PI circuit

f

Now, let us consider the realization under the Reed-Muller from drawn in
Figure 14.13:/= a $ b c $ a d .

If we take the same hypothesis of single stuck-at fault model, the circuit
is completely tested by the input sequence of three vectors, STl(abcd) =
(0101, 1010, 1111), which gives the respective outputs (0, 1, 1).

output

b c IJ d
inputs

Figure 14.13. RM Circuit

14. Design For Testability 379

Moreover, if we assume that we must apply all the input configurations
in order to test a 2-input XOR gate (4 vectors 00, 01, 10 and 11), then this
circuit is totally tested by completing the previous sequence with two other
vectors, which gives a sequence of 5 vectors:

ST2 = (0101, 1010, 1111,0111, 1001).
The complete analysis of this circuit is conducted in Exercise 14.5.

14.3.2 Illustration on Software Applications

As in electronics, two programs providing the same functionality can
have two different degrees of testability . Let us consider the extract of the
following program:

if (A>B) and (A>C) then Part_li
else Part_2i

end ifi

If we perform a branch test, it is sufficient to choose values of A and B
such that A<=B, in order to execute Part_2. Indeed, in this case the local
Boolean condition (A>B) is false, thus the global condition '(A>B) and

(A>C) , is also false. If the compiler has a code optimizer at its disposal, the
Boolean expression (A>C) will not be evaluated if (A> B) is false.

Even if it gives an error coverage of 100% for Part_2, the validity of
this branch test is only partial since the other configuration having to
provoke the execution of Part_2 is not exercised: case (A<C) is false. So
that the coverage rate explicitly evaluates the two cases, we would have to
write the program in the following way:

if (A>B) then
if (A>C) then Part_li

end ifi
else Part_2i

end ifi

This program is more complex and less maintainable, since Part_2 had
to be duplicated. On the other hand, it is more testable, since it explicitly
distinguishes the two execution conditions of Part_2: (A>B) is false or
(A<C) is false.

Let us point out that the tests of type ConditionlDecision and Modified
Condition/Decision, introduced in Chapter 13, respond to this need.

380 Chapter 14

14.4 BUILT-IN TEST (BIT)

14.4.1 Introduction

The Built-In Test technique consists in adding to the product a standard
specific interface which controls and facilitates access from the external
tester, thus increasing the controllability and the observability. As a
consequence, the test sequences are simpler, and their application is
facilitated. Hence, the tester is also simpler. Figure 14.14 symbolizes this
approach. The drawbacks of the BIT techniques are that they require more
components, hence more surface on the chips (increase values of about 15%
are announced), and they slow down the signal propagation in the chips. In
avionics, the equipment used for maintenance purpose is called Built-In Test
Equipment (BITE), cf. ARINe 624 standard.

l:
- :-:--.. '-....

Tester
I Ei" Pj -..
1-" r ... ;:

Test Bus I.l ~
Figure 14.14. Principles of BIT

Several techniques implement the BIT in the electronics domain, such as:
the FIT PLA, the Scan Design which lead to the LSSD, the international
IEEE standard of the Boundary Scan (IEEE standard 1149.1) which is now
used systematically to design AS1C circuits or rnicroprocessors. We will
introduce these techniques in the following sub-sections.

14.4.2 The FIT PLA

14.4.2.1 Structure (Example 14.5)

A Programmable Logic Array (PLA) is an universallogic structure able
to implement logic functions in the form of c1assical SIGMA-PI expressions
(as for examplej= a'b + b'c' + b'd + ad' + a'bc). Figure 14.15 shows the
basic PLA structure comprising an AND net receiving the inputs and
elaborating aB the product terms (such as a'b or b'c'), and an OR net
elaborating the outputs from the product terms.

The idea of the FIT PLA is to modify the traditional structure of a PLA
by integrating a parity coding for the product terms (parity noted AND) and

14. Design For Testability 381

a parity coding for the output functions (parity noted OR). Figure 14.16
shows the general structure of a FIT PLA which implements two logic
functions :j= a'b + b'c' + b'd + ad' + a'bc, and g = a'b + b'd + bcd' .

Each colurnn of cross-points in the AND matrix constitutes an electronic
structure realizing an AND logic function. Each point can be realized by a
MOS transistor whose gate is controlled by the electric line (associated with
the row); all these MOS are connected in series. In the same way, each row
of cross-points of the OR matrix represents an electronic MOS structure
defining an OR logic function.

Product
Terms

AND f----+ OR
Net r---+ Net

--, ,..--
... ~

-..j ,.
Inputs Outputs

Figure 14.15. PLA basic structure

x y
1 2 3 4 5 6 7

a

b

c

scan in - ~HlI!liHHjfl-

parity error

Figure 14.16. Example of a FIT PLA

ANDparity

ej

outputs

f
g

ORparity

The aim is to make easier the test of the two matrices (AND and OR),
according to faults which affect the interconnections. An additional product
term is added which ensures an odd number of 'points' on each line of the
AND matrix. This signifies that when a line is at '1', an odd number of MOS

382 Chapter 14

transistors are conducting ('On' state) on an odd number of columns.
Similarly, we add an additionalline into the OR matrix so that each column
of each matrix has an odd number of 'points'. Two parity detector circuits
detect if there is an odd or even number of columns in the AND matrix, or of
lines in the OR matrix. A last modification is brought to the input amplifiers
which receive two inputs, x and y.

The circuit has two different modes of functioning: normal, and test.

• If xy = 00, the input circuits create the signals e and e' for anormal
functioning of the PLA.

• In 'test' mode:

~ if we apply xy = 01, all the rows ei ' are forced to take the value '1',

~ and if we apply the value xy = 10, all the rows ei are forced to take' 1'.

14.4.2.2 Test Procedure

The test of the FIT PLA is driven in two stages:

1. test of the AND matrix,

2. test of the OR matrix.

1. Test of the AND matrix. The test of the AND matrix is carried out by
initially putting xy = 01, and by successively applying the 4 input vectors
given in Figure 14.17: 0111., 1011, 1101, 1110. Each of these tests is such
that only one of the lines of the matrix is at 0, and thus an odd number of
columns are at O. The observation of the output of the parity detector thus
detects all the faults that act on this parity. Then, we put xy = 10 and we
apply the following 4 test vectors <1000, 0100, 0010, 0001>, of which only
one bit takes the value 1. This test completes the detection of the previous
stage and guarantees the detection of all faults that do not modify the parity
(single, tripie faults, etc.).

xy el ez e3 e4 xy et e2~~
01 ei' = 1 V i 10 e;=IVi

0111 1000
1011 4 tests 0100 4 tests
1101 0010
1110 0001

Figure 14.17. Test vectors ofthe AND matrix

2. Test of the OR matrix. The two matrices AND and OR are isolated by a
shift register that is able to receive in test mode values from the input Scan
In. The test of the OR matrix is based upon the same parity principle as that

14. Design For Testability 383

of the AND matrix. Across this shift register, we successively apply the
vectors (1000000, 0100000 0000001), and we observe the parity of the
lines with the OR parity checker.

Note. The previous PLA structure which uses an AND matrix and an OR
matrix is a symbolic representation of real PLAs. In MOS technology, we
use NAND or NOR components. This changes nothing concerning the parity
fault detection principle that has been presented.

14.4.3 Scan Design and LSSD

The only way to make a sequential circuit easy to test is to master its
sequentiality. In computing systems, circuits are essentially synchronous:
their execution is synchronized by a clock signal. Furthermore, the internal
state (set of secondary variables) is materialized by a register. An interesting
approach, which was imagined at Stanford university in the USA, and gave
rise to several methods, is called Scan Design. It consists in modifying the
state registers, in order to be able to write and read their values from the
exterior. Hence, the test of a sequential circuit is essentially reduced to the
test of the combinational part, according to the methods already mentioned
in Chapter 13 (the path sensitizing method, for example).

ScaD Out

x--..

Yl

Y2

YD

CombiDaUonal
Circuit

HE HM Sbift

Figure 14.18. LSSD ofiBM

t-- ... z

ScaD In

The ffiM company has popularized the Scan Design with the variation
called LSSD (Level Sensitive Scan Design), which was used intensivelyon
all large computers since the mythical '360' series of the sixties. This

384 Chapter 14

technique, which is represented in Figure 14.18, implies two different
functioning modes of the circuit:

• in normal mode of functioning, the state register uses 'Master-Slave'
flip-flops (Mi - Ei), and the system evolves to the rhythm of the docks
HM and HE, which are interlaced,

• in test mode, this register is transformed into a shift register by setting
the shift signal at the logic '1'. Therefore, it is possible to load the register
from the exterior by the input scan in with n dock strokes HM - HE; this
sequence provokes at the same time the reading of the content of the
register on the output line scan out.

The test of such a circuit is performed by a succession of elementary
tests, each of them entailing a cyde of three phases:

1. SCAN IN: the signal shift is set to the logic '1', and we initialize the
internal state of the sequential circuit by n dock pulses HM-HE,

2. NORMAL CYCLE of functioning: the signal shift is set to the logic
'0', and we activate an elementary test in the combinational part with
one pulse HM-HE,

3. SCAN OUT: the signal shift is set to the logic '1', and we scan out the
state register to observe the results of the test by n dock pulses HM-HE.

During the steady state, stages 1 and 3 are simultaneous: we load the new
state at the same time as we scan out the previous state.

It is unlikely that the tested product is constituted of a single sequential
part that is implementing as a single automaton. The Scan Design technique
is also applied to products that are structured into several interconnected
modules. For that, we connect the signals scan out and scan in of the
modules in order to form achain of 'series' tests as shown in Figure 14.19.

The test vectors are propagated along this chain as pulse trains. This
basic technique is slow, but it can be improved.

Tester

Figure 14.19. Scan Test for Modular Structures

14. Design For Testability 385

14.4.4 Boundary Scan

Several years ago, a work group of the scientific society IEEE, made up
of specialists from industries and universities of several countries, (the
JTAG - Joint Test Action Group) defined a standardized interface for the
testing of integrated circuits: the IEEE 1149-1 standard. Today, the majority
of integrated circuit manufacturers use this standard for ASICs,
microprocessors, and micro-controllers (see Appendix C dedicated to
dependability techniques associated with a microprocessor).

The Boundary Scan ensures the control of the primary inputs and
outputs of the circuit according to the Scan technique (see Figure 14.20),
thanks to the addition of some test inputs I outputs and an intemallogic:

• The test bus (called Test Access Port, TAP) composed of specific signals:
the series input I output signals, TDI and TDO, a test clock (TCK) .

• An integrated logic module comprising:

)0> aseries register (Boundary-Scan Register), for the forcing of test
inputs and the reading of the test results,

)0> a Bypass Register, in order to reach other modules that are located
below in the test chain of the system' s modules,

)0> an automaton (TAP Controller) associated with an instruction register,
in order to process certain test operations.

Inputs

TDJ _ _ L-_ -.I
L--_-...-_=----J

TMS ----_I:;:!-;;---J

Outputs

TDO

TCK 1--____ ----1

(TRS1)

Figure 14.20. IEEE 1149-1 Standard

386 Chapter 14

The automaton (T AP) controls the various operations in normal or test
mode. Each cell of the boundary scan register has four modes of functioning
(see Figure 14.21).

• Normal mode: the output multiplexer of the cell transfers the data corning
from an input pin of the circuit towards the output of the cell (Data Out),
which is connected towards the input of the core logic.

• Update mode: the output multiplexer sends the contents of the parallel
output register towards the output of the cello

• Capture mode: the input data (Data In) is directed by the input
multiplexer (Input Mux) towards the shift register, in order to be loaded
when the dock DR occurs.

• Shift mode: the bit of each cell of the shift register is sent to the following
cell via the line scan out, whilst the signal scan in corning from the
previous cell is loaded into the flip-flop of the shift register of the cell.

The output cells are based on the same principle.
These facilities thus allow controlling all the inputs and outputs of the

tested circuit, thanks to a shift register that can be loaded and unloaded in
series. It is also possible to pass information across a circuit in order to reach
a circuit situated below it, or to receive information corning from this circuit.

Data In

(circuit pm)

ScaD In ClockDR Update DR

Figure 14.21. Boundary input cell

Data Out
(core logic)

Notes. In some cases, the boundary scan technique is not applied to the
whole circuit, but only to some parts of it. We therefore say that this circuit
implements apartial-scan, wh ich is opposite to thefull-scan.

The global use of Scan Techniques in complex circuits, such as those
integrated in today communication systems or embedded controls systems, is
not always possible. Some parts are really difficult to implement as scan

14. Design For Testability 387

structures (too much extra-surface or too expensive, too slow, etc.), such as
the ROM and RAM memory, which are numerous in today circuits. Some of
these parts will be treated separately with BIST techniques (see section
14.5). Scan design is not interesting for circuits having a great number of
inputs and outputs, as the big size of the scan register would imply too long
test sequences. Hence, these circuits are generally partitioned into several
parts, called scan domains, which implement separate scan design of about
100 cells. Each one is tested as a unit test, and then an integration test is
performed. This allows a good trade off between the test complexity and the
controllability/observability mastering. The final integration test of the
complete product still remains a real problem.

14.4.5 Discussion about BIT Evolution

As already mentioned, all manufacturers of semiconductors, and in
particular the manufacturers of ASIC, have invested enormously in BIT
techniques. All present industrial projects of ASIC or full-custom integrated
circuits are using the Design For Testability (under full-scan or partial-scan
form) in their development platforms. The design costs and silicon surface,
which are implied by the scan techniques, are now largely compensated by
the advantages brought to the verification of the components (in production
and in operation as well). Of course, this progress is made possible by the
use of the IEEE 1149-1 standard, which becomes inescapable for technical
but also commercial reasons. Other standards favor this development, such
as languages and formats for writing test sequences for industrial testers:
language BSDL (Boundary Scan Description Language), language STIL
(IEEE Standard Test Interface Language), etc.

Various computing tools for helping in the design and testing have
integrated the problems linked to the test of scan type structures: boundary
scan support, testability analysis, Design Rule Checking, Automatic Test
Pattern Generation, fault simulation, and test vector post-processing. Let us
mention two of today prominent companies: Mentor Graphics Corp. and
Synopsys. From the descriptions of Verilog or VHDL type, some of these
tools automatically produce test sequences in accordance with the STIL
format. The BIT testing is generally performed at slow speed, and the stuck
at fault model remains the base of all test operations. With c10ck rates
approaching the gigahertz, other faults must be considered. Thus timing or
delay faults have been added to fault lists treated by most of these tools.

Naturally, the human specialists have still a major role to integrate these
separate tools, and to solve the numerous problems not covered by them.

Figure 14.22 shows a typical script of a development based on BIT
architecture with one or several scan domains. Functional, structural and test

388 Chapter 14

files coming from previous stages of the development are used by several
tools performing DRC, ATPG, and Fault Simulation. The test engineer
analyzes the coverage and the possible problems. The solutions to these
problems eventually imply to return to the design stage. At the end of this
analysis, we obtain a test sequence which can be used by production testing.

8
Such procedure produces today circuits of 10 transistors with stuck-at fault
coverage greater than 95%.

Fllnctional
Testing

Structural
Testing

Production
Testing

Figure 14.22. Typical BIT script

14.5 BUILT-IN SELF-TEST (BIST)

The test techniques examined in the previous sections require equipment
external to the tested circuit: this test is called off-chip test. We are now
going to tackle another category of test called Built-In Self-Test (BIST), for
which the test equipment is totally integrated into the tested product. This is
known as on-chip test resources. Naturally, this testing improvement needs
more components (hence increasing die sizes) and more design investments.

14.5.1 Principles

The BIST approach improves the principle of integration of the tester
functions within the product. Of course, such a solution is only acceptable if
the complexity and the expenditure of this integrated tester are not excessive.
Sometimes, the price to pay for this facility is limited by accepting an
important reduction in the coverage of tested faults. This technique allows

14. Design For Testability 389

the product to test itself, off-line, the external tester no longer being
necessary. We insist on the 'off-line' property of the BIST, as the normal
function of the product is suspended during the test. The test operations can
be run during power-up phases (for example, test of a RAM by a galloping
technique presented in Chapter 12), or during maintenance operations. BIST
techniques are integrated in more and more industrial products.

The most employed BIST techniques calls upon the test by signature
described in Chapter 12. Three modules are integrated into the product (see
Figure 14.23): the test sequence generator which is a simple pseudo-random
generator, the compaction funetion, and the signature analysis funetion.
Naturally, this test cannot detect any failure of the function, as information is
lost during the compaction function. An alias occurs when an erroneous
output sequence provided by the tested function gives the same signature as
the fault free signature.

We will develop the pseudo-random BIST techniques in next sub-section.

Figure 14.23. BIST principles

14.5.2 Test Sequence Generation and Signature Analysis

14.5.2.1 Pseudo-Random Test Generation with LFSR

A Linear Feedback Shift Register (LFSR) is a synchronous sequential
circuit, using D Flip-Flops and XOR gates, which generates a pseudo
random output pattern of Os and 1 s.

Example 14.6. 3-bit LFSR

A 3-bit LFSR is shown in Figure 14.24. Let us suppose that this circuit
has been initialized in state (Q1, Q2, Q3) = (1, I, 1). Then, the circuit
produces a cyclic output sequence with one (Ql, Q2, Q3) output vector for
each input clock pulse (see Table 14.1). Hence, all binary vectors excepted
(0 0 0) are generated. If necessary, the LFSR basic structure can easily be
modified in order to produce the null vector.

390 Chapter 14

~

Clk • t + Q3 Ql Q2

C C C

~ D \I D (J
--" D Q i-'~ ~

~
Figure 14.24. 3-bit LFSR example

dock QIQ2Q3

0 1 1 1
1 o 1 1
2 101
3 010
4 001
5 100
6 1 1 0

Table 14.1. Produced vectors

Such LFSR can be used as a test sequence generator in an Integrated
Circuit as shown in Figure 14.25-a. During the test operation, the 3 outputs
of the LFSR, Q1, Q2 and Q3, are sent to the three inputs of the functional
circuit, via a multiplexer.

Ok
Test

+ Circuit Outputs
Q ... PSA

(OUT) ~

LFSR---+~ Output
Circuit --.

siJture ~r----. (DUI')
Input ---+ ?

'--

a) Test generation a) Test co~tion

Figure 14.25. Test with LFSR

14.5.2.2 Signature analysis with LFSR

A LFSR can also be used as a compaction circuit, in order to reduce the
length of the output sequence corning from the device under test, in the
context of BIST testing (see Figure 14.25-b). This compaction circuit is
called PSA (Parallel Signal Analyzer).

14. Design For Testability 391

Example 14.7. 3-bit PSA

Let us consider a simple example based on the preceding 3-bit LFSR, as
illustrated by the circuit of Figure 14.26.

Clk - 1---'11=-----. ___ --_ ,-___ 1..::,.3_--,

+
C

D Q

Figure 14.26. PSA with a LFSR

c Q3
D

The tested circuit is supposed to produce 3-bit output vectors in response
to the input test stimuli (maybe generated by the LFSR of the previous sub
section). We suppose here that the PSA is in the initial state (1, 0, 0), and
receives one output vector corning from the DUT at each dock pulse.

Input PSA State
sequence Ql Q2Q3

Initial state 100

1 1 1 001
o 1 1 1 1 I
1 0 1 1 1 0
o 1 0 101
001 o 1 I

o 0 00 1
1 1 0

Table 14.2. PSA response to the input sequence

Table 14.2 shows the evolution of its internal state in response to the
given simple 7-vector sequence. If no errors affect the functioning of the
circuit, the final PSA signature is (010) . Hence, any error modifying this
value is detected. This detection capability covers any single bit error, but
also a lot of multiple bit errors.

An alias occurs when a multiple error in the input vector sequence is
masked. Exercise 14.8 analyzes the behavior of this LFSR used as a
generator and as a compaction circuit PSA in more detail.

392 Chapter 14

14.6 TOWARDS ON-LINE TESTING

Additionally to the cost and the complexity of the off-line testing, another
dis advantage is its 'discontinuous' character: we must wait until the test
operation is performed before being able to react on the application in order
to correct possible errors or failures. We are now going to show how we can
pass from the strict off-line test to an automatic test which executes
continuously and is totally integrated into the functioning of the product.
Such approach is called on-Une testing and is described in Chapter 16. On
line testing is necessary when we want to react quicker to errors and failures,
in order to obtain more dependability. In this section, we exarnine three
steps:

• placing the tester in the product application site (office, workshop, etc.):
this is called in situ test,

• facilitating the maintenance in situ,

• integrating the test into the normal activity of the product.

14.6.1 To Place the Tester in the Application Site

In a lot of cases, it is more interesting to place the tester into the product
site rather than the product into the tester site; this is the case for heavy or
fragile products, to increase the intervention speed because of econornic
consequences of the interruption service, etc. In computing industry, the
maintenance operation sometimes amounts to a quick inspection followed by
standard exchange of the suspected board, this board possibly being
diagnosed and repaired later in a specialized workshop. The maintenance
agent travels to the site with his/her test kit, sirnilarly to a doctor who visits
patients with his medical kit. The constraint of this approach resides in the
necessity to dispose of a 'portable' and efficient tester, and to dispose of
access means to the product, thanks to a test BUS such as the JTAG BUS.

14.6.2 In situ Maintenance Operation

To perrnit in situ maintenance, the product is designed so as to facilitate
the diagnosis operations by the maintenance agent. Using again the example
of a computer, we will facilitate its test thanks to specialized interfaces, test
pro grams already integrated into the system, etc.

Computer manufacturers also propose a remote maintenance jacility that
allows testing the computer of the dient from a specialized center, across a
telephone network or through the Internet. This approach involves in situ
circuitry and software to allow the remote access and diagnosis.

14. Design For Testability 393

14.6.3 Integration of the Tester to the Product Activity

The last stage consists in integrating the tester into the product and using
it in a more or less continuous way, that is during the product functioning.
From this point, the proposed techniques deals with on-fine testing, specified
in Chapter 16. Some of these techniques will be of the BIST type. They will
be particularly useful when implementing certain fault tolerance mechanisms
presented in Chapter 18.

14.7 EXERCISES

Exercise 14.1. Ad Hoc Techniques

Consider a structure of two coupled modules (Figure 14.27). Modify this
schema by inserting several circuits in order to make the test easier. Explain
the expected improvements.

Figure 14.27. Circuit with feedback Joop

Exercise 14.2. Analysis ofredundant circuits

a
c~~---f

b

a a ----4

n

J--L----- ß ß
c c

a) First circuit a) Second circuit

Figure 14.28. Redundant circuits

394 Chapter 14

1. Analyze the gate circuit of Figure 14.28-a in order to determine the
redundancies; suppress these redundancies and propose a 'clean' circuit
completely testable.

2. Analyze the circuit of Figure 14.28-b and compare it to the previous one.
Analyze its testability.

Exereise 14.3. Anti-gliteh eireuit

The circuit of Figure 14.29 uses a gate (denoted A) to elirninate the
glitches occurring when the input b switches. Unfortunately all stuck-at
faults cannot be tested.

a -..,.---1

fl

c--'---I

Figure 14.29. Redundant circuit

1. Study the circuit to determine this untestable redundancy.

2. Add a testing input T and modify the structure to make it entirely testable.

Exereise 14.4. Easily testable gate network

Logical networks (wired or programmable) constitute very used logical
implementation means. Fundamentally they comprise a layer of AND cells
which receive primary inputs and their complements, and a layer of OR cells
delivering the outputs.

l------- f f

~-- g g

a) initial structure b) m:xIified structure

Figure 14.30. Test of a logical structure

14. Design For Testability 395

Here we are interested in the test of a network of AND gates with a very
simple circuit of 3 inputs (a, b, c) and 2 outputs lf and g) drawn in Figure
14.30-a. To facilitate the test, we replace the 3 input inverters by 3 XOR
gates controlled by a test input noted T: if T has the value '0', then the
signals a, b and c are complemented, and if T = '1' they are transmitted
without complementation (see Figure 14.30-b).

How can this modification improve the test?

Exercise 14.5. Reed-Muller structure

Consider the following logic function of 4 variables:
f = ab' d' + a c' d' + a' b c + b c d,

and the two circuits implementing this function, as presented in Example
14.4: the SIGMA-PI structure, and the Reed-Muller implementation.

1. We consider the SIGMA-PI realization of this function. Analyze this
circuit to find a test sequence as short as possible.

2. Check by inverse transformation (extraction of the logic function by
analysis of the circuit) that the proposed Reed-Muller circuit realizes the
specified function.

3. Check that the test sequence STI = (0l01, 1010, 1111) covers all the
single stuck-at faults of the inputs / outputs of the gates.

4. Specialists of electronic design of XOR functions have proved that to
activate all internal faults of such gates, it is necessary to apply all their
input vectors. Check that the sequence TS2 = (0101, 1010, 1111,0111,
1001) satisfies this requirement, and that every internal error propagates
to the output where it is observed.

Exercise 14.6. FIT PLA

We want to realize, with the help of a FIT PLA structure (according to
the structure described in section 14.4.2), a set of 210gic functions,fl andj2,
expressed by the list of their true vertices (noted here R(i, j, ..)):

fl(a, b, c) = R (2, 3, 7),
j2(a, b, c) = R (3, 4, 5, 7).

1. Determine the number of product terms necessary to implement these
two functions in a PLA.

2. Give the symbolic structure of the resulting FIT PLA, by inc1uding the
parity lines.

3. Find the complete test sequence of this circuit by indicating the faults
detected by each vector.

396 Chapter 14

Exercise 14.7. Scan Design

In this exercise, we refer to the technique of LSSD presented in
paragraph 14.4.3. We assurne that the circuit considered possesses 4 internal
variables, and that the combination part is tested with a sequence of lOtest
vectors noted VI to VlO.

Draw a symbolic time diagram that represented the different steps of the
test of this circuit, by showing the evolution of the signals HE, HM, Shijt,
Scan In and Scan Out.

Exercise 14.8. LFSR

The aim of this exercise is to study the LFSR presented in section 14.5.

1. First of aB, it is used as a generator of pseudo-random sequences .
Analyze its behavior when its initial state is (111), then (010).

2. The basic LFSR circuit is modified as shown in Figure 14.31: the D input
of the first D flip-flop receives the XOR of bits Q2 and Q3. Does this
circuit still behave as a LFSR?

3. We will now analyze the compaction circuit of Figure 14.26 (Example
14.7). Check the compacting sequence given in Table 14.2.

4. Still for the PSA circuit, find several non-detectable errors.

5. What do you think about the use of LFSR and of the BIST techniques by
signature analysis?

~ ~

Clk l ~ 1 Q3 Ql Q2

C C C
r--+ D

~

D Qf-~ Q .. D (;

~
Figure 14.31. Modified LFSR circuit

Chapter 15

Error Detecting and Correcting Codes

In this chapter, Error Detecting and Correcting Codes (also noted EDC
codes) are presented. These codes, which are an illustration of the general
theory of redundancy presented in Chapter 8, were originally used for the
encoding of information to allow its transmission in noisy environments; for
example, a transmission on an electricalline which is subjected to electrical
perturbations. Later on, scientists encountered dependability problems whilst
realizing projects for computer systems. They, of course, tumed their
attention towards the solutions that already existed. In certain cases, it was
possible to modify the existing codes, but in many other cases, they had to
develop new ways of coding. Finally, more general fault tolerance
mechanisms were proposed. Error Detecting and Correcting Codes will be
introduced in a very general way. First of all, we will explain the underlying
principles, and then we will present the fundamental codes. This information
will be very useful, since it will help in the understanding of the following
chapters. Actually, combined with other detection techniques that stern from
the previously encountered functional redundancy (such as assertions), these
redundant codes are employed as a way of detecting errors 'on-line' .. Lastly,
they are also useful for fault tolerance, being connected to safeguarding and
reconfiguration mechanisms.

15.1 GENERAL CONTEXT

15.1.1 Error Model

We consider a system T, which processes information supplied by the
input values U, and provides results at Z (see Figure 15.1). This system is

399

J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

400 Chapter 15

affected by various faults, such as electromagnetic parasites on the electrical
lines, or functional faults affecting the function achieved by T. We do not
wish to go into details about these faults, so we are going to specify an error
model according to the definition given in Chapter 5, that is as a set offaults
characterized as errors by properties on desired or intended states of the
system. In this chapter, the considered attribute that characterizes the
behavior will be the output Z of the system. Thus, the desired or intended
states are defined by the expected output values of Z.

I ErrQf model E J
;.
~ i(

U ~ T ~ z
'".

Treatment

Figure 15.1. Error model

The effect of the faults is represented by a set of disruptions, noted E,
acting on Z by means of an operator noted '+' . Z* defines a disrupted output
value, i.e. an erroneous state of T. We thus have:

Z* = Z + e, with e E E,

The error model considered is thus specified by the couple (E, +), where

• E is the set of disruptions, wh ich are modifications of correct states
causing an error, and

• '+' is the disruption operator which combines the correct state with a
disruption to express an error.

Note. We have defined errors as erroneous states. In this chapter, we will
call error a disruption in order to be in accordance with the conventional
vocabulary of detecting and correcting codes theory.

These errors are due to the different categories of faults already
considered:

• functional faults having affected the design or the manufacturing of the
product associated to the system T.

• technologicalfaults (permanent or temporary) affecting T,

• disruptions due to the environment.

Three error cIasses are important for transmission and treatment systems:

15. Error Detecting and Correcting Codes 401

• an error is single when it only affects a single bit of the output Z,

• an error is multiple 01 order p when it affects at most p bits of Z.

A multiple error of order p is said e"or in packet o/length I (also called
burst error) if the erroneous bits of Z are within an l-distance neighborhood.

These different binary error models originate from transmission systems.
The input bits U are emitted in series onto a communication media by an
emitter. Theyare received in series by the receiver (and in the same order),
and they finally end up at output Z. A single error model is justified if:

1. the parasites which disrupt the transmission are statistically sufficiently
distant in time from each other, and

2. their maximum time interval is inferior to the period of transmission of a
bit (this basic period is called moment).

A multiple error model is used in more aggressive transmission
environment. The particular case of errors in packets is confirmed if the
parasites have a time duration greater than the basic moment of transmission
on the media.

Some examples of errors are given in Example 15.1.
Let us note that the definition of the disruption set (errors) E and the

disruption operator '+' must result from an analysis of the product T and
from the faults that are able to affect it. In fact, all the detection and
correction techniques presented hereafter in this chapter are based on
particular error models (such as the single error model for example). Their
actual efficiency thus depends on the realism of these models. Therefore, it
is generally necessary to carry out an instrumentation experiment on the site,
so as to characterize the error model (E, +), before all choices are made
about codes that detect and correct errors.

Example 15.1. Error Model

We consider a system that serially transmits 4-bit words. We suppose that
this transmission is disrupted by electromagnetic parasites that are able to
modify a single bit of information. Under these conditions, the error model is
defined by the disruption set E = {1000, 0100, 0010, 0001} and of the
disruption operator which is a XOR. Hence, if U = (0 1 0 1) and if the error
(in reality, a disruption) which affects this transmission is e = (l 000), then
the received word affected by the error is:

Z* = (0 1 0 1) XOR (1 000) = (11 0 1).

This error is a single error since only the first bit has been disrupted.
Whatever the transmitted word is, 4 single errors can affect it in this way.

Now, consider the error e = (1001). This is a double error, and the same
transmitted word (0 1 0 1) becomes Z* = (0 1 0 1) XOR (1 00 1) = (11 00).

402 Chapter 15

15.1.2 Redundant Coding

Error detection and correction require redundancy. To illustrate this
notion, we consider again Example 15.1. Let U be the value emitted, Z = U
the expected value, and Z* the value received which is affected by an error e.
If U can take any 4-bit values, no erroneous output Z* can be detected or
corrected. For example, the reception of (1101) instead of the emitted (0101)
cannot be detected as erroneous, as this word is a valid input U.

To be able to detect an error, the system T has to possess a static
redundant functional domain: the set of values provided by Tin the absence
of error must strictly be included in the set of values of the output universe.
In this way, the output universe is partitioned into 2 subsets: the set of
expected values and the set of erroneous values.

Let Z be the original output of T and W a redundant coding of Z. Hence,
the uni verse of W is partitioned into a set of acceptable values called code
and a set of erroneous values.

Code Uni verse
ofW

Figure 15.2. Error detection

Let (E, +) be an error model, W a redundant word, and W* = W + e the
word affected by an error e from E. If W* belongs to the code, the error
cannot be detected (case of error e3 in Figure 15.2). On the contrary, if W*
does not belongs to the code, the error can be detected (case of errors e J and
e2 in Figure 15.2).

IA code is an error detector for the error model (E, +) if and only if
V e E E, W* = W + e e code.

To be error corrector, a code must allow to find, in addition, the
expected value Z from the erroneous value W* . The following Example 15.2
illustrates these notions.

We will give later on more precise conditions for error detection and
correction of a given error model.

15. Error Detecting and Correcting Codes 403

Example 15.2. A simple redundant coding

We modify the system of Example 15.1. A fifth bit is added to the output
Z to form W = Z + {O, I}. We suppose that the value of this fifth bit is '1' if
and only if the number of bits of Z having the value '1' is even. The uni verse
of W is constituted of all the 32 combinations of 5 bits, whereas the values of
the code form a subset of only 16 configurations. Hence, there is static
redundancy. For example, (01101) is a member of the code, whereas (01111)
does not belong to the code: its occurrence reveals an error.

15.1.3 Application to Error Detect.ion and Correction

The Error Detecting and Correcting Codes, noted EDCIECC, allow the
treatment of errors from a given error model thanks to the use of structural
redundancy (see Figure 15.3). The inputs U are coded with more bits than
necessary (Y) be fore treatment, then treated by-the module T, which deli vers
a coded result (W), which is then decoded (Z) with the detection and/or
correction of possible errors.

u

Treatment

Figure J 5.3. EDC code context

If we take Example 15.1 again, error e = (1 000), which affected the
word (0 1 0 1) and produced an output of (1 1 0 1), is detectable if and only
if no chosen codeword of output W has the value (1 1 0 1). However, this
necessary and sufficient condition gives no information about the way to
detect an error, except, of course, by the trivial method of comparison with
all words of the code.

So that a code can also be corrective, we must add some constraints in
such a way that, after detecting an erroneous word W*, we are able to
discover the correct value W which was affected. Consequently, we are able
to deduce from W the correct value of Z. In the following sub-section,
Hamrning' s theorems will provide more detail on error detection and
correction. Let us note that, generally, the errors can affect the treatment
module T, as weIl as the coding and decoding parts. These latter parts are
functions realized by means of circuits and/or programs, and which therefore

404 Chapter 15

can be altered by errors as well.
Numerous Error Detecting and Correcting codes exist, which are adapted

to various situations for various types of data processing systems T:
transmission systems (c1assic codes), memory systems, logic processing
systems, arithmetic systems. We are going to give the codes' general
principles, describe the most significant codes, and then we will return to the
c1asses of applications in the final section of this chapter. Although the
theory of coding is very general and often very formal, we will essentially
consider here the binary codes by minimizing the theoretical aspects so as to
facilitate understanding. However, we will tackle certain codes of decimal
type with calculation systems.

15.1.4 Limitations of our Study

15.1.4.1 Anti-Intrusion Codes

We will not develop here the specific category of codes that are intended
to protect against intrusions. These security codes, which are also applicable
to the general context of Figure 15.1 have the following function: they
prevent access to resources with protection keys (Message Authentification
Code, such as the c1assic passwords for computer systems access) and to
prevent data transformations whilst coding and decoding. The access to
world networks, like the Internet, has brought these codes to the attention of
the media. Notably, this is because of the regular competition between their
implementation and their cracking! Nowadays, two categories of codes are
intensively studied:

• the RSA codes (Rivest Shamir Adleman), based on the factorization of
large numbers, which protect 95% of all electronic exchanges worldwide,

• the ECC codes (Elliptic Curve Cryptography) based on the rectification
of points on an elliptical curve, such as the standardized IEEE 1363
codes.

15.1.4.2 Low-Level Coding

We also do not consider the binary-signal and signal-binary coding
levels encountered in transmission systems. These levels, c10se to the
transmission media, allow adapting the transmission to throughput problems,
signal weakening and noise immunity. They also insure a good
synchronization of the transmitted messages. Let us quote as examples three
binary-signal coding:

• the NRZ code (Non-Return to Zero) which associates electricallevels +A
and -A to the '1' and '0' logical values,

15. Error Detecting and Correcting Codes 405

• the Manchester code wh ich transform any bit '0' into an electrical 0 to 1
transition and any bit' l' into a 1 to 0 transition,

• and the HDB(n) code (High Density Bipolar) which transforms any bit
'1' into a positive electrical pulse, each bit '0' into a 0 level; a fictitious
bit' l' (a pulse) is added after n consecutive bits '0', in order to avoid a
synchronization loss from the receptors.

These examples are illustrated in Figure 15.4. Finally, in many cases of
communication media (for example the hertzian one), it is necessary to use
adaptation techniques such as the amplitude modulation, the shift keying
frequency or phase modulation. These techniques are encountered in the
MODEM (Modulation - Demodulation) equipment.

NRZcoding

+: I
I I I I I

~
1 0 0 1 1 0

-A

Manchester coding

+; i I
I [[rp, I

I
I

...
0

HDB(3) coding
Ficlitious 1

+; 1 1
I I I ~·I ..

0 0 0 1

Figure 15.4. Examples of low-level coding

15.2 DEFINITIONS

Let U be an information word of k bits to code in some binary EDC code,
and Y the codeword (word coded) of n bits obtained by the redundant
coding: n > k.

15.2.1 Separable and Non-Separable Codes

I We say that a code is separable if all the bits of U can be
found in Y.

Symbolically, we write Y = (U, R), where Rexpresses the r-bits
redundancy, with n = k + r. Figure 15.5 illustrates this notion of separable

406 Chapter 15

code. Let us observe that all k bits of U, whieh are located in Y, appear
grouped in the diagram to simplify the representation: this is not in the least
obligatory.

I On the other hand, a code is non-separable when we cannot
directly find U in Y.

The only interest in this property of 'separability' resides in the operation
of decoding wh ich is much simpler. In fact, the majority of EDC codes for
transmissions are separable. To decode a non-separable code, we usually
have to create a table that contains all the codewords Y and their
corresponding initial words U. Except in some particular simple cases, this
procedure is highly untractable, due to the size of the table. In numerous
applications which do not concern transmission, it is not always necessary to
code and decode information at processing time. This allows the use of non
separable codes. For example, the addresses of units comrnunieating via a
Bus, or the internal states of a sequential circuit, are objects coded once and
for all, at design. If three internal states, states '1', '2', and '3', of a
sequential circuit are coded with the words 110, 101 and 011 (corresponding
to 3 internal variables, i.e. 3 electronic signals), it will never be necessary to
decode these states to find their value (' 1', '2' or '3').

/~---- .. ,

(Coding ')
Y (0 bits)

I U (k bits) I --..-------: I
, I ,... I

U(k) I R(r) I
Y : Codeword (0 bits)
U: Information (k bits)
R : Redundaocy (r bits)

Figure 15.5. Separable codes

15.2.2 Hamming Distance

All EDC codes use, either implicitly or explicitly, a concept of distance
that all codewords must respect: the Hamming's geometrie distance for
transmission codes, and the arithmetic distance for arithmetic codes.

I The Hamming distance between any two binary words is
the number of bits that differ between them.

For example, the distance between mi = (1100) and m2 = (0 1 0 1) is 2.
We will express this as d (mi, m2) = 2.

15. Error Detecting and Correcting Codes 407

A multiple error model of order papplied to any codeword transforms it
into a word that is located at a maximum distance p from the correct
codeword. We schematize that by saying that the erroneous word belongs to
a sphere of radius p, centered on the original codeword. The Hamming's
distance is a metric distance:

d (m1, m3) ~ d (m1, m2) + d (m2, m3).

Hamming stated the properties that a redundant code must possess to be
able to detect or correct multiple errors. These properties are based on the
minimal distance d that must exist between the two codewords of all the
couples (Yi and Yj). There are two Hamming theorems:

A code allows the detection of errors if d is strictly greater to the
radius p of the error model: d (Yi, Yj) > p, \;j i "# j.

A code allows the correction of errors if d is strictly greater than twice
the radius p : d (Yi, Yj) > 2p, \;j i "# j.

Figure 15.6 symbolizes these properties for error detection. For every
couple (Yi, Yj), we have to respect the condition d> 2p; every error that
affects any codeword Yi transforms the correct word into an erroneous word
Yi* belonging to a sphere of radius p around Yi. Since all the spheres of
codewords are disjoint, we can apriori deduce the correct word Yi from any
erroneous word Yi* .

p : maximal error
radius

U : universe of
m-bitt vectors

Figure 15.6. Distance and error model

Note. Coming back to the general context of Figure 15.3, we see that the
detection properties of the codes have to be preserved in the transformation
performed by the system T. If T is a transmission system, the normal output
W is equal to the coded input Y, and the Hamming distance properties allow
the detection and correction of errors. On the other hand, these properties are
not automatically preserved when the system T is not a transmission or a
memory system. Other notions of distance have then been defined, as we
will see with the 'arithmetic distance' for arithmetic circuits, in section 15.5.

408 Chapter 15

Example 15.3. Detection and co"ection 0/ single errors

If the codeword is Y = (0 1 1 00) and if p = 1, all erroneous words are at
a distance of 1 from this word. They thus belong to a set of five words:

y* = {(lI 1 00), ((00 1 0 0), (0 1 000), (0 1 11 0), (0 1 1 0 I)}.

If none of these words belong to the code, then it is possible to detect the
presence of all single errors that have affected the word (0 1 1 0 0).

If, additionally, all the other words of the code are situated at a distance
which is superior or equal to 3, we will also be able to correct all simple
errors. In this way, the word Y' = (1 1010) is at a distance of 3 from (0 1 1
00). We can easily check that all simple errors that affect it do not belong to
the set Y*. If this property is true for all codewords, then the detection of an
incorrect codeword, which belongs to the set Y*, clearly identifies the correct
word Y: the correction of errors is therefore possible.

15.2.3 Redundancy and Efficiency

Let us suppose again that k is the number of bits of the information to be
coded, n the number of bits of the codewords, and r = n - k the number of
supplementary bits. A code can be characterized by:

• its cost, which is the number of bits n that it needs,

• its power 0/ expression (or cardinality or even capacity), which is the
number of codewords N that it is able to represent,

• by the error model defining the errors detected anel/or corrected.

We use the termredundancy rate ofthe code as the coefficient:

rr = r/k , where k is the number of bits of the word to code (called 'useful
bits'), and r the number of added bits ('redundant bits').

The density 0/ a code, noted d, is the ratio of the capacity N and the total
n

number of words that could theoretically be formed with its n bits: d = N /2 .
The coverage rate 0/ a code, noted C, is the ratio of the number of errors

that it detects anel/or corrects and the number of errors belonging to the
considered error model. For example, an-bits parity code detects all odd
errors (of order 2.p +1) of these n bits. If we consider all possible

mathematical errors associated with a given codeword (that is 2n -1), this
n·t n

code covers a large part of them: about C = 2 /(2 -1) # 0,5! Obviously, no
real code of finite length can reach coverage of 1.

15. Error Detecting and Correcting Codes 409

15.3 PARITY CHECK CODES

The c1assic codes are the single or multiple parity codes, unidimensional
(that is using a single word) or multidimensional (using 'blocks' of words).
Essentially, they were defined and employed for information transmission
systems, and then extended for use in data storage systems.

15.3.1 Single Parity Code

The single parity code is the most famous and simplest error detecting
code. It is a separable code that adds a redundant bit to U, which is the result
of the XOR function of an the other bits:

k
Yj=Uj forje (l,k),Yn = ffi i=l Ui (n=k+l)

The E9 operator is XOR, which takes the value '1' if and only if the
number of inputs that have the value '1' is odd. For example, if X = (1 0 1 0
1 1 1), then we have to add a '1' bit since the number of bits' l' of U is odd.
Thus, the codeword contains 8 bits: Y = (l 0 1 0 1 1 1 1). Hence, an
codewords contain an even number of bits '1'. This code does not correct
any error, but it detects half of an conceivable mathematical errors, i.e. an
the errors that modify the parity of the number of bits '1'.

In the previous example, all odd errors (single, tripie, quintuple or
sextuple error) affecting Y = (l 0 1 0 1 1 1 1) are detectable, since they
change the parity of the number of bits' 1'. Finally, the single parity code is
the least redundant of an codes that detect and correct errors: rr = l/k; hence,
its density is d = Y2.

The single parity code is used everywhere in a computing system: to code
data stored in memory, transmitted on a Data or Adress Bus, etc. Its
limitation comes from the fact that it cannot detect an even number of errors,
and in particular double errors (see Exercise 15.1).

15.3.2 Multiple Parity Codes

For multiple parity codes, several parity relations (functions $) are
defined, and they anow the detection and correction of more complex errors.
There are many of these separable codes and they are also very varied.

We are briefly going to introduce unidimensional codes that concem the
encoding and decoding of individual words, and also bidimensional codes
that are intended for structured information in blocks of words.

410

15.3.2.1 Linear Codes

Principles and example

Chapter 15

The general principle of multiple parity codes is the following: we add
redundant bits to the word to be coded; these redundant bits are obtained by
XOR relations between certain information bits. These codes were imagined
for transmission applications, i.e. for wh ich W = Y without error. We will
now explain the basic principles with a simple example.

Example 15.4. Code C(7, 4)

Let us consider the detecting and correcting code, such that k = 4 and
n = 7. The bits Yi of the codeword Y are obtained from the Ui bits of the word
to code, U, by the following parity relations:

Yj = Uj for jE (1, k = 4),

Y5 = Ul $ U2 Et> U4,

Y6 = Ul $ U3 Et> U4,

Y7= U2 $ u3 Et> U4·

By construction, the words of this separable code are located at distances
greater than or equal to three from each other. By applying Hamming's first
theorem, this code will therefore allow the detection of all errors affecting at
most 2 bits. By applying Hamming's second theorem, this code allows the
correction of all single errors. Explicitly, the detection and correction
mechanisms are derived from the construction of the codewords by three
parity relations:

Yl $ Y2 $ y4 Et> Y5= 0,

Yl $ Y3 $ y4 Et> Y6= 0,

Y2 $ Y3$ y4 Et> Y7= 0.

These relations are called parity check relations or control relations. We
clearly see that all single or double errors of the transmitted word W affects
at least one, two, or all three of these relations. On reception, an error is
therefore detectable by ca1culation and by observation of the syndrome
which is the 3-bit vector:

S=(Sl=Wl$W2 Et>w4 Et> W5,S2= Wl$W3Et>W4$W6,

S3 = W2 $ w3 Et> w4 Et> W7).

If this vector is different to zero, a single or double error has occurred
and it is detected (but it is not correctable). If we assume that the errors are
single, this syndrome vector enables the correction of the error. Thus, if the

15. Error Detecting and Correcting Codes 411

error affects the bit Yl, the syndrome has the value S = (1 1 0), if the error
affects the bit Y4, W4 = y'4, the syndrome has the value S = (1 1 1), and so on.
This code is called Hamming code C(7, 4) . In Exercise 15.2 we will study a
variant of the presentation, which is obtained by simple permutation of the
coding relations; this variation is a more convenient way of correcting errors.
In this exercise, we will also introduce the so-called modified Hamming
code, which detects all single and double errors, and corrects all single errors
(without any confusion between these two classes of errors).

Matrix representation
The EDC codes based on control relations with XOR operators, have

given rise to a large number of studies. An original group of codes, called
linear codes, uses matrices in the binary Galois Field GF(2) (using operators
XOR -modulo 2 addition- and AND). Two binary vectors represent the word
to code U and the codeword Y. The coding is carried out by a
'multiplication' of U by a generator matrix called G: Y = U. G. A
noteworthy property of this linear space is that any linear combination of
codewords produces another codeword.

Detection and correction of errors are achieved thanks to a control matrix
H; we define the syndrome vector by S = H .w T (where T stands for
transpose). The matrix H can be derived from the matrix G: H. GT = o. This
property expresses the fact that the two vector spaces generated by these
matrices are orthogonal.

The syndrome is thus a null vector in the absence of an error, hence:

H. W T =0.

For our example, the two matrices and their properties are:

1000110

0100101
G = , with [yJ, Y2, Y3, Y4, Y5, Y6, Y7] = [uJ, U2, U3, U4] . G.

0010011

0001111

wl

w2

[1101100] w3

=[;!];s, H = 1 0 11 0 1 0 ,with H . w4

0111001 w5

w6

w7

412 Chapter 15

S is the syndrome vector identifying the erroneous bit.
When the first k columns of G form a kxk identity matrix (i.e. containing

'1' values only in the diagonal), the code is said to be systematic. 1t is the
case of our example. In that case, Y = [uJ, U2, U3, U4, UJ, PI, P2, P3], where Pi
are the parity check bits.

We will deepen the study of a linear Hamming code in Exercise 15.3.

15.3.2.2 Cyclic Codes

Principles
Cyclic Redundancy Check codes (noted CRC) are derived from linear

codes by adding the property:

any cyclic shift of a codeword is still a codeword.

Their study can be effieiently done with the help of the polynomial
modeling over the Galois Field GF(2) using operators AND (noted here .)
and XOR (noted here +). An n-tuple or vector is expressed as a polynomial
by x, x being a symbolic representation variable. The vector m = [mo, m/, mz,
m3] is written:

2 3 u(x) = mo .1 + m/ . x + m2 . x + m3. x .

For example, m = (1011) is written: 1 + x2 + x3•

The generating matrix G becomes an (n-k) degree generator polynomial
g(x) , and the control matrix H becomes the control polynomial hex). A
fundamental concept of cyc1ic codes is that of 'polynomials equivalence
modulo a given polynomial'. The most important modulo base polynornial is
xn + 1. Two polynomials a(x) and b(x) are equivalent modulo (xn + 1) if they
have the same remainder in the Euclidean division by (xn + 1). Hence, we
write: a(x) = b(x) [mod xn + 1].

The error detection and correction properties of cyc1ie codes are obtained
by choosing generator polynomials from the factorization of the base xn + 1
into irreducible polynomials. Table 15.1 gives the factorization of xn + 1 for
n = 7 and n = 15:

n factorization

7 (l +x)(l +x+x3)(1 +X2+X3)

15 (l +x)(1 +x+x2)(1 +X+X2 +X3 +x4) (l +x+x4) (l +x3 +x4)

Table 15.1. Polynomial factorization

Any monie divisor of xn + 1 is the generator of a cyc1ie space. For
I 'f 3 1 2 3 3) examp e, 1 n = 7, (l + x), (l + x + x), (+ x + x), (l + x)(l + x + x ,etc.,

are generators of cyc1ic codes.

15. Error Detecting and Correcting Codes 413

In that case, the control polynomial g(x) which generates the orthogonal
subspace is easily obtained from the factorization of xn + 1:

g(x) . hex) = 0 [mod ~ + 1].

Hence, these two polynomials generate supplementary cyclic spaces.
For example, for n = 7, if we choose g(x) = 1 + x + x3, then:

hex) = (l + x) (l + x2 + x3) = 1 + x + x2 + x4•

Let g(x) of degree n-k be the generator of a cyclic code. Each codeword
will have n bits and will be represented by a polynomial of degree n-l,
multiple of g(x): y(x) = a(x). g(x) (with degree of a(x)::; n-l).

g(x)

xlg(x)

From this, a generator matrix can be defined by G = x 2 g(x)

Xk- I g(x)

1101000

0110100
For example, if g(x) = 1 + x + x3, G = , the different

0011010

0001101

columns of G correspond to 1, x, x2, x3, ••• , x6, from left to right.

In that case, the encoding of a word u = (l 0 1 1) gives the codeword
u.G = (1 1 1 1 1 1 1).

The control matrix can be derived from the polynomial hex) as:

hex)

G=
x1h(x)

xn-k-1h(x)

The columns of H corre~pond to 1, x, x2, x3, ••• , x6 , from right to left.

Far example, if g(x) = 1 + x + x3, we saw that hex) = 1 + x + x2 + x4•

Hence, H = [~ ~ ~ ~ 1\1 ~]. We can easily verify that G.HT = o.
1011100

414 Chapter 15

Coding procedure

Now, we will propose a very simple way of performing the coding
operation of a cyc1ic code.

We choose, for example, g(x) = 1 + x + x3, as the generator polynomial of
a cyc1ic code. We will define a systematic cyclic code based on the
fundamental property that the polynomial associated with the codeword is a
multiple of the generator polynomial. Let u(x) of degree k, the word to be
coded, g of degree n-k the generator polynomial and y of degree n the
resulting codeword. We multiply u(x) by x(n.k), and then we perform an
Euc1idean division by the generator polynomial. Thus, we have:

x(n-k) u(x) = q(x) g(x) + r(x),

with r(x) = Po + PI X + .. + Pn-k-I Xn-k-I,

x(n-k) u(x) + r(x) = q(x) g(x).

This relation shows that x(n-k) u(x) + r(x) is a multiple of g(x).
Consequently, we can take this polynomial as the codeword y(x) associated
with u(x): y(x) = [Po, . . . , Pn-k-I, Uo, Uj, ... , uk-d.

synchronous
DFF

go = I ~=O

Input U
.....-__ -+ Uk-l •• Uo

OutputY
Uk-l •• Uo Po-k-l •• Po

Figure 15.7. Systematic cyclic encoding

This code is systematic. This operation can then be fulfilled by means of
a synchronous sequential circuit, which is based on a shift register and XOR
operators that feedback some Flip-Flop outputs. For example, Figure 15.7
shows such a circuit for the generator polynomial g(x) = 1 + x + x3• The bits
of the vector to be coded are entered into the register, one by one to the
rhythm of the c10ck (which is not represented in the diagram), by starting
with the most significant bit Uk-I. At the same time, these bits are also
transmitted as the most significant bits of the coded word y . During this
phase of coding, the switch Kl is switched at position 1 (Input U) and the
switch K2 is c1osed. We thus perform aseries of k shifts which are feedback
through the coefficients of the generator polynomial g(x). Therefore, we
obtain the (n-k) bits of the remainder in the register. Finally, Kl is commuted

15. Error Detecting and Correcting Codes 415

at position 2 and K2 is open, then we can transmit the contents of the register
in (n-k) dock pulses, as least significant bits of the codeword Y. The detailed
analysis of this performance is proposed in Exercise 15.4.

The same coding circuit can also be employed for the detection of eITors.
Actually, an eITor e(x) affects the word w(x) by transforming it into w*(x) =
w(x) + e(x). It is detectable if the division of w*(x) by g(x) gives a non-null
remainder. We enter the bits of the vector W, by starting with the most
significant bit Wn-I. When n bits have been shifted, the syndrome s(x) is in
the register. In short, the conversion is finished after n dock pulses.

Notes

• Rose Chauduri and Hocquenghem have proposed a systematic way to
construct efficient codes that detect and COITect independent multiple
eITors. These codes, noted RCH, belong to the most used CRC codes.

• Certain transmission eITors are multiple eITors in packets (burst-eITors).
Thus, specific cydic codes have been devised in order to detect and
COITect these types of eITors. Hence, Fire codes have excellent burst-eITor
cOITecting capability. They are notably employed in digital disks.

• Cyclic codes are used in very numerous industrial domains. The choice of
an appropriate code depends on the nature of the data to be treated, stored
or transmitted, and the physical structure that receives and/or treats the
data. The determination of a realistic eITor model is essential. These
cyclic codes are generally presented in the documents by their generator
polynomial which implies their detection/correction capability. For
example, the North America T-caITier standard for transmissions uses the
Extended-SuperFrame (ESF) cydic code for coding frames of 4632 bits;
this code wh ich is given by its CRC-6 polynomial, g(x) = 1 + x + x6, is
said to detect 98.4% of single or multiple eITors. Naturally, such assertion
is issued from mathematical analyses and simulation performed to face
the eITor model (l-length burst eITors in transmissions, etc.).

15.3.2.3 Bidimensional Codes

We suppose that the information to be coded is structured as blocks, each
one constituted of kr-bit words. Figure 15.8 shows the principle behind the
bidimensional codes, also called product codes.

Two redundancies are introduced:

• rl redundant bits are added to each word, forming what is called
longitudinal redundancy check (LRC).

• rv redundant words are added to the block, forming what is called vertical
redundancy check (VRC).

416 Chapter 15

The RR block corresponds to a vertical redundancy of the bits of the
horizontal redundancy. Thus, each line or column is a codeword able to
detect andlor correct errors.

We can employ linear codes that were studied in the previous seetion.
Exercise 15.5 suggests a study of abidimensional code with a simple
horizontal parity on each word and a simple vertical parity on all words.

pwords

rv words

Data
Block

k
bits

LRC

rl
bits

VenkiJl
Red",,""'I1:)' Check

Figure 15.8. Bidimensional code

Note. Bidimensional codes are very useful for optical or magnetic mass
storage systems. For example, the Reed-Solomon (RS) codes, wh ich are a
particular type of BCH codes, are employed in magnetic mass memories, on
R-DAT (Digital AudioTape) and digital disks. An interleaving technique is
frequently employed: parity symbols are added and the bytes (1,1), (2,1) ...
are interleaved. Hence we can detect/correct an error in a packet of order n if
each word has a single D/C capability! The Cross-Interleaved Reed
Solomon Code (CIRC) is used for Audio Compact Disc. Thanks to 2 cyclic
codes by block, it allows the correction of short errors in CD manufacturing,
and also chained errors. In this way, 4000 consecutive bits can be retrieved,
and 12000 bits can be compensated.

15.4 UNIDIRECTIONAL CODES

The unidirectional codes are intended to detect all unidirectional errors,
i.e. wh ich modify the number of '1' bits in the codeword (either by a greater
number or a lower number).

Thus, let m be a word, m = (100 1 0 1):

• the errors m1 = (10 1 1 1 1), m2 = (1 00000) are unidirectional, as the
number of '1' of m (2) is increased in m1 and decreased in m2,

15. Error Detecting and Correcting Codes 417

• the error m3 = (0 0 0 1 1 1) is not unidirectional, as the first '1' of m
became '0', while the 5th bit becomes '1'.

In Appendix A we compare the capacity and the coverage of some of the
codes presented below: the simple parity code (which will serve as
reference), the optimal m-out-of-n code, the two-raU code, the Berger code
and the modified Hamming code.

15.4.1 M-out-of-n Codes

Every codeword of an m-out-of-n code has exacdy m bits '1' and n-m
bits '0'. This code is non-separable, so it is used in applications where there
is no codingldecoding operation, such as opcode assignment for micro
processors or micro-controllers, or internal state assignment of finite state
machines. We will encounter this code in the following chapters, notably to
produce self-checking systems. This code detects any error modifying the
number of bits '1', in particular any unidirectional error. It has also the
following property: any AND or OR combination of two codewords gives a
word outside the code. This property finds applications when faults can
produce such AND or OR operations, such as the electrical 'wired OR' .

The power of expression of this code is the number of different

combinations of m '\' that can be formed with a .-bit word: N = (:)
This function has a maximum value when m has an integer value that is

c10se to n/2 (see Figure 15.9). Therefore, a particular interesting case is that
of n = 2m, since the cardinality is then maximal. An example of such code is
given in Example 15.5.

withnfixed

1

o n m

Figure 15.9. m-out-of-n code power with m

The density of the m-out-of-n code is: n!
m!(n - m)! 2 R

418 Chapter 15

Exercise 15.6 deepens the study of the m-out-oJ-n code by analyzing its
properties for the detection of errors.

Example 15.5. Code 2-out-of-4

Figure 15.10 lists the N = 6 codewords of the 2-out-of-4 code. It is easy
to verify that the minimal distance between two codewords is 2.

ab cd

00 1 1
01 10 r double nril
10 01 (4 words) ~~ 1 1 00

(6 words)
01 01
'10 10

Figure 15.10. Code 2-out-of-4

15.4.2 Two-Rail Codes

Two-Rail codes (or double-rail), which are used to design self-testing
logic circuits, coincide with a variant of the duplication that has already been
encountered. The word to code X is duplicated and complemented to
constitute the codeword Y:

Y= (X,X') .

The redundancy R is therefore the binary complement of X, noted X'
(R = X'). In fact, this is a particular instance of an m-out-oJ-2m code for the
coding of m-bits X words. Its cardinality is N = 2m, which is less than that of
a general m-out-oJ-2m code. Its density is 112m•

For example, if m = 2, only the first 4 vectors of Figure 15.10 belongs to
the two-rail code. The two-rail code is thus separable, with k = m and r = m.
Compared to the m-out-oJ-n code, this code is simpler to implement but less
efficient; for a given value of n = 2m, we can form fewer words:

2m< 2m c (m), lor m > 1.

15.4.3 Berger Codes

Berger codes are separable: the redundant part R, added to the useful
part X, expresses in binary the number of bits '0' present in X. We can show
that r = r log(k+ 1) 1 , where r x 1 is the first integer greater than or equal to x.

The density is of the order of 1I(k+ 1).

15. Error Detecting and Correcting Codes 419

These codes are optimal codes for the detection of unidirectional eITors,
i.e. the number of redundant bits is minimal. They have been used for eITor
detection in ALU.

Example 15.6. Berger code with k = 3

Table 15.2 gives the list of codewords for the Berger code when k = 3:
thus r = 2 (there must be 2 bits in order to code all the possible 'zero
numbers' in a word of 3 bits), and n = k + r = 5. This example is analyzed in
Exercise 15.7.

X R
a bc de

000 1 1

001 10

010 10

o J I 01

100 10

101 01

110 01

I I I 00

Table 15.2. Codewords of the Berger code, for k = 3

15.5 ARITHMETIC CODES

15.5.1 Limitations of the Hamming Distance

Arithmetic codes are specific to calculation systems: addition,
subtraction, and sometimes multiplication and division. They are based on
the arithmetic distance notion, and they are thus efficient to detect arithmetic
eITors. Actually, the Hamming distance notion, which is the basis of the
majority of codes, is insufficient in the treatment of arithmetic operations. In
this paragraph, we therefore take a slight deviation from the binary codes
that have been considered thus far.

Let us consider a simple system wh ich calculates the sum of two
numbers (see Figure 15.11), Z = Xl + X2, and let us quickly examine the
problem of detecting errors by the use of redundant codes.

We want to determine a redundant code that detects a certain model of
eITors affecting the system: let us call C(Xl) and C(X2) the two resulting
codewords. Having coded the two numbers, we now ask the question:

420 Chapter 15

Is the addition operation an internaioperation ofthe coding?

That is: C(XI + X2) = C(Xl) + C(X2)?
A second question concems the error models of such systems:

What is the physical meaning of a single error model?

Figure 15.11. An addition function

Let us assume that our addition circuit, depicted in Figure 15.11, receives
two natural numbers expressed in binary: Xl = 0001 and X2 = 0111. It
provides as result Z = 1000. A single error affecting the acquisition of the
input Xl = 0000 leads to the result Z = 0111. We see that a single input error
(1 bit affected) produces a quadrupIe output error (all the bits are affected).
Under these conditions, it is not possible to use Hamming's theorems, which
are based on binary distance! If we want to find codes that detect andlor
correct errors altering the addition function T, then we must reject the
Hamming distance and define a new distance. The notion of arithmetic
distance, has been proposed (in particular by scientists working in the spatial
domain), leading to a new category of codes. In the definition of this
arithmetic distance, words are considered as numbers. For example, consider
the word ml = (1011), and two faulty words m2 = (0011), and m3 = (1001).
The arithmetic distances between the first word and the two others are: da
(mI, m2) = 8, da (mI, m3) = 2.

Let us note that the two-rail codes that were presented in paragraph
15.4.2 are universal; they can be applied to all data processing systems, and
thus calculation circuits. However, they do not optimally exploit the
specificity of a system, i.e . its function, as the residual codes, considered in
the following paragraph, will do.

Others specific codes are used. In Exercise 15.11, we propose to study
the checksum code.

15.5.2 Residual Codes

Here we will only make reference to the residual codes which were
introduced at the Jet Propulsion Laboratory (Pasadena, USA), and were
used in the Saturn V projecl. The numbers that T treats are c1assed according
to a 'congruence modulo A' property, A being a suitable constant called the
check base. Thus, the c1ass '0' is constituted by the set of numbers {O, A, 2A,

15. Error Detecting and Correcting Codes 421

... }, the c1ass '1' by the set of numbers {I, A + 1, 2A + 1, ... }, and so on. The
congruence is a property that is preserved by addition, subtraction and
multiplication. If we perform one of these operations on natural numbers that
are expressed in some numeration base B, then we obtain the foHowing
property:

If al == a2, bl == b2 mod[A],

then al + bl == a2 + b2 mod[A],

al - bl == a2 - b2 mod[A],

al x bl == a2 x b2 mod[A].

On the other hand, the division does not preserve this property.
This property is exploited in order to check if an operation op (+, - or x)

on a1 and b1 is correct. This is achieved by redoing the calculation on the
smallest representative of the c1ass (number inc1usive between 0 and A-l
since there are A c1asses), and by comparing the c1ass of the result with that
of a1 op b1. This redundant calculation is very simple since it operates on
small numbers. Hence, we are able to assurne that the circuit that performs
this calculation will have a better reliability.

The search for the c1ass of some number N requires the calculation of the
remainder of the division of N by A. It has been shown that this calculation is
very simple when A is apower of base B minus 1: A = Bk - 1. For example:
A = 15 = (24 -1) forbase 2,A = 9 = (10-1) forbase 10.

With such values of A, the processing of the remainder of the division by
A can be performed by using iteration on k-symbol slices of N, without
taking the carry into account.

For example, if B = 10 (decimal), and k = 1:

257 [9] = 2 + 5 + 7 [9] = 14 [9] = 1 + 4 [9] = 5 [9].

In this way, we detect all errors (whatever the ongm: breakdown,
functional fault, external parasite) except errors modifying the result by a
multiple of A.

The logical structure of the calculation circuit, which detects the errors in
the case of an addition, is shown in Figure 15.12. We notice that the
redundancy is separable, which greatly facilitates the development and the
implementation of the circuit.

An example of the application of error detection within this family of
codes is the modulo 9 prooj, which was weH known among previous
generations of students; this code is studied in Exercise 15.9. A simple
binary application is considered in Exercise 15.10.

422 Chapter 15

Xl X2
Redundancy

Z=Xl+X2 I---~error

Figure 15.12. Addition circuit that detects errors

15.6 APPLICATION OF EDC CODES TO DIFFERENT
CLASSES OF SYSTEMS

The general model of codes considered in this chapter and illustrated in
Figure 15.3, covers different classes of detecting and correcting codes. We
distinguish two cases of applications, according to wh ether T has the value
'1' (a function which represents the typical case of data transmission, since
the output is equal to the input), or whether it is different to '1' (the typical
case of data processing). Each of these cases then subdivides again into two
sub-classes:

• T = 1 the output is equal to the input, and so the treatment is either a
transmission (in this case W = y), or a data storage (ROM or RAM)
which is, from the functional point of view, equivalent to a transmission;

• T * 1, the product is performing a logical treatment, or an arithmetic
treatment (which is a very special case of a logical treatment).

When T = 1, the classical EDC codes can be efficiently used, as they
were designed to handle this case. Consequently, these codes can be used in
memory testing. Thus, the Hamming codes allow the detection and/or
correction of the faults that affect Random Access Memory (RAM) or Read
Only Memory (ROM) circuits. Variations of the Fire codes are employed to
code information stored on magnetic or optical discs.

On the other hand, when T * 1, these classical codes are generally not
suitable. Furthermore, they are not at all adapted for the detectionlcorrection

15. Error Detecting and Correcting Codes 423

of functional or hardware faults, or even perturbations that affect the circuits.
Various codes are used, such as the single parity codes, or specific codes
such as the m-out-oJ-n codes, the double-rail codes, the Berger code, and the
arithmetic codes for the calculation circuits.

This chapter perforrned a unified presentation of codes that detect and
correct errors. This approach allowed us to illustrate the use and the interest
of redundancy in the detection and correction of faults within two classes of
systems: transmission systems and data processing systems. In the following
chapters, we will encounter direct applications of these codes, but also other
subtler redundancy techniques.

15.7 EXERCISES

Exercise 15.1. Single parity code

The codewords of a parity code are obtained by adding a parity bit, Le.
such that the number of bits '1' in the codeword is even. Consider the case
wherem=4.

1. Find the codeword of the useful word (l 0 1 1), and determine all
detectable errors.

2. Give an example of a non-detectable error.

3. Calculate the following characteristics of this code: capacity, density,
coverage rate, and redundancy rate.

Exercise 15.2. Hamming Code C(7, 4)

We consider a multiple parity detecting and correcting code such that: k =
4 and n = 7. The bits of the codeword y are obtained from the word to be
coded u in accordance with the following parity relations:

YI = UI E9 U2 E9 U4,

Y2 = UI Ea Uj Ea U4,

Yj = UI,

Y4 = U2 E9 uj E9 U4,

Y5 = U2, Y6 = Uj, Y7 = U4,

where Uj and Yi are the bits i of u and y.

1. Analyze this code and show that it detects all single errors and all double
errors.

2. Show that this code only detects and corrects all single errors.

3. The definition of this code corresponds to a simple exchange of the

424 Chapter i5

relations given for the code of Example 15-4. Compare the detecting and
correcting capabilities of these two codes.

4. How can we modify this code so that it is able to detect all single and
double errors AND correct all single errors (without making any
confusion between them)?

Exercise 15.3. Linear code

Reconsider the previous exercise by regarding the Hamming code as a
linear code.

1. Determine the matrices G and H.

2. Check the vector coding operation.

3. Analyze the error detection and correction with the help of the matrix
product H. WT.

Exercise 15.4. Encoding of a cyclic code

Consider the cyc1ic code generated by the generator polynomial
g(x) = 1 + x + i, and the coding circuit shown in section 15.3.2.2. Study the
operation of this circuit for coding the vector U = (0 0 1 1), where the bits
are ordered from bit 1 (LSB) to bit 4 (MSB).

Compare with the result obtained by the formal polynomial division of
x(n-k) u(x) by g(x).

Exercise 15.5. Single parity bidimensional code

Consider a block of five 4-bits words.

1. Explain how to code this block with a single parity bidimensional code.
Give a simple binary example.

2. Determine the c1asses of single and multiple errors that are detectable.

3. Determine the c1asses of non-detectable errors. Give a significant
example.

4. What can we say about an error that is detected simultaneously in
columns 2 and 3 and rows 4 and 5?

5. Study the correctable errors and those that are not correctable.

Exercise 15.6. M-out-of-n code

Show that if mi and m2 are 2 words of an m-out-of-n code, the following
properties are true:

1. (mi OR m2) as weH as (mi AND m2) do not belong to the code,

2. the Hamming distance between these two words is inc1uded between 2

15. Error Detecting and Correcting Codes

and 2.k, and

3. every unidirectional error is detectable.

4. How can an error detection system for such a code be implemented?

Exercise 15.7. Berger code

425

1. Draw the codeword table of aBerger code with m = 4. 1s this code
optimal?

2. Show that this code allows the detection of every unidirectional error. We
will analyze this error detection capability with an error that increases the
number of '0' bits, first of all on X, then on R, then on the 2 parts. Then,
we will reason with an error that reduces the number of '0' .

3. Consider a code derived from aBerger code that requires the calculation
of the number of '1' bits in X in order to formulate the redundant part R.
This code strongly looks like the Berger code. Show that this code does
not allow, however, the detection ofunidirectional errors.

Exercise 15.8. Unidirectional codes

Find every optimal coding (that have the biggest coding capacity) of n =
10 bits for the following codes (we will refer to Appendix A which compares
several codes):

1. M-out-of-n,

2. Two-Rail,

3. Berger.

Exercise 15.9. Modulo 9 prooj

Study the principle of the modulo 9 prooj for the addition, multiplication
and division operations of decimal numbers (base 10).

1. Show that searching for the dass of a number is equivalent to searching
for the dass of the sum of the dasses of each figure of the number. This
process is iterative.

2. Use the modulo 9 proof to check if the following operations are correct:

• 189 + 47 = 236

• 189x47=8867

• 189 - 47 = 144

• 189 - 47 = 97

3. Show with an example that the modulo 9 proof is false for division?

426

4. What is the class of non-detectable errors with this code?

Exercise 15.10. Binary residual code

Consider a binary residual code (B = 2) with A = 15.

1. Search for the class of number N = (101111101111001101).

2. Check the operation (00110010) + (01101110) = (10101100).

Exercise 15.11. Checksum code

Chapter 15

Consider a block of five 4-bit words: (1101, 0011, 1110, 0110, 0101).
We first calculate the sum without the remainder of all these words. The
resulting 4-bit word W6 is then complemented to '2', that is to say we make
the following arithmetic operation: r = 24 - W6 . This word constitutes the
redundant word which is added to the others data words. This code is called
Checksum code.

1. Code this block with the help of Checksum code.

2. Show that if no error is present, the 'sum without the remainder' of the 6
preceding words must be equal to '0' .

3. What errors do we detect?

4. What errors are not detectable?

Exercise 15.12. GCR(4B - SB) code

In this exercise, we will analyze a code called GCR(4B - SB) which has
been used for coding data transmitted on a given media as serial4-bit words.
These words are coded with 5-bit codewords as shown in Table 15.3.

The analysis of these codewords reveals that there is no interesting
Hamming's distance property. Thus, what was the use ofthis code?

4·bitX 5-bitY 4-bitX 5·bit Y

0000 I 100 I 1000 1 101 0

0001 1 1 0 1 1 1001 01001

0010 10010 1 0 1 0 01010

001 1 100 I I 101 1 o I 0 1 1

0100 1 1 101 1100 1 1 1 1 0

010 1 1 0 1 0 1 1 1 0 1 01 101

0110 10 1 I 0 I 1 1 0 01 I I 0

o 1 1 1 1 0 1 1 1 1 1 1 1 o 1 1 1 1

Table 15.3. GCR 4B-5B encoding

Chapter 16

On-Line Testing

In this chapter we examine the techniques allowing the integration of
error detection operations into the active life of the product, disturbing in the
least possible way the operation of this product.

16.1 TWO APPROACHES OF ON-LINE TESTING

On-line testing (or OLT) aims at detecting errors during the product
operation. This additional activity must not affect the normal functioning of
the tested product. In particular, the operation of the product is not halted
during the test operations. This requirement is relaxed by saying that the
performance loss of the operation should not be below a certain level of
acceptability, which is defined at the specification time.

The main objective of on-line testing is the detection of errors appearing
during the functioning of the product, so as to alert the outside world. On
line testing is therefore generally not concerned with the localization of the
faults at the origin of the detected errors. Hence, the techniques will often be
completely distinct from those employed in off-line testing. Moreover, on
line testing is not concerned by correction or recovery of the detected errors.
These corrective techniques belong to the fault tolerance examined in
Chapter 18. However, most of the fault tolerance solutions use the
techniques presented in this chapter in order to detect the occurrence of
errors before handling them.

Two different c1asses of on-line testing techniques are defined:

• the discontinuous on-line testing, presented in section 16.2, which
exploits the natural temporal redundancies of the product in order to test
it discontinuously with a fixed or variable periodicity,

427

J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

428 Chapter 16

• the continuous on-fine testing or, self-testing, presented in section 16.3,
which observes continuously the different functionalities of the product to
detect error occurrences.

16.2 DISCONTINUOUS TESTING

The discontinuous on-line testing is quite dose to off-line testing. We
will introduce and illustrate this technique with the example of a control
system for a petrochemical industrial process. This distributed system is
made up of three regulators that are implemented by specialized circuits,
Programmable Logic Array (PLA), Programmable Logic Controllers (PLC),
or microprocessors that execute software applications. These regulators are
interconnected to each other by means of a local network (Figure 16.1). Each
regulator controls a process and the interconnection between the regulators
ensures a globally optimized regulation. We are going to ex amine three
possibilities which exploit the temporal redundancies of these regulators, to
increase the system testing capability: 1) use of an external tester, 2) test
performed by one regulator, and 3) test distributed between the regulators.

Rl

R3

Figure 16.1. Control system

16.2.1 External Tester

Let us assume that the three regulators are not used continuously and
therefore they have periods of inactivity. This hypothesis is completely
realistic in a lot of cases. On the site, we place a tester T connected to the

16. On-Une Testing 429

regulators by a point-to-point network. These new elements are represented
in thick black in Figure 16.2.

Figure 16.2. Introduction of a tester

The tester alternatively tests each regulator during its inactive period:

• functional testing of the regulation by running processing orders and by
comparing the results with predefined values stored in ROM,

• specific testing of certain internal units of the regulator (central unit,
arithmetic processor, and memories), and of certain input/output
interfaces with the controlled process (analog/digital and digital/analog
converters, sample/hold circuits, etc.).

Some modifications of the regulators may be necessary in order to make
possible the actions ordered by the tester. For example, when a D/ A
converter is tested, its output voltage must not be send to the process, but to
an A/D converter instead, to verify these two circuits.

This approach has little practical interest since it is expensive. It requires
the installation on the site of a costly tester and communication links with
the regulators. An improvement of this schema consists in using the existing
local network that links the regulators together. Hence, test data (orders,
information) must be interleaved with the communications implied by the
regulation functions . The test traffic must not hinder the normal
communications. In particular, the traffic due to the test must not be at the
origin of failures in the tested systems. Let us suppose that R1 is waiting for
information coming from R2. If this information does not arrive before a

430 Chapter 16

certain deadline, then a situation of bad regulation can arise. This failure is
not due to a failure of R2, but to the fact that the activities of R2 are
suspended during the test, or because the network is overloaded owing to the
exchanges due to the tests.

16.2.2 Test Performed by One of the Regulators

The testing task is performed by one of the regulators which possesses
enough ca1culation power, memory and inactivity periods. In addition to
regulating one of the processes, this regulator must test itself and test its
colleagues across the natural communication network (Figure 16.3). When it
can be implemented, this solution is much more economical than the
previous one.

The previously highlighted problems of error occurrences due to the test
mechanisms are more critical here, since the regulation and the test functions
share the same resources: the CPU of the regulator and the communication
network.

Tater

R3

Figure 16.3. Test performed by one regulator

16.2.3 Test Distributed Between the Regulators

With the distributed test, there is no longer any centralized test function:
each regulator takes care of testing its own operation (Figure 16.4) and/or
possibly testing its neighbors. This technique assurnes that each regulator
disposes of enough inactive time in order to activate its test actions, and the
necessary hardware and/or software components in order to access to the

16. On-Line Testing 431

data acquisition circuits, the control functions, etc.
Consider the example of a multi-task regulator (see Figure 16.5): the

activity is scheduled by a fixed sampling period allowing presence of
inactive or idle time. We exploit this inactive time to ron the test: we add a
testing task Thaving a lower priority.

R3
Teeter

Figure 16.4. Distributed test

Sampling period

Figure 16.5. Test tasks

time

Let us note that, unfortunately, the treatment tasks generally have a
variable duration, which depends on the calculation functions that have to be
executed and on the data sampled. Consequently, the inactive time available
at each period is not fixed. If the test task T is not terminated when a real
time interrupt occurs, which starts the next sampling period, this task T is
purely and simply cancelled and it must be re-run the next time. Hence, the
resulting test frequency of the regulator is reduced.

We noticeably improve this technique by breaking up the test T into n
elementary tasks Ti which are integrated into the normal course of

432 Chapter 16

regulation, but with a low level of priority: for each period, we include one
or several tasks Ti in a fixed order, for example Tl, T2, ... , Tn. This
dispatching can be done apriori at the time of design. Another technique,
called periodic server, adds a periodic task to the application task of which
the duration allocated is reserved in order to progress the execution of test
treatments. In this case, a periodic test of all the regulators is guaranteed.

Through this example, we explored various on-Une testing solutions and
their property: the various devices are tested with variable or guaranteed
periodicity. We have to evaluate these test properties, in order to be able to
judge the relevance to the proposed solution faced with the requirements of
dependability given in the specifications.

Note. For industrial systems, the on-line test activity is often organized
hierarchically. For instance, a distribution control system for electrical power
is organized as several units (boards) communicating via a CAN bus. Each
board performs the test of its internal memory every 4 minutes: the ROM
containing the programs is tested by means of a checksum coding, and the
RAM containing the data is tested by 'save - write - read - restore'
operations on bytes '00' to 'FF'. A special unit ensures the control of the
treatment units by asking each unit to identify itself and to give its internal
state every 10 minutes. If a unit does not respond before 500ms, we repeat
the request, and in the case of a new failure, the unit is declared as faulty.

16.2.4 Precautions

Whatever the technique employed, the on-line test must not interfere with
the functioning which is the concern of the product' s operation. In particular,
when the test starts, the system is in a certain state which must be preserved
at the conclusion of the test. This state concerns: the image that the system
possesses of the controlled process (for example, 'the gate is open', 'the
contact is off', etc.), the progress of the process control algorithm (for
example, 'the calculation of the average temperature has finished').

The absence of disturbances can be guaranteed by saving the context,
which defines the current state of the system' s functioning, at the beginning
of the test phase, and then by restoring it at the end of the test. Once the
saving of the context has been completed, the functioning state of the
product must be placed in an identified and appropriate initial state for the
test execution. In the case of a test fragmented into elementary tasks Ti, each
task possibly requires a specific initial state. Furthermore, the linking
together of these tasks generally requires a saving and restoring mechanism
for the context ofthe test (test current state).

The test must also not be at the origin of disruptions of the resources that
it shares with the application. These resources include the microprocessor

16. On-Line Testing 433

(execution resource), the networks (communication resources), etc. Bad
sharing can be at the origin of error occurrence within the application. Such
a situation was illustrated at the end of seetion 16.2.1. The following
illustration shows the complexity of the situations that can be encountered.
The introduction of saving and restoring mechanisms of the contexts of the
application, and also of the test state, must guarantee a non-aggressive
functionality between the treatments of the application and those of the test.
However, these additional management activities (overhead) consume CPU
time and can thus be at the origin of errors, which are due to the sharing of
the CPU resource between these two concurrent activities.

The on-line test does not have to disturb the controlled process. Indeed,
the actions or outputs of the product, induced by the test, must not be
transmitted to the process. This can be obtained by a special device, external
or internal according to whether the tester is external or intern al. In test
mode, the product will therefore be partially or totally disconnected from the
process, and it is the device that performs the switching or the filtering of the
signals. The absence of action on the controlled process at the time of the
test does not indicate that no errors may occur. Such an error may be raised,
for example, if an actuator is not activated during the test, whereas a periodic
refresh operation is indispensable.

Finally, the on-line activity must not raise an erroneous state induced by
a wrong test; this is calledfalse alarm.

16.3 CONTINUOUS TESTING: SELF -TESTING

16.3.1 Principles

The previous discontinuous on-line test may not be in accordance with
the safety criteria. Indeed, if we assurne that a product has a constant failure
rate of A. failures/hour, and that it is tested with a periodicity of ~ hours, then
the probability of having a non-detectable failure just before the next

maintenance test operation is: p = J: e -At dt (cf. Figure 16.6). As a first

approximation, we can write that p = A. . ~, if A. and d are smalI.
For example, with A. = 10-5 and ~ = 103 hours, we obtain the probability

p = 10-2 of having a non-detectable fault. This level is high and not
acceptable if we compare it with the failure prob ability 10-9 that is frequently
required for high-critical systems. Thus, we easily see that if the external
consequences of this failure are serious and have a small inertia, then the
bigger is the ~, the greater is the risk generated of occurrence of serious
failures due to undetected errors.

434 Chapter 16

A vailability

test Time

o I:>

Figure 16.6. Discontinuous testing

The previously described problem comes from long periods of absence of
fault detection. Consequently, to improve the dependability of the product in
terms of safety, we implement more reactive detection techniques that alert
the outside world as soon as an error occurs, or better, before an error occurs.

Figure 16.7. Principle of continuous on-line testing

The general framework of self-testing is illustrated by Figure 16.7. The
detection of errors reHes on three types of observation:

1. Condition monitoring: observation of the non-functional environment of
the product; for example, in an embedded system, we measure the
temperature of the environment and/or the voltage distributed by the
power regulator; these observations indicate abnormal conditions of
operation which are able to lead to faults, etc.

2. Observation of product operation. For instance,

~ we analyze, either intemally or from the exterior, the response time of
a task, of a module, or of the whole product,

~ we carry out a parity test on the data or the address,

~ or we integrate a self-test into the product.

16. On-Line Testing 435

These observations aim at detecting the functioning errors of the
product.

3. Observation of user behavior: for instance sensor for speed, position or
pressure, are introduced into the process controlled by the product; they
provide pieces of information about the actual evolution of this process.
Their self-test is done by checking that the provided data are within a
given range, or by comparing the successive sampled values. These
observations also concern a human operator whose behavior is analyzed.
For instance, the system asks for useless actions to check his/her
availability (dead-man technique).

The detection of non-desirable conditions that occur in the functional and
non-functional environment is important for two reasons: antieipating
possible faults which are created by side effects on the product, and
facilitating the establishment of the symptoms for the diagnosis and recovery
after detection.

1. Prevent possible faults created by the side effects on the product. For
example, the non-respect of the anticipated temperature interval can
cause an excessive ageing of electrical circuits. Similarly, bad use of the
product, outside of the specifieations, can lead the product into astate
from which later uses lead to an erroneous state.

2. Facilitate the establishment of symptoms, first stage for the handling
(diagnosis or tolerance) after detection. If, for example, a functional error
of the product is caused by bad use, the establishment of these
circumstances is fundamental. For diagnosis purpose, we do not
needlessly look for a non-existent fault in the system. For tolerance
purpose, it is not necessary to execute an alternative implementation, but
the normal use of the product must be recovered.

The techniques presented below are used to detect errors in the fault
tolerance approaches. They are often referred to as self-testing techniques.
However, the reaction to a detected error is not considered in this chapter.
For the moment, this re action is assumed to be external to the couple
'product - process': saving and repairing will be, according to the case,
performed by a human operator or automatie hardware or software deviees.

The error detection techniques are based on redundancy whose two types
are successively considered:

• functional redundancy by adding checks on behavioral properties,

• structural redundancy by modifying the product' s structure to allow the
detection of errors.

436 Chapter 16

16.3.2 Use of Functional Redundancy

If the product to be tested on-line possesses natural functional
redundancies, they are exploited to detect the dass of errors that they can
reveal. The general notions dealing with functional redundancy were
introduced in Chapter 8. Practical examples are given hereafter.

16.3.2.1 Detection Type

The detection mechanisms are integrated into the normal functioning of
the tested product, and they observe 'on-line' the truth of predefined
properties. The membership to functional domains of certain input, output
andlor internal variables are such examples.

We distinguish between three complementary checking types:

• the pre-condition which checks whether an operation can be realized
before processing it,

• the post-condition which analyzes the correction of an operation at the
end of its execution,

• the assertion which controls if a property is valid each time that a
circumstance could lead to violating it.

The likelihood test, which consists in checking the membership of a
variable to its functional domain, constitutes one of the techniques
encountered in data acquisition and treatment systems.

Example 16.1. Pre-condition 0/ a controller

Let us examine a temperature regulation system located in an office. The
information provided by the temperature sensor is submitted before
treatment, to a likelihood test which allows us to detect data capture faults
(amplification, signal filtering, analog/digital conversion, transmission,
buffer registers, etc.). We check the membership of this ca1culated
temperature to an interval [Min, Max] = [-50DC, +50DC]. Any value out of
this range implies an error, which is then signaled.

Let us note that this test is a pre-condition of the temperature treatment
function, but it is also a post-condition of the temperature capture function.

Example 16.2. Pre-condition 0/ a subroutine

Consider a piece of software that possesses a subprogram of which an
input parameter E is associated with a type defined by an interval [Min,
Max]. For certain programming languages like Ada, this type implicitly
leads to the generation, within the executable code, of test instructions. This

16. On-Line Testing 437

test checks that the value V of the actual parameter E used at the time of the
call of this subprogram belongs to this interval: Min ~ V ~ Max. In the
adverse case, we interrupt the normal running of the program, in order to
execute error treatment, or completely stop the subprogram operation by the
raising of the exception Constraint-Error.

Example 16.3. Assertion

Let us consider the previous example of a program that contains the
definition of a type that is constrained by an interval. If a variable is of this
type, then every assignment of a new value to this variable generates the
verification that this value belongs to the interval.

Unlike the pre and post conditions for which the tests are localized (at the
beginning and at the end of the subprogram), assertions are attached to an
element (here a variable) and lead to tests each time an action on this
element can violate the assertion.

Example 16.4. Post-condition of a subroutine

Consider a subprogram that receives a list of numbers and returns the
smallest value (Min) and the largest value (Max). It is evident that the two
output variables must satisfy the property: Min ~ Max.

Discussion
We can conceive more complex 'pre' or 'post' condition or assertion

properties that the membership to a domain or an inequality between two
variables. For instance, two successive values of the same variable are
correlated: V(before) ~ V(ajter). The properties can also concem the flow of
control of the execution of the program. For example, the procedure
Initialization has to be called before the procedure Treatment.

The facility to include assertion checking into a product depends
especially on the technology employed. In the case of software, we have to
insist on the fact that a programming language must be chosen not only
according to its power of expression. It should also be chosen according to
its capacity to detect errors by static analysis (at compile time) and by on
line testing (at execution time). For example, in the case of the language
Ada, the membership expression to an interval is performed very easily:

subtype Temperature is integer range -50 .. +50;

The addition of the on-line test also requires design choices, as illustrated
by the following example.

438 Chapter 16

Example 16.5

Let us assume that a pro gram contains two procedures PI and P2. The
first one, PI, must be called at least twice before each call to the second one,
P2. We have just expressed an assertion on the flow of control (calls to the
subprograms). The inclusion of these two procedures in a module will
facilitate the implementation of these tests, as shown in the next example
where PI and P2 are placed in a package P of which an extract of the
body is provided.

package P is
Number_of_Calls PI
procedure PI (...) is
begin

Natural . - 0;

Number_of_Calls_Pl .- Number_of_Calls_Pl + 1;

end Pli
procedure P2 (...) is
begin

if Number_of_Calls_Pl >= 2

end if;
end P2;

end P;

then Number_of_Calls_Pl 0;
else raise Error;

To conclude, let us signal that the output value of a system or sub-system
is not provided before a required deadline. This error can also be detected by
a dynamic functional redundancy. The detection mechanism is called
watchdog.

16.3.2.2 Detection Location

Systems are structures composed of subsystems. An error detection
device must be placed in a given place within the structure. This location
should be chosen after careful consideration of the characteristics of the
errors.

Detection placed within the components

The pre and post conditions specific to the implementation of a
component must be placed in this component. They are an integrated part of
it, since they must be checked in all circumstances. For example, the
operation Pop requires that the Stack is not empty in order to operate
correctly. The software implementation is, for example:

procedure Pop(E in Element) is

16. On-Line Testing 439

begin
if Stack.Empty then raise Stack_Underflow;

end Pop;

Similarly, a post-condition evaluates the correct functioning of the
implementation. For instance, let us consider a procedure that provides the
minimum (Min) and maximum (Max) values of a list L. These two results
should always satisfy the constraint 'Min <= Max'. Its verification will be
made by including a property checking in the body of this procedure:

procedure Min_and_Max(L in List; Min, Max out Value) is
begin

if (Min > Max)
then raise Min_and_Max_Implementation_Error;

end Min_and_Max;

This internal detection does not assurne that the fault is internal, i.e.
localized within the component. It can also be external, Le. localized in the
surrounding components. Furthermore, the violation of a precondition does
not necessarily signal bad use of the component. This error can signal poor
implementation of this component. For example, a Stack_Overflow error
in the Push operation of a stack can be caused by a too great a number of
stacking (external fault) or by an under-evaluated stack size (internal fault).

Detection on the relations between components.

Errors can be detected as well by checking the relations between the
components. It thus expresses an assertion on their cooperation: their
sequencing, the data exchanges, etc. The detection mechanism must
therefore be placed at the exterior of the components, as it looks at their
interactions.

Let us consider again the example treated at the end of the previous
subsection. The error detection mechanism implemented in the two
procedures P1 and P2 is based on an assertion, "P1 has to be called at least
two times before each call to P2", which must be valid whatever the use
context of P1 and of P2. This is a property required for a correct functioning
of the implementation. On the contrary, if this property is specific to a
particular use of P1 and of P2 in a given application, its satisfaction will
have to be checked outside of the two components.

As a second example, let us consider two components Cl and C2, whose
respective inputs are 11 and 12, and respective outputs are 01 and 02. In
the considered application, these two components are executed in sequence;
the output 01 of Cl is used as input 12 of C2. We assurne that constraints
exist on 11 as a result of the behavior of the components situated above CL

440 Chapter 16

Consequently, the possible values 01 produced by Cl are themselves
constrained. A property P defines the set of these acceptable values.
Therefore, the evaluation of this property has to be performed outside of Cl
and of C2, since it concerns their relation. For example, if the components
are subprograms, we will write:

Cl (I1, 01);
if 'not P{Ol) then raise Error;

else C2{Ol, 02);

end if;

This example illustrates the error detection on the exchange of values
(data flow), whereas the previous example concerned the sequencing of the
modules (control flow).

16.3.2.3 Detection Signaling

Let us consider again Example 16.5 presented in sub-section 16.3.2.1. If,
when P2 is called, the number of previous calls of P1 is greater than or
equal to 2, then this number is reset to zero so as to count these P1 calls
again. If not, an error is signaled by using the exception mechanism. This
example illustrates the fact that, in addition to the detection means, we must
also dispose of means that are able to signal the occurrence of an error.

An error parameter could have been used for P2. However, this solution
does not favor the safety criteria since the subprogram calling P2 can be
unable to perform the analysis of the parameter after the call (this is a fault
which may occur). On the contrary, the raising of an exception ('raise error')
will automatically provoke a branching to an exception handler or the
propagation to the calling procedure, as described in seetion 2 of Chapter 14.

Instrumentation

The signaling of an error can provoke the activation of tolerance
mechanisms, which aim at avoiding the appearance of a failure. It can also
lead to stopping the functioning of the system, or re-initializing this one
(hypothesis of transient faults). In both cases, it is useful to implement
instrumentation procedure in the product: information identifying the error
is saved in non-volatile memory (magnetic support, EEPROM), for a future
diagnosis of the fault at the origin of the error. Unfortunately, this unique
information is most often insufficient to allow a diagnosis in a short time
period. For this reason, additional data on the state of the system are also
saved: values of input/output parameters, internal variables which
characterize the state of the software or of the electronic execution resources
(for instance, the state of the internal registers of the microprocessor), etc.

16. On-Line Testing 441

This action, called Jault logging , stores the error data in a log file.
The choice of pertinent data, i.e. facilitating the future diagnosis, is not

easy, and it will not be developed in this brief introduction. So as to illustrate
this difficulty, we can mention the case of sequential systems, which is the
most general case of hardware and software products. The knowledge of the
current internal state, at the moment of error detection, is often insufficient.
We must therefore save data from the past so as to be able to 'go back', from
the error up to the fault. Consequently, in this case, it is necessary to save
data throughout the operation, even in the absence of errors. The data about
the system operation are saved onto a magnetic medium during a time slot of
finite duration, so as to limit the size of saved data. In this way, the new
stored data erases the older data (notion of instrumentation window).

16.3.3 Use of Structural Redundancy

The use of structural redundancy to design self-testing systems is
different and complementary to the previous functional approach, and it is
also frequently employed in projects of highly-critical systems. This
approach involves structural choices at design time, and often calls on, either
explicitly or implicitly, the employment of error detecting and correcting
codes. We will give first the general definition of a self-checking system,
then analyze the simple example of the duplex, and finally discuss the
problem of the test of the checker. We will find again EDC codes in Chapter
18, to design fault-tolerant systems.

16.3.3.1 Definition of a Totally Self-Checking System

Let us consider a system with: functional inputs (x E X) and outputs (z E

Z), test outputs (w) to which an error detector code (c E C) is associated, and
a fault model F.

Achecker, supposed for the moment to be faultless, observes the w data
and raises an error if they do not belong to the code C (Figure 16.8).

We define three properties on this system, according to the fault model F:

• code-preserving,

• self-testing,

• Jault-secure.

The first property expresses that the fault-free module preserves the
output code on w.

I The system is said to be code-preserving with regard to F
if '\I x E X ~ W (x, e) E C,
where w (x, e) represents the output w without fault.

442 Chapter 16

The second property expresses that every fault is detectable on the output
w by at least one functional input vector.

I The system is said to be self-testing with respect to F if
"dfe F3xeX:w(x,f)e C

The third property guarantees that no incorrect functional outputs can
occur which are not imrnediately detected on w.

The system is said to be fault-sec ure with respect to F if

"d f e F, "d x e X: either z (x,j) = Z (x, e),
or z (x,j) '# Z (x, e) AND w (x,j) e C

Finally, we obtain the definition of a totally self-checking system:

IA code-preserving system is said to be totally self-checking with
respect to F if it is self-testing andfault-secure.

Inputs

"

Fault Model

Check word
(code C)

I Cbjer I
Error

Figure 16.8. Error detection

16.3.3.2 Duplex Example

The most symbolic example of self-testing system is the duplex, al ready
introduced in Chapter 8, and illustrated by Figure 16.9: the product is
duplicated and the outputs of the two modules are compared to detect
possible errors. The figure shows that the test outputs w are constituted of
the functional outputs of the main module and of the duplicate (or alternate)
module. The error detecting code associated is a duplex code. The checker
compares two binary vectors. For electronic systems, it is realized with XOR
functions (noted $ in the figure) .

A variant of this approach, called the FRC (Functional Redundancy
Checking) , has been proposed by manufacturers of rnicroprocessors like
Intel; these rnicroprocessors can be associated by two: a master connected to

16. On-Line Testing 443

the environment, and an observer who checks by duplex the functioning of
the first one. Faults detected by this technique comprise all the hardware or
functional faults acting on a single block only. Hence, this system is totally
self-checking since it is code-preserving, self-testing and fault-secure.
Exercise 16.2 and Exercise 16.3 refine the study of the duplex technique.

inputs
Productt---r--' outputs

Duplex error

Checker

Figure 16.9. Duplex

As soon as the outputs of the duplex and of the normal module are
different, an error is signaled (by the error output). Of course, this vision is
simplistic. On the one hand, the checker is assumed to be faultless; on the
other hand, the real comparison of the outputs of complex products (for
example of rnicro-controllers) has to include a synchronization of the pieces
of data which do not occur at the same time. Moreover, the comparison of
the two results provided by the modules is not so easy. For instance, if two
programs provide numeric results of real type, then the acceptable
calculation error has to be taken into account by the checker so as to judge
the equivalence of the two results. Furthermore, we cannot accept a simple
duplication of the product, since the two duplicates would risk having the
same weakness (identical design faults or same sensitivity to perturbations,
etc.), and provide the same erroneous outputs, and thus the faults would be
undetectable! That is typically the case of the duplication of a piece of
software affected by design faults. We must therefore carry out a different
design both 'algorithrnically' and 'technologically' for the product on the
one hand, and for its duplicate on the other hand. This aspect will be
discussed again in Chapter 18, which presents fault tolerance mechanisms.

We have seen in Chapter 15 (dealing with error detecting and correcting
codes) that the duplex corresponds to a separable code (the two-raU code).
That is not the only technique used. We can also employ the m-out-oJ-n
codes. For instance, we can realize a self-testing sequential circuit from the
coding of its internal states with the help of an m-out-oJ-n code. This system
therefore possesses the property of outputting the code as soon as a
unidirectional error (see Chapter 15) provokes a failure. Furthermore, once it
has outputted this code, the system can no Ion ger return to this code.

444 Chapter 16

Note. The term self-testing is often used with a completely different
meaning to the one given here. Thus, a programmable logic controller is
called self-testing by its manufacturer, as it possesses a button and a LED: if
we press the button, the LED has to light up if the functioning is tested as
correct. Sirnilarly, many ' self-tests' are used in many systems when they are
switched on: an off-line test program is initiated in order to test certain
treatment or memory functions (for example the central memory of a
computer). This is certainly not a self-test, but an off-line testing technique
of the type BIT, which was studied in Chapter 14.

16.3.3.3 Error Detection Mechanisms: Self-Checking Checkers

In a complex system like a computer, different redundancy techniques for
the detection of errors are used in different modules of the structure. Thus,
various error detection mechanisms, called here checkers, are implemented
by circuits or programs, or both, as illustrated in Figure 16.10.

Error#l Error#n

Figure 16.10. Errordetection

The different detection functions are rarely independent, since the
observed modules are often interconnected. The global management of error
detecting mechanisms is therefore complex in many cases. That is true for
error det~ction circuits displaying error signals on a panel, like for example
waming lights on the dashboard of a car, or error signaling panels in electro
nuc1ear power plants. It is also true for software technology, for example as a
result of the propagation of exception mechanisms within the different layers
of the hierarchy of programs (cf. section 2 of Chapter 14).

Consequently, this additional functionality is also subjected to destructive
mechanisms, and all the types of faults envisaged for the modules
(functional, technological, aggression faults) can therefore affect it. We are
thus led to the problem of testing these redundant parts, either off-line, or on
line. The problem of testing the error observation functions is generally
complex. Indeed, they are not directly controllable; thus, the detection of
faults altering an error detection circuit may require to artificially provoke

16. On-Line Testing 445

errors of the basic modules.

Independent from the problem of testing detection systems, we must
make sure that their complexity is reduced, for dependability and cost
reasons. To address these issues and, in particular, to reduce the non-tested
on-line parts of the complete product, self-checking checkers can be used.
We will now briefly explain the principle of these mechanisms.

Achecker observes a set of n variables belonging to an error detecting
code, as for example a parity code, a duplex code, or even an m-out-oJ-n
code. This module produces at its output an error signal as soon as the values
of the input variables do not belong to the redundant code, for example the
output is a bit which has the value '0' without error and which passes to '1'
to signal an error. Very generally speaking, achecker is a code transJormer.
It receives as input ln-bit words belonging to an n-bit input code Ch and
sends to the output 0 rn-bit words (with m« n) belonging to an output code
Co having at least 2 bits (see Figure 16.11).

Observed
detecting code

Figure 16.11. Checker

IA system is said to be code disjoint if:

'Vle Ci~Oe Co,

'VI~ Ci~O~ Co.

And finally we obtain the final self-checking property.

I Achecker is said to be self-checking with respect to a defined fault
model F if it is code-dis joint and self-testing:
'VJ e F 3 I e Ci : 0 ~ Co.

This property allows us to guarantee that the faults of the checker are
detected at the final output when the checked module function correctly.
This assumes that all the words of the code Ci are effectively produced by
this module. Of course, it is not possible at the output of the checker to know

446 Chapter 16

whether an eITor is due to a fault affecting the module observed or a fault
affecting the checker!

We should note that, even if the tested module does not produce all
codewords of the Ci code, the checker could have the self-testing property.
Indeed, in many cases, such as the double-rail code or the parity code, a
checker can be tested by small sub-sets of these codes. We will analyze this
property in Exercise 16.4 and Exercise 16.5.

Finally, if several checkers are used in a system, so as to observe the
eITors made by different redundant modules, it is sometimes possible to
observe the output codes of all these checkers with another checker. This
additional checker is a code 'reducer' for the final output code signaling the
eITor (see Figure 16.12). Thanks to this technique, we guarantee that each
part of the checkers is tested on-line.

Observed
code #1

Figure 16.12. Combination of checkers

Thus, the part of the system which cannot be tested on-line (called the
kerne I), is reduced to small circuits or software modules that will be
periodically tested off-line. Numerous checker circuits have been proposed.
In particular, we can mention the Carter's cells (from the name of a
researcher at IBM who proposed them) which uses double-rail codes and
which can connect themselves quite easily in the same way as XOR gates,
by associativity. A study of SCC (for self-checking checker) for two-rail and
parity coding is proposed in Exercise 16.4 and Exercise 16.5.

From these basic principles, many variants have been proposed and used,
but they will not be discussed here.

16. On-Line Testing 447

16.4 EXERCISES

Exercise 16.1. Test 0/ a control system

A regulation system is constituted of three interconnected regulators (R1,
R2 and R3), each performing the regulation of a unit. A tester is linked to
these three regulators in order to apply to them test sequences at the time of
periods of inactivity (see Figure 16.2 and sub-section 16.2.1). We assume
that R1 is stopped once a week during 1 hour, that R2 is at rest each morning
from 6H to 6H30' , and that R3 can be interrupted 10 minutes every hour.

1. Study the work of the tester, its needs in terms of actions on the
regulators, and the periodicity of the average test of the equipment, by
assurning that the sequences making the complete test of each regulator
spend less than 6 minutes.

2. What must we do if the test duration is increased to 15 minutes?

3. Exarnine the problem of the management of the test of a regulator when
the test activity is split into several elementary tasks Ti.

Exercise 16.2. Duplex technique

We consider the diagram of the duplex given by Figure 16.9.

1. Draw up the inventory of the detected faults and of those that are not
detected. In particular, study the influence of the checker on the on-line
test property of the product.

2. Comment on the following assertion:

the duplex technique is 0/ no in te rest, since it divides
the reliability 0/ the product by two.

Exercise 16.3. On-line testing 0/ a half-adder

Consider a half-adder wh ich provides the sum and carry functions: s = a
Ei' b and c = a.b. This circuit was realized by logic gates according to the
schema in Figure 16.13. We consider the 'stuck-at 0 and 1 of inputs and
outputs of gates' fault model.

1. Analyze the existing functional redundancies of this circuit. Deduce the
on-line detection capability of this circuit. Discuss the limits of this
property.

2. Modify this circuit by adding an output noted p, to create a parity code. In
this way, does it detect every single or multiple eITors of the complete
circuit? Discuss the checker characteristics.

3. Modify the previous circuit by using distinct (independent) logic circuits
for each output. What improvements does this therefore bring? What

448 Chapter 16

faults remain undetected on-line?

4. Study the same thing with a duplex structure. Analyze every detected
single or multiple faults and those that are not detected. Discuss the
checker that is necessary for this structure.

a--,--~

b ---t- T"-.,I s

~--~--------- c

Figure 16.13. Half-adder

Exercise 16.4. Double-rail self-checking checker

Achecker receives two groups of inputs al, az and b l , bz, and delivers
two outputs Cl and Cz (cf. Figure 16. 14-a). Each pair of signals belongs to the
double-rail code, i.e. it is defined by the correct configurations: {Ol, 1O}.
The vectors 00 and 11 thus correspond to error signaling.

We assume a classical single stuck-at fault model.

CI C2

a) checker

CI C2

b) internaI struclure

Figure 16.14. Double-Rail self-checking checker

1. Show that the logic structure in AND and OR gates proposed in Figure
16.14-b is code-disjoint and self-testing. For the second property, we can
use the method studied in Chapter 13 for the search of the faults covered
by an input vector.

2. Now we put together several of the previous cells in order to treat the
double-rail codes of more than two pairs of bits. Study the conditions on
the input vectors for which a network of cells has the property of being a

16. On-Line Testing 449

total self-checking checker.

Exercise 16.5. Parity self-checking checker

Achecker is intended to detect errors on an input parity code having 4
bits, a, b, C and d (3 bits of data plus one parity bit); it delivers two outputsf
and g coded with a l-out-of-2 code (01 and 10 are the codewords). We
realize this checker with two XOR gates as shown in Figure 16.15.

abc d

Ml:~
Figure 16.15. Parity checker

1. Is this circuit a self-checking checker? Give an example of a minimal
sub-set of vectors of the parity code that ensures the self-testing property.

2. Show that this circuit is no Ion ger self-testing if all the input vectors of
the parity code are not applied.

3. Does a permutation of the input variables (a, b, c, d) have an influence on
the property of the previous question?

Exercise 16.6. Softwarefunctional redundancy

We consider a function inc1uded in the regulation system of a freezer.
This function can only be called when the freezer is in astate 'freezing' . It
receives two temperature values Min and Max, and returns an intermediate
value obtained by an algorithm which is not considered here.

Criticize the following solution in terms of on-line detection of faults.

function Intermediate (Min, Max : in integer)
return integer is

I : integer;
begin

return I;
calculation of I

end Intermediatei

Propose a better version.

Chapter 17

Fail-Safe Systems

In the first part (in Chapter 4), we have mentioned that the failures
altering a product can be dispatched into several classes according to the
seriousness of their impact on the system itself, on its user, and on its
environment. The set of the four classes - benign, significant, serious and
catastrophic - constitutes an example of such classification. In this chapter,
we consider faults whose external consequences are dangerous, for example
serious or catastrophic. Their analysis refers to the safety criterion.

With fail-safe systems, failures are accepted as long as their external
consequences are not dangerous. More precisely, the prob ability of the
occurrence of such non-desired dangerous events must be smaller than a
given acceptance level. Naturally, such acceptance level depends on the
seriousness of the external consequences of the failures. Hence, we introduce
the notion of risk. For example, the specifications of a critical project
express that the risk of catastrophic failures must be smaller than 10-9.

This approach refers to the fault tolerance approach, according to the
analysis made in Chapter 6. However, we distinguish these techniques from
the more sophisticated fault tolerance techniques presented in Chapter 18 for
pedagogical reasons. Here, the product may produce a failure as long as it is
not dangerous. Typically, the stopping of the product is supposed to be non
dangerous, if it is not a high criticality product such as an aircraft piloting
system. Consequently, the implied redundancy is much smaller, and thus
fail-safe techniques are often used in marketed products.

Studies on fail-safe systems have been promoted in the 60' s by several
professional institutions working for different critical applications, such as
nuclear plants, terrestrial and air transportation systems. The main goal is to
reduce the human los ses or injuries during accidents. The raised failures
must not have dangerous effects. For example, it is acceptable that a traffic

451

J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

452 Chapter 17

light controller be permanently blocked in a (Red, Red) state, as this failure
is supposed not to be dangerous. Naturally, this failure is not minor, as it
involves a great deal of disruption of the traffic. However, the drivers will
pay attention. On the contrary, a (Green, Green) failure is obviously
dangerous. Let us note that the technical solutions to achieve the fail-safe
goal may increase the complexity of the resulting products, thus increasing
the failure probability, and reducing the global reliability.

In section 17.1, we will consider the relations existing between the risk
notion and the safety parameter. Then, in section 17.2 we will analyze the
main techniques allowing the design and the realization offail-safe systems.

17.1 RISK AND SAFETY

17.1.1 Seriousness Classes

Failures altering the behavior of a product are grouped together m
seriousness classes according to the seriousness of their consequences:

• on the product itself (which can, for example, be destroyed or not),

• on the environment (the user).

When dealing with the consequences on the user, these seriousness
classes can be based on a quantitative evaluation. For example, the number
of casualties of road accidents: no effect (0 casualties), individual (1
casualty), at the level of a group (from 2 to 10 casualties), at the level of a
state (from 11 to 1000 casualties), at the level of a population (more than
1000 casualties). The effects are thus quantified.

The definition of the classes can also be based on a qualitative evaluation
of the effects. For example, the DO-178B standard for the civil aeronautics
defines 5 classes:

a. catastrophic, or disastrous, leading to human lives loss,

b. dangerous, or serious, leading to a small number of casualties and/or
serious injuries of passengers and members of the crew, or preventing
the crew from achieving its task in a precise and complete manner,

c. major, or signijicant, leading to injuries of the passengers and members
of the crew and reducing the efficiency of the crew,

d. minor, or benign, leading to upset of the passengers and a small increase
of the workload of the crew,

e. without effects.

17. Fail-Safe Systems 453

These same categories can also be defined from a functional point of
view, according to the degradation level of the functions of the aircraft:

a. catastrophic, when the flight cannot be continued, or the landing is
impossible,

b. dangerous, when the reduction of the functions of the aircraft do not
allow anormal achievement of the flight,

c. major, when a significant reduction of the functionality of the aircraft is
induced by the failure,

d. minor, when the failure provokes only a partial reduction of the
functions of the aircraft,

e. without effects.

The placement of a failure in a dass is adecision involving numerous
criteria. Thus, a same failure of a product can be considered as dangerous or
catastrophic according to the application using this product. For example, the
stopping of the unique engine of a commercial aircraft is considered as
catastrophic because this failure generally leads to the death of the
passengers and the crewmembers. The same failure could considered as
major in the case of an airfighter, because the pilot can be ejected from the
aircraft. Aeronautics examples mayaiso show that the assignment of a
failure to a seriousness dass can depend on the operational phase during
which the failure occurs: the breakdown of the engine when the aircraft has
landed or is parked is a minor failure.

17.1.2 Risk and Safety Classes

At the beginning of the 20th century, the breakdown of the engine of an
aircraft had the same tragic consequences as today. However, the risk of this
faHure, that is to say its occurrence probability was much greater.

For each event, and in particular for each failure, one can estimate its
occurrence probability . Then, we define several dasses according to several
value domains of this event probability. For example:

• an event is probable if its occurrence probability is greater than 10-5,

• an event is rare if its occurrence probability is within the interval (10-7,

10-\

• an event is extremely rare if its occurrence probability is within the
interval (10-9, 10-7),

• an event is extremely improbable if its occurrence probability is smaller
than 10-9 •

454 Chapter 17

This measure grid is arbitrary. For example, the probable interval can be
divided into two sub-intervals: frequent (probability > 10'3) and reasonably
probable (prob ability is within the interval (10'5, 10'\ On the contrary, other
measurements group together rare and extremely rare in a class of
probability bel on ging to 10,9 and 10'5. Events with a probability smaller than
10,9 are frequently qualified as impossible.

The example of the first aircrafts illustrates another important aspect: the
notion of risk acceptability. Indeed, the occurrence probability of a
catastrophic event during a flight was more important than it is nowadays.
This situation was however accepted by the pilots and the passengers !

We call acceptable risk rate the accepted maximum probability value of
the failures belonging to a given seriousness class. The term tolerable
probability is also used instead. For example, we only accept a risk lower
than 10'7 of having a serious accident for a given transportation system.

Hence, we define safety classes by associating the fai/ure seriousness
with the acceptable risk rate. The resulting data define the safety
requirement imposed on an industrial project: which risk level is acceptable
for a given failure type. For example, the DO-178B avionics standard
imposes the following values for the seriousness classes:

• the probability of minor failures can be probable, e.g. greater than 10'5,

• the probability of major failures must be at least rare, e.g. between 10,7
and 10'5,

• the probability of dangerous failures must be at least extremely rare, e.g.
between 10,9 and 10'7,

• the probability of catastrophic failures must be extremely improbable,
e.g. lower than 10'9.

Let us note that a maximal accepted value is not a value to be necessarily
reached! For example, it is positive if a major failure has areal occurrence
probability of 10.8•

It should also be noted that these standards result from a tradeoff between
the safety aim and the technologie al possibilities offered at a given time.
Consequently, these standards evolve according to the continuous evolution
of the technology: thus, the limits of accepted risks in our modern societies
are constantly pushed away according to the technology which makes it
possible to satisfy more and more safety requirements. The considerable
evolution of the safety requirements in aeronautical industry during the last
century is a significant example of this positive changing. Figure 17.1 shows
the steps of the risk acceptability. In order to take the continuous aspects of
the acceptability notion into account, a curve is extrapolated. This curve is
called acceptability curve.

17. Fail-Safe Systems

Seriousness

catastrophic

dangerous

ma.jor

minor

00 effects

10.9 10-7

Non-Acceptable
Risk

10.5

Occu"ence
Probability

Figure 17.1. Risk acceptability

455

A product is qualitied as acceptable product according to safety
requirements if and only if the coordinates of all identified failures belong to
the domain located above the acceptability curve. In particular, this figure
shows that the risk of a failure is acceptable even if its seriousness is high,
provided that its occurrence probability is sufficiently low.

This acceptability notion is often established by reference to natural risks.
We hence evaluate the seriousness of an event by the number of casualties.
The occurrence probability is estimated in terms of mean value of the
casualty number caused by such event in a given duration. For example, here
are some natural risks analyzed on a 100-year period. The resulting
seriousness corresponds to the average number of dead persons and the
probability is the average number of cases observed during this period:

• avalanches and landslides (400 to 4 000 deaths, 6.74 cases per century),

• floods (200 to 900 000 deaths, 37.3 cases),

• typhoons and cyc10nes (137 to 250 000 deaths, 37.5 cases),

• earthquakes (5 to 700 000 deaths, 330 cases),

• volcanoes eruptions (1 to 28 000 deaths, 2 500 cases).

The specialists analyze experimental data of natural risks, or risks
induced by humans, and they calculate min-max intervals of probability for a
given situation: for example, a person or a population faced with a disease,
an industrial site faced with the falling of a meteorite, a flooding or an
earthquake, a spatial mission faced with the action of radiation or heavy
ions, etc. The criticality analysis tools introduced in the next sub-section,
allow evaluating the probability-seriousness relationship associated with the
failures of a product.

456 Chapter 17

17.1.3 Fail-Safe Systems

We have just defined the notions of acceptability and non-acceptability
domains associated with failures: for example, a catastrophic failure must
have a probability lower than 10-9. Now, it is important to answer the
following question:

Does a given structured system resulting from a given design process and
using given hardware and software technologies belong to the acceptable
domain or, on the contrary, does it correspond to a non-acceptable risk?

Several criticality analysis methods allow to estimate the risks associated
with a system, or to compare two systems implementing the same
specifications. These methods belong to the two different approaches already
introduced in Chapter 7: the qualitative analysis and the quantitative
analysis. One of the most popular techniques in numerous industrial
application fields is the Failure Modes and Effects and Criticality Analysis
(FMECA). This technique extends the FMEA (see section 10 of Chapter 7),
taking the probability of occurrence of faults of components into account.
Thus, the effects of these internal faults are propagated into the structure to
deduce the product failures and their probability . Then, these results must be
compared with the acceptable risks defined by the safety classes.

In numerous practical cases, the safety requirements cannot be satisfied
in spite of the use of safe design methods. So we ask the following question:

How to realize a system or how to improve the design of a
system, in order to comply with the safety requirements?

The more serious the failures are, the more important the prevention and
the removal (fault detection and fault extraction) means involved during the
creation and manufacturing stages of the life cycle are. However, in spite of
these efforts, errors may occur during the operational stage. The reasons are
twofold: the impossibility to eliminate all design/production faults, and, in
the case of hardware technology, the occurrence of new faults at any time
during the operation stage (according to reliability laws). We will see in
Chapter 18 how to tolerate their occurrence, that is to say, to continue to
offer the expected service in spite of faults. The mechanisms used to perform
fault tolerance are however very complex, and their implementation is
sometimes not acceptable for economical reasons, but also, paradoxically,
for safety reasons! Indeed, these complex mechanisms involve new kinds of
faults. When the tolerance mechanisms cannot be implemented, the client
accepts the occurrence of failures, but only failures having a low seriousness.
So, the main goal is to reduce as much as possible the prob ability of
occurrence of dangerous or catastrophic failures. Fail-safe systems answer
this need.

17. Fail-Safe Systems 457

The methods introduced in the following section aim at mastering the
fault effects in order to bring the system in an erroneous state whose
consequences are as minor as possible.

17.2 FAlL-SAFE TECHNIQUES

Safety requirements can be handled by two different approaches:

• the intrinsic safety based on particular characteristics of the technology
used,

• the safety design by use of structural redundancy.

These two aspects will be respectively examined in sub-sections 17.2.1
and 17.2.2.

17.2.1 Intrinsic Safety

Intrinsic safety of a product is obtained by constraining the development
with technological solutions which are known to be safe. These solutions
essentially exploit physical properties. The intrinsic safety notion is attached
to numerous domestic products. A simple example is given by electric plugs
wh ich are protected from direct contact with the fingers of children. In the
same way, the electrical products have different plugs, according to the
electrical power characteristics: alternative or continuous current, low or
high voltage, etc. Some restrictions are included in the specifications,
depending on the nature of the inputs and outputs of the product, but also its
behavior and its robustness to environmental aggressions. For instance, all
electrical domestic equipment such as oven, microwave, toaster, fridge, etc.
must comply with official security (anti-shocks) standards. Behavioral
limitations are illustrated by a microwave oven that should not be able to
function when its door is opened.

This intrinsic approach covers various solutions which are particular to
each product. So, no general guidelines will be presented. We will only
introduce three quite different examples of intrinsic safety, in order to
understand this approach and to encourage its using.

Example 17.1. Railway Switches

Everyone has observed the curious shape of the manual switches used to
guide the train on a railway track: they are made of a long stick supporting a
heavy mass. This is an example of intrinsic safety: the weight of the mass is
supposed to prevent any wrong manipulation due to a dog, a child or the

458 Chapter 17

effects of the wind.

Example 17.2. Anti-explosion standards

A lot of industrial processes make use of explosive products (gas or
liquids). The anti-explosion standards which are defined for physico
chemical processes guarantee that the energy used by the electric systems
(e.g. a controller) is not higher than a critical threshold above which
explosion risks exist, for example lOOmW. The design of control systems for
such processes must integrate this constraint. Consequently, we can be
obliged to forbid any electrical components and to use pneumatic circuits
instead. This example illustrates constraints on realization means which are
defined at specification time.

Example 17.3. Safety of a Robot

The robots designed to work in interaction with humans pose important
safety problems. For example, a cleaning robot must not shock people
present in the room where this robot is working. A robot operating in a
workshop must not hurt the human operators. These safety problems towards
human beings involve the robot itself (the mechanical and electrical parts)
and its control (task supervision, trajectory generation, control, etc.).
Concerning the robot itself, technological solutions exist in order to
guarantee the safety: no use of dangerous tools, limitation of the motion
speed, and limitation of the weight. If the robot is equipped with an joined
arm, the choice of the muscles and the energy used to activate them is of
great importance: thus, a pneumatic flexible muscle may prove to be less
dangerous than a jack or an stepping electrical motor. To caricature, a light
robot made of rubber would not be dangerous at all.

These intrinsic safety means are said to be passive safety techniques. The
passive approach does not suppress the failures, but it makes them safer.

Quite different and complementary solutions can be proposed to give
safety attribute to a robot. They use active safety techniques at the level of
the control system: use of danger detection sensors, obstacle avoidance
algorithms, alarm signals provoking the stopping of the robot in case of
danger. The active approach aims at mastering the effects of faults, in order
to avoid their extern al dangerous consequences:

• use of redundant inputs to supervise the product behavior, looking at the
functional environment state, and/or

• use of redundant functions to handle numerous erroneous situations.

This approach based on redundancy technique will be developed in the
next sub-section.

17. Fail-Safe Systems 459

17.2.2 Safety by StructuraI Redundancy

17.2.2.1 . Principles

Safety by structural redundancy concerns the design stage: structural
redundancy techniques are used in order to reduce the occurrence probability
of failures considered as dangerous. The safety by structural redundancy
techniques tries to master the dangerous failures and to neutralize them. For
example, when an error occurs in a system, it rapidly evolves towards a
special state such that all the primary outputs are equal to zero (typically this
can mean: all output signals are switched off). Such astate is frequently
judged as not dangerous to the user (outside world), as the product is
inactive.

Functional
Uni verse

~.l......I" Normal domain

~;-... Safe domain

...,.--I~ Dangerous domain

Figure 17.2. Fail-safe principles

Safety by structural redundancy is close to the fault tolerance techniques
presented in Chapter 18. However, the handled problem is not expressed in
the same terms. The general principles of fail-safe systems are illustrated by
Figure 17.2. There is no obligation to maintain the delivered service. As we
said before, failures can occur as long as the functioning remains in a safe
domain. Failures leading the functioning in a dangerous domain must have
a probability lower than a pre-defined value. Hence, we consider this
approach as a step towards the fault tolerance approach.

Now we will analyze two simple but significant examples, in order to
illustrate the fail-safe problems and solutions. The first example is a traffic
light controller implemented with hardware technology, and the second one
is a car engine controller implemented with software technology.

Example 17.4. Traffic light controller

Let us consider a traffic light controller regulating a two-way crossroad
(roads A and B), as illustrated in Figure 17.3. The controller sends out two
signals to two three-color light systems. This control is expressed here in the
form of a two-variable vector (A, B), each variable taking one of the three

460 Chapter 17

values (Green G - fellow f - Red R): the output (G, R) means that the lights
of the road A are green and those of the road B are red.

Figure 17.3. Traffk light controller

The output static uni verse of the controller has 9 vectors represented in
Figure 17.4 (two independent 3-state variables). The normal static domain is
made of 5 of these vectors corresponding to a simple evolution (we do not
include the (f, Y) state in this normal domain). The other output vectors
correspond to failures. However, we suppose that the vector (G, G) is the
only dangerous failure, because of an evident risk of accidents. The
occurrence of this failure is not an acadernic case; it has been observed in the
case of real electro-mechanical and electronic controllers. The other failures
such that one light is green while the second one is yellow have no
dangerous consequences, assurning that the car drivers are cautious when
they see the yellows signals, reducing the prob ability of accidents and also
their seriousness.

Normal
domain 4---f.....f-{

Safe
domain

'-_~ Statie
Universe

~~-.Danger

Figure 17.4. Functional domain

In order to take the safety requirements into account, it is necessary to
design a controller that cannot provoke the dangerous failure, that is the state
(green, green) . We will make some assumptions to simplify this problem.

17. Fail-Safe Systems 461

We assurne that the normal evolution cycle of the controller comprises 6
states, according to the state diagram of Figure 17.5. Thus, the controller is a
synchronous sequential system using a clock signal (Clk) which rhythms its
evolutions. We also suppose that every output configuration different from
(G, G) is 'safe'. The controller is supposed to be implemented as an
electronic circuit, and we make the classical fault assumption of a single
'stuck-at 0/1 ' fault of the inputs and outputs of gates and flip-flops. Input Clk
is supposed to be faultless.

3

4

Figure 17.5. State diagram of the controller

Taking these hypotheses into account, we propose the following steps to
design the controller as a fail-safe logical circuit:

• the 6 internal states are coded by means of a 2-out-of-4 coding according
to the state table of Figure 17.6, each internal variable being materialized
by a synchronous D Flip-Flop;

• each internal variable Yi, which is connected to the D input of the Di flip
flop, is realized as an independent SIGMA-PI logical structure using no
inverters (this structure is said to be 'monotonie');

• each output variable R, G, Y going to one of the two light systems is also
realized as an independent monotonie structure with AND and OR gates.

Present state
Y 1234
1 11 00
2 1010
3 1001
4 011 0
5 0101
6 0011

Nextstate
y 1234

1010
1001
0110
0101
0011
1100

State Register ...-------,

Cl

Figure 17.6. Fail-Safe design of the controller

462 Chapter 17

Exercise 17.1 enters more into the details of this design method and
proposes the analysis of the influence of the faults on the behavior of the
circuit. We will only expose here the main results issued from this study.

Each single fault altering the sequential part (comprising the AND and
OR gates and the D flip-flops) is transformed into an error that provokes an
exit of the 2-out-of-4 code. If the number of bits '1' of the state register is
smaHer than 2, then at the next clock tiek the internal state goes to the weH
state (0000), and the R, Y, G primary outputs are set to '0': hence all the
lights are switched off, situation supposed not to be dangerous. On the
contrary, if the number of bits '1' of the internal register is higher than 2, at
the next clock tick this state will evolve towards the state (1111) whieh is
also a weH safe state. Then, the output signals are aH switched on, and we
suppose again that this situation is not dangerous (the car drivers will be
alerted that something wrong has occurred, or we can suppose that the
amplifier electronie circuit inside the light system will no drive any light in
that case).

FinaHy, any single fault altering one independent monotonie circuit
generating the primary outputs will be activated as no light 'on' or several
lights 'on'.

Example 17.5. Fuel injection controller

We consider a software application whieh manages the engine of a car:
fuel injection, spark ignition, etc. We assume that the normal control of the
engine is processed after an initial phase named Start_Engine. If the initial
phase fails, the normal treatments of the cycle must be aborted. The fuel
injection must be stopped, in order to avoid a dangerous failure. Indeed, if
the engine does not run while fuel is injected, then a hot engine can explode!
To avoid the occurrence of this failure, erroneous events occurring during
the initial phase must absolutely be detected and handled. The reaction will
be the stopping of the injection function. Consequently, the product fails, but
the failure is not dangerous. To guarantee the error handling, we will use an
exception mechanism.

The exception mechanism offered by some programming languages has
already be presented. It allows errors to be detected and signaled. When an
error is raised at run-time, the erroneous component execution is stopped and
resumed on an exception handler.

Here is an illustration of an exception handler associated with a
procedure called Start_Engine:

procedure Start_Engine is
begin

body
exception

17. Fail-Safe Systems

exception handler
end Start_Enginej

463

Thus, this mechanism introduces a structural redundancy. The normal
treatment (body) is separated from the treatment processed in reaction to an
error (exception handler).

In terms of safety, this solution is preferable to the use of an error
parameter as illustrated by the following specification:

procedure Start_Engine(Error: out Error_Type}j

Indeed, this solution requires that the calling subprogram checks the
value of the retumed parameter. If this checking is omitted, the program
execution may lead to a dangerous failure, as illustrated by the following
extract:

Start_Engine(Error_Status}j
Increase_Fuel_Injectionj

Moreover, without exception mechanism provoking an automatie and
immediate branching to a specific treatment, the disruption of the normal
execution of the program must be explicitly introduced. Such a specific
design is illustrated by the following program extract:

procedure Start_Engine (Error: out Error_Type) is
begin

if Conditionl
then Error:= Failure_In_Electrical_Supplierj
else ...

if Condition2
then Error:=Injection_Failedj
else

end if;
end ifj

end Start_Enginej

The resulting complexity is increased by the use of nested i f structures
to take various considered errors into account. This increases the risk of
design faults and thus of failures.

Thanks to exception handlers, treatments leading the system or its
functional environment to a safe state can be written. For example, the new
state is assigned and the jacks of the controlled process are closed
(environment). Then, the exception is propagated to provoke the same

464 Chapter 17

reaction mechanism in the calling sub-program. Such a situation is illustrated
by the following pro gram:

procedure Start_Engine is
begin

exception
when Error => Shut_Down_Fuel_Injection;

Engine_State := Stopped;
raise Error;

end Start_Engine;

17.2.2.2 Fail-Silent and Fail-Fast Systems

By definition, fail-safe systems must not raise dangerous failures. One
should note that what is considered as a dangerous behavior is a relative
notion that depends on the application domain. In many cases, the specialists
consider a 'passive state' as not dangerous: the product stays inactive or
silent. Tbis kind of fail-safe system is calledfail-silent system orfail-passive
system. This safe state suits weIl to control applications for which manual
recovery mechanisms exist. For example, the failure of an automatic flight
control can be recovered by a switch back to a manual control conducted by
the human pilot. It is important that the automatic system does not continue
to act on the actuators of the aircraft. The fact of forcing a failing system to
enter an inactive state avoids further degradations of its environment.

The example of the traffic light controller which evolves towards a 'all 0'
safe state is another example of fail-silent system. Hence, car drivers will use
the crossroad as if no light control were available.

On the contrary, in other cases, a degraded minimal service is required in
case of failure. For a pressurization system of the cabin of an aircraft, it is
necessary to guarantee that no passenger will be injured and that the flight
will pursue to its destination. Oxygen masks are therefore provided to the
passengers. In the case of a failing traffic light controller, one might require
that both light systems be in a blinking yellow state. It would hence be more
expensive to achieve this goal.

The time necessary to reach a non-dangerous state such as a silent state,
or to start a minimum service, is also an important attribute of fail-safe
systems. When the detection of an error (erroneous state) is performed, the
system can produce non-desired transient interactions before reaching the
safe state. The specifications of fail-fast systems integrate a maximal
duration to reach the safe sate.

Tbe use of the exception propagation mechanism (see section 2 of
Chapter 14) allows answering this fail-fast need. Indeed, this mechanism can
automatically propagate the error signaling from the subprogram where this

17. Fail-Safe Systems 465

error occurred and was detected towards the main pro gram through the
calling chain. This approach is advised by the standard ISO 15942 when Ada
language is used.

17.2.3 Self-Testing Systems and Fail-Safe Systems

Similar redundancy techniques are used, on the one hand, to increase the
safety, and on the other hand, to detect errors on-line during the system
operation (self-testing property examined in Chapter 16). However, the goals
of these two approaches are quite different. Figure 17.7 compares these two
approaches, showing their similarities and their differences.

Self-teltiag systems I Fall-safe systems

Fm/ure

U (Ulldloaal univene
ND normal domaln [ND (l ED = 0)
ED erroneous domaln

[NDVED~SD)

Figure 17.7. Comparison between fail-safe and self-testing systems

1) For a self-testing system, the two functioning domains, the normal
functioning domain (ND) and the erroneous functioning domain (ED) ,
must be disjoined in order to allow the detection of errors: ND n ED = <p.

2) For a fai/-safe system, these two domains are not necessarily disjoined,
but they must be included in the non-dangerous or safe domain (SD):
ND uEDk;SD.

Hence, any self-testing system is also fail-safe if: ND u ED k; SD.

We deduce from this remark that the design of fail-safe system frequently
makes use of methods coming from the self-testing field. This is the case
with the use of m-out-of-n or double raU coding.

Such a technique has been used to design the fail-safe circuit of the
traffic light controller; we coded the internal states with a 2-out-of-4 code.
The resulting circuit is then both faU-safe and self-testing. In case of error,
the circuit evolves towards safe states (all 0 or all 1). Moreover, the circuit is
self-testing, as the final safe states do not belong to the 2-out-of-4
codewords. The detection can lead to a later repairing.

466 Chapter 17

17.2.4 Fail-Safe Applications

In this sub-section we present briefly some simplified but significant
illustrations of design choices involved in up-to-date fail-safe systems.

17.2.4.1 Automotive Systems

Example 17.6. Engine control and air cooling systems

Let us first consider again a system controlling the engine of a car. It is
implemented by means of a single processor executing a software
constituted of several tasks managing, in particular, the ignition of the
sparks, the regulation of the slow running of the engine, and some functions
of the air conditioning of the cabin. The spark ignition task is activated with
aperiod which varies according to the speed of the engine. So, the higher is
the speed (number of rotations per minute), the more frequently the injection
task is executed, and hence, the more it makes use of the processor. Let us
note that the choice of a single processor to implement these tasks is typical
of this application domain and results from strong financial constraints.

The engine can be rotating at a high speed for short durations. This is the
case when the driver accelerates to perform a fast overtaking. In order to
face this brutal acceleration, the designer can chose between several
solutions. A first solution is to continue the execution of all the tasks,
according to a circular execution: the time slice allowed to each task is fixed;
the ignition task will be activated every N microsecond. Thus, the speed of
the engine reaches a maximum speed which is not due to the mechanical
resources but due to the software control system. On the contrary, if we
decide to momentarily suspend the other tasks, the engine speed can increase
rapidly because the processor is used only for this activity. This second
choice corresponds to the design of a fail-safe product. Indeed, the product
has a failure, as the task performing the air conditioning has been suspended
during the acceleration time. However, this situation is acceptable, whereas
the first solution, which limits the engine acceleration, is dangerous.

Example 17.7. Fail-silent ABS System

Antilock Braking Systems are fail-safe. Any error in the electrical system
is detected, and the control unit is switched to a safe 'off' mode, allowing the
conventional hydraulic brakes to be used. Such a system is Jail-silent. To
satisfy these safety requirements, a redundant duplex technique is generally
used. Two ABS units run in parallel and, when the slave unit disagrees with
the master unit, an interrupt lead the whole system in the safe off mode. Let
us note again that the fail-safe demand does not require fault tolerance
techniques to be implemented.

17. Fail-Safe Systems 467

17.2.4.2 Avionics System

Let us consider a system embedded in an aircraft. It aims at helping the
pilot during the landing phase of the flight. Let us suppose, that the software
integrated in this product has a function which calculates a variable X from
the knowledge of the altitude of the aircraft:

x := Y * Altitude;

This variable X is used by approach equipment.
When the value of the variable Altitude becomes very important, the

multiplication operation may provoke an overflow. This situation is signaled
to the software by an exception rising (Constraint_Error in Ada) if the
language used offers such a mechanism. The exception handling can consist
in assigning to X the highest possible value, and to resurne the treatment. So,
the actual behavior is equivalent to:

X := Float'last;

This design has led to a failure, as the value given to X is wrong.
However, as the landing system is not being used when the aircraft is at high
altitude, this failure can be acceptable: the value of X is wrong but the
consequence is 'rninor' or 'no effect'. Here also, we made a fail-safe design.

On the contrary, another design choice rnight have propagated the
exception till reaching the task which is then stopped (no specific exception
handler as x : = Float' last;). This solution could unnecessarily alarm
the pilot, for example by switching on a panel light indicating that the
landing function has been stopped. It could also be dangerous to other tasks
calling for the stopped task.

The worse solution would have been to do nothing. Then, the overflow
could assign to X a random value corresponding unfortunately to a ground
approach, leading to a catastrophic faHure. For example, the landing flaps
could be opened, or worse, the inversion of the engine may be started.

17.3 EXERCISES

Exercise 17.1. Traffic light controller

Consider the traffic light controller presented in Example 17.4.

1. Verify that the 2-out-of-4 coding allows to code the 5 internal states of
the state graph.

2. Continue the coding of these states in order to obtain the logical
expressions controlling the D inputs of the state synchronous D-flip
flops.

468 Chapter 17

3. Verify that every single stuck-at fault leads the circuit into one ofthe two
'safe' internal states: 'all flip-flops at 0' or 'all flip-flops at l' . Verify also
that these two states are states from which one cannot exit.

4. What is the influence of a fault affecting the Clock?

5. Start the preceding study again with another coding of the internal states,
for example a l-out-of-n coding.

Exercise 17.2. Mathematical function processing

The development of a 'real-time application requires to design a task
which calculates a value Y from a value X. This ca1culation must be realized
by a fail-safe program with regard to the following error:

'the deadline of the task is reached' .

Traditionally, the implementation of mathematical functions (Y = j(X))
can be made according to two different approaches:

• the analytical approach which produces a result Y from the input value X,
after a certain duration D,

• the approach by successive approximations which ca1culates Y by means
of the series Yn = j(Yn-1> X).

Compare these two approaches.

Chapter 18

FauIt-Tolerant Systems

With this chapter dedicated to fault tolerance, we reach the term of our
exploration of dependability techniques. All protective fault tolerance
mechanisms are defined and implemented during the creation stages of the
life cyc1e, but their action is effective during the operational stage. They aim
at guaranteeing the continuity of the service delivered by the product in spite
of the presence or the occurrence of faults.

18.1 INTRODUCTION

18.1.1 Aims

A product must assure its mission in a given environment. The fault
prevention and fault removal techniques allow to increase the reliability
(reducing the probability of fault occurrence), or the availability in case of
repairable systems (by detect-and-repair mechanisms). The safety criterion
led us to ex amine the techniques related to on-line testing and fail-safe
design. Now, we want to provide the designed product with the highest
dependability properties by integrating mechanisms which allow the full
continuation of the mission despite the presence of faults. In the best cases,
these mechanisms guarantee the continuity of the delivered service without
any reduction of the performances. In other cases, a possible degradation of
the performances of the delivered service is accepted. The fail-safe systems
constitute extreme situations. The fault tolerance techniques have a direct
positive impact on the safety, reliability and availability criteria.

We insist again on the fact that one must not oppose the fault avoidance
(prevention and removal) and the fault tolerance techniques. They have

469

J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

470 Chapter 18

complementary objectives and they are all necessary. For instance, the effort
necessary to remove faults during the design process is more important if the
prevention means have been neglected. In the same way, the efficiency of
the fault tolerance means is based on some fault hypotheses such as the
'single fault assumption' . Hence, the use of fault avoidance techniques
during the creation stages is a necessary condition.

18.1.2 From Error Detection Towards Fault Tolerance

The on-line error detection mechanisms presented in Chapter 16 are
based on the use of redundancy:

• redundancy of the function, such as the duplex technique with the
comparison of the results provided by the two duplicates in order to
detect the occurrence of errors,

• redundancy of data representation with the typical use of error detecting
codes,

• redundancy of both function and data when the checking of the data
depends on the function, such as the case of likelihood checking.

These three situations are illustrated by Figure 18.1, Figure 18.2, and
Figure 18.3.

o Error

Figure 18.1. Redundancy of the function

Figure 18.2. Redundancy ofthe data

18. Fault-Tolerant Systems 471

Figure 18.3. Redundancy of function & data

Redundancy is used again in order to implement fault tolerance
mechanisms. Three main approaches can be considered.

First, structural redundancy can be used to increase the number of
duplicates of the function to implement. All these duplicate modules treat in
parallel the input values and produce output values; the final output value of
this structure is the one which is the most frequently given by the duplicate
modules. This technique called N-Versions is symbolized in Figure 18.4. It
will be developed in section 18.2, and we will show that this technique does
not require any error detection mechanism.

Figure 18.4. N-version

The second approach consists in executing again the same function after
its first execution has reached an erroneous state. This technique called
backward recovery is illustrated by Figure 18.5; it will be presented in
section 18.3. It makes use of temporal redundancy, as the execution of the
function is resumed from a recorded previous state.

I : ______ F ~ Check ~I
.L I Error .

Figure 18.5. Backward recovery

472 Chapter 18

The third possibility implies structural redundancy like the first approach,
but here a second version is executed only if an error has been detected
during the execution of the first version. This approach, called forward
recovery (illustrated by Figure 18.6) will be explained in section 18.4.

Figure 18.6. Forward recovery

So, sections 18.2, 18.3 and 18.4 respectively analyze these three groups
of techniques. In particular, the implementation problems are discussed.
Then, these three different approaches are compared in section 18.5. This
comparison deals first with theoretical aspects: general structure of the
system, nature of the redundancy involved, etc. Secondly, the three
approaches are compared according to some criteria: efficiency to tolerate
fault elasses, extra-cost, mission duration. This analysis will allow to choose
the most appropriate solution to a given application context. Frequently, the
simultaneous use of several complementary techniques is necessary, in order
to satisfy the set of requirements given by the specifications.

The practical use of these techniques often interferes with the design
choices. For example, at which level of a hierarchical design must a
tolerance mechanism be implemented: elose to the technological
components, or at the level of the system architecture? Moreover, the use of
these techniques impacts the development process itself, making, for
example, more complex the test of redundant system. These important points
are considered in section 18.6. Finally, the fault-tolerant techniques are
illustrated by several examples in section 18.7.

18.2 N-VERSIONS

18.2.1 Principles

The principle of the N-Versions technique is to simultaneously execute
several sampies, or versions, of a same functional module. If these vers ions
have also the same implementation, they are called duplicates or replicas.
The results calculated by these versions are then compared in order to
produce the final result considered as correct. A typical example of this

18. Fault-Tolerant Systems 473

technique is the 3-Versions, or TMR (Tripie Modular Redundancy), also
called Triplex . This fault tolerance mechanism has been employed in some
high critical applications such as spatial missions since the 70' s. As shown in
Figure 18.7, the product is constituted of three vers ions or modules
functionally identical, and a voter which elaborates the final output from the
three outputs of these modules. Any single or multiple functional or
technological fault wh ich produces errors altering the functioning of only
one module is tolerated, as it has no influence on the final output.

The voter is supposed to be fault-free: its faults cannot be tolerated. For
example, if this voter is implemented as an electronic circuit, any 'stuck-at'
fault of its output signal may produce a failure of the product.

Inputs

Figure 18.7. TMR or 3-version structure

So, the TMR makes use of passive redundancy (cf. Chapter 8) to mask
the failure of one module thanks to the other modules (error masking). This
approach is said to be a compensation technique, as the failure of one
version is compensated by the contribution of the other versions.

This basic TMR structure has been generalized to the case of structured
products. In that case, the TMR technique is not applied to the complete
system, but to each individual module. This approach is easier and more
efficient, but the local voting is more complex to manage.

18.2.2 Realization of the Duplicates and the Voter

If the fault to be tolerated is due to ageing phenomena, then it seems
sufficient to use three strictly identical modules to implement the 3-versions.
However, it is a wrong approach when identical stress (the environmental
conditions are very similar) can lead to simultaneous faults on two or even
three modules (hence, producing a violation of the basic hypothesis). More

474 Chapter 18

generally , many faults, called common mode faults, can provoke
simultaneous errors or failures of the redundant modules.

To tolerate design faults, either in the case of hardware or software
technology, the different versions must absolutely be developed by
independent design teams. Moreover, these independent development
processes must be constrained by different design mIes: for example, the
algorithms and programming languages used to implement a software
function must be different, or the technologies or means used to develop an
integrated circuit must be different. Indeed, the used tools can have faults, or
else the human developers can have the same scientific culture leading to
identical faults.

Let us now consider the voter. This function must perform two
operations: acquire the values Zj produced by the different versions, and give
the final correct output value of the redundant system.

First of all, the acquisition, by the voter, of the three values Zj coming
from the duplicates implies some intelligence from the voter. Indeed, the use
of distinct algorithms and technologies in each version Mi implies different
response times from these duplicates. Hence, the voter must manage the
synchronization of the received Zj values. This voter must also detect the
occurrence of a blocking of a module that will never provide any result. This
situation arises, for example, when the program implementing a version Mi
executes an infinite loop due to a fault.

When the values given by the outputs Zj belong to a finite domain, then
the determination 0/ the final output value Z generally implies a majority
vote: a value produced at least twice is considered as correct. On the
contrary, if the Zj values belong to real numbers, the algorithm used to
ca1culate the final output is more complex. Indeed, different but elose values,
such as '14.31', '14.30', and '14.32', can be considered as correct, even if
they are not strictly identical. The results provided by the different versions
can be analyzed: ca1culation of their distance to the average value, in order
to eliminate possible incoherent values.

This complexity of the functions realized by the voter can also be
encountered in the case of discrete values. For example, if the output values
are 'colors' coded by integers from 0 to 65 535, one can consider that the
values '271', '273' et '274', respectively provided by 3 versions, define the
same color because of different algorithms used to ca1culate them.

Thus, the election, by the voter, of the correct result requires an analysis
which is proper to each application: it is a 'context dependent solution'. We
have noted that it is not always possible to simply elect the value appearing
twice or more, as this situation may never occur. The easy solution
consisting in providing an average value of the given Zj, is generally not
acceptable; it must be proven that this value is significant. For the preceding

18. Fault-Tolerant Systems 475

example, one of the received values, and not the average value, could be
retained as a final result. Indeed, Zl + Zz + Z3 = 271+273+274 = 818 cannot
be divided by 3. Hence, 273, wh ich is closer to the median value, may be
adequate.

18.2.3 Performance Analysis

18.2.3.1 Quantitative Analysis

The TMR is taken again as a reference example of the N-Versions
technique. We assume that all the versions (modules MI, M2 and M3) are
identical and have no design faults . The TMR is then used to cope with
ageing faults. Their reliability is only influenced by technological problems
and supposed to follows simple exponential law. The voter is supposed to
have a failure probability much lower than the failure probability of each
version. Moreover, we assume that the technological implementations of the
three modules are different, in order to reduce the probability of having
multiple similar faults. We should mention that these remarks have already
been formulated when dealing with the self-testing duplex structure. Now, if
we add the hypothesis that the three modules have exponential reliability
laws R(t) with identical failure rates, 1.., then the resulting reliability law of
the global system is given by the expression:

RTMR(t) = 3 R(t)2 - 2 R(t)3 = 3e ·21..1 _ 2e -31..1.

This result is obtained thanks to the reliability block diagram method
examined in Chapter 7 and applied to redundant structures. Annex B
analyzes the reliability of some significant redundant structures.

R(t) TMR). = 10-4

~:; 1 ----------l
0,6 ~ i I

0,5 + _ _ _.: -
0,4 ., i

0,3 '1 I
0,2 '1 !
0,1 -! i

o ! """""" ,t""""""""""""" f
0,,# .I' #' .af '\# ~"~#"#',,~,,#',,Ib#,,.af,,~ (h~~~)

Figure 18.8. ReJiability efficiency of the TMR

476 Chapter 18

The reliability curve is drawn in Figure 18.8, for A = 10.4 . We observe
that for t = 0, the tangent is horizontal. Hence, the reliability of a TMR is
better than the reliability of one module as far as the du ration of the mission
is smaller than approximately t <7 500H, corresponding to the intersection
between the two curves, that is R(t) >= 0.5. For missions having a duration
greater than this critical value, the one-module has a better reliability than
the TMR. The ca1culations show that the MTTR of the TMR is only 5/6 of
the MTTR of one module.

18.2.3.2 Qualitative Analysis

The main drawback of this technique is the impossibility to know the
internal state of the system from the outside. This is said to be a 'bunker'
structure. Indeed, an external ob server cannot decide if one of the modules
fails or not. As one of the negative consequences, the production or the
maintenance testing of a TMR structure is not easy.

The TMR uses a passive masking technique; this does not reduce the
occurrence of faults. As the global complexity is approximately multiplied
by 3, the number of faults is also multiplied by 3. For long duration mission,
it has been shown that passive approaches are not efficient, because of the
risk of fault accumulation along the mission, and consequently the risk of
provoking the violation of the basic hypothesis: only one module has a
failure at a given time t. Thus, much more efficient active techniques have
been developed instead.

18.3 BACKWARD RECOVERY

18.3.1 Principles and Use

The principle of the backward recovery technique is to resurne the
execution of a module M after an error has been detected by the checking of
its output variables. This technique is represented by Figure 18.9. Thus, in
case of error, we return to the past of the system, to start again its execution
from a safe previous state. A trivial example of such a recovery is the reset
of the module before resuming its functioning.

M~~k~
I Error

Figure 18.9. Backward recovery

18. Fault-Tolerant Systems 477

The main difficulty of the backward recovery implementation comes
from the choice and the management of these safe states called recovery
points (also called retry points or rollback points). These states must be
saved when they are reached, to be restored latter, when an error occurs. We
analyze the saving and restoring mechanisms in sub-section 18.3.3.

One typical application of backward recovery technique deals with the
tolerance of transient faults in electronic circuits. The transient fault
occurring at the first execution is supposed to have disappeared at the second
execution. For example, a simple reset, when possible, can be sufficient to
resurne the proper function of such a product subjected to transient faults.

This technique has been adapted to the software technology as retry
mode. It is mainly used to tolerate transient faults on parameter values: the
procedure P is executed a second time after the acquisition of new values of
the parameters, given by actuators or provided by the user.

remainder
parameters • olthe contex1

... • ...
~ .l t+-

, ••
p

, ~
I Check I

KO
OK ..

~ .. r ~ Contral F10w

outputs Dat. F10w

Figure 18.10. Retry mode

The implementation of this technique is not as easier as it seems to be at
first. Indeed, the first execution of P can have affected some elements of the
context, others than the parameters, as for example the global variables. In
that case, it is absolutely necessary to also save these variables before any re
execution of the procedure P. Thus, we must save all altered variables with
the parameters for their ulterior restoring. Let us consider as an example a
procedure P calling several sub-programs belonging to a package (or a
library). The execution of these sub-programs during a first execution of P
can have modified the local variables of this package (or this library). We

478 Chapter 18

are then obliged to restore their initial values before a second execution of P.
The means described in the next sub-section are dedicated to the
management (save and restore operations) of this state of the 'context'.

Figure 18.10 illustrates the principles of this tolerance technique.
Procedure P is the module that must be made fault-tolerant, Check is the
error detection function, also caBed acceptance test, and R is the component
in charge of the recovery operations (save and restore). Exercise 18.6
proposes the study of an example of fault-tolerant acquisition program using
this technique.

18.3.2 Recovery Cache

Backward recovery requires the implementation of saving and restoring
mechanisms of the execution context. One of the most popular techniques is
named recovery cache. After an error has been detected, this mechanism
allows the previous stored context to be restored. A context is defined as the
system execution state at a given time. In practice, it is implemented:

• by a set of values of the variables, the instruction pointer and the stack
pointers for software products,

• by the states of the physical devices for hardware products.

Several recovery cache strategies exist to store and give back the state of
the recovery points. Two of them will be illustrated hereafter on software
technology even if their principles are more general.

normal

(2)

-.1 : Program I Execuüon

':Error

.: Context
Memory

D:Program
Segment

Figure 18.11. First backward recovery implementation

In aB cases, the context data are copied from the main memory (i.e. the
variables used without fault tolerance mechanism) in a cache which is a
specially allocated memory part. This copy is labeled by (1) in Figure 18.11
and Figure 18.12. We will analyze in sec ti on 18.3.3 at which instants this
saving operation is performed, that is, the choice of the recovery points.

18. Fault-Tolerant Systems 479

First strategy
The assignment of the variables is done in the main memory during

normal processing, as shown by are (2) in Figure 18.11. When an error is
detected (3), the values stored in the cache are transferred to the main
memory (4) to restore the previous context.

Second strategy
Another possibility consists in adopting a symmetrical strategy. During

execution, the new values of the assigned variables are temporarily stored in
the cache (2). If an error is detected (3), the main memory already contains
the initial values. So no actions are necessary to restore the initial context.
On the contrary, if the execution is successful (4), the memory must be
updated (5).

normal
error

(3)

~-..... L",~;::;:::::~end

(4)

I : Program
Execution

,-:En-or

.: Context
Memory

0: Program
Segment

Figure 18.12. Second backward recovery implementation

The advantage of the second technique is that it only modifies the values
in the main memory if there are no errors. Thus, there is no degradation
(even temporary) of the integrity of the data during execution. However, the
first technique is quicker if no erroneous states are reached, because it does
not require updating at end of execution.

18.3.3 Recovery Points

18.3.3.1 Context Saving

It is generally not easy to choose the recovery points at which the
contexts will be saved.

• This choice can be independent, both from the function executed by the
system, and from the structure of this system. This is the case, for
example, when aperiodie saving of the current state of the system is
performed. Für a program, we make what is called a snapshot üf the

480 Chapter 18

memory. This image will then be restored if an error occurs before the
end of the pre-defined period.

• The recovery points can also characterize the important states of the
system. Hence, the recovery of these states only requires the storage of
some characteristic data.

If the first solution is easier to implement, it is certainly the less efficient.
Thus, during a long duration with a small activity of the system, numerous
save operations will be made whereas most of the values have probably not
been changed. On the contrary, the system can evolve through numerous
states during aperiod separating two save operations. This situation occurs
during traffic peaks implied by fast evolution of the environment of the
system. In such a case, the restoring of the saved context will bring back the
system in astate far from the state reached when an error has been detected.
In many applications, critical phases are specified, for which the recovery
must lead the system in astate elose to the one reached before an error
appeared. A periodic save operation cannot satisfy this requirement if the
period is too long. If the period is too short, this technique is untractable,
because the system overhead to perform the save operations is too important.

t :1 Pmnt,
l . +- Point2

!

frame 1
frame 1

Recovery point 1

Recovery point 2

Recovery point 1

Figure 18.13. Frame nesting and recovery points

Moreover, the management of the memory used for context saving at
recovery points is generally not lirnited to the assignment of a static memory
area and the substitution of the old values by the new ones. More complex
mechanisms must frequently be implemented. This is the case for software
using nested frames (subprograms, blocks, etc.). Thus, the hierarchical
structure of the programs influences the recovery technique implementation.
If the recovery point denoted Point 1 exists in a first frame (see Figure
18.13), and if this frame calls a second frame which defines its own recovery
point Point 2, then, when exiting the second frame, the recovery context of
the calling frame must be restored (Point 1). This obviously requires a stack
mechanism to manage the recovery caches.

18. Fault-Tolerant Systems 481

18.3.3.2 Context Restoration

Sometimes, the mechanism used to restore the context is much more
complex than a simple copy back of the values saved at the last recovery
point. Such a situation arises, for instance, in real-time applications
implemented by several tasks or processes. Let us consider the example
shown in Figure 18.14. It represents from left to right the evolution of the
execution of three processes: PI, P2 and P3. A character 'X' signals the
moment when the cOITesponding process context is saved. The vertical
dotted lines specify the communication or synchronization times between
two processes.

P3--~~---M--------~~------__ ~
(5)

Present time
X : recovery point I : communication or synchronization

Figure 18.14. Domino effect

If an eITor occurs at 'present time' during P3 process execution, then the
context of this process execution must be recovered in (1). As a
communication or synchronization SI occurred during the time intervals
[(1), present time] between process P3 and process P2, the resumption of P3
requires to go backward through process P2 to its last recovery point (2)
before time (1). Process P2 handled a communication or a synchronization
with PI (S2), so the backward movement in P2 must generate a backward
movement in PI to the recovery point (3). This implies backward movement
of P2 to (4) (due to S3) and then backward movement of P3 to (5) due to S4.

This phenomenon is called domino effeet. Mechanisms have been
proposed to handle this phenomenon. We will not present them here, as this
book does not cover distributed systems.

482 Chapter 18

18.4 FORWARD RECOVERY

18.4.1 Principles

The forward recovery technique consists in resuming the execution of the
system in a new state after the detection of an error. This state is qualified as
'new' if it has not already been reached during the past execution. The state
of the system is characterized by the values of its inputs and outputs, and
also its internal functioning state. Any never assigned value of one of these
elements (inputs, outputs and internal state) leads to a new state. Two
situations are often considered:

• return to previous input values, but with new internal state of the system
functioning (recovery blocks),

• preservation of the current value of the outputs and evolution of the
system functioning into a new internal state (termination mode).

We will now study these two situations in the following two sub-sections.

18.4.2 Recovery Blocks

The recovery blocks technique makes use of a passive redundant module
(or component) which is activated when an error is detected in the first
module. This approach is illustrated in Figure 18.15. The thick gray arrows
wh ich represent the data flow show that the redundant module Q starts its
execution with the same data as P (the execution of which has been detected
as erroneous).

This technique requires a backward recovery of the input data,
implemented, for example, by a recovery cache. However, globally, the
recovery may be considered as forward because a new module is used;
hence, the internal functioning state is new. If the implementation of the
modules is made by a software technology, this new internal state will
contain the address of the redundant subprogram (Q) that offers the same
functionality as (P).

We have just considered the case of a passive redundant module. In
order to tolerate the occurrence of an error in this second module, it is
necessary to use a third module, and so on. These spare modules are also
called alternates. The word version is also used, but this word does not
explicitly express that the executions are alternative (P then Q) and not
simultaneous (P and Q).

The technique of recovery blocks is generally considered as a backward
recovery technique. This is true from a functional viewpoint of the system,
or if a hardware implementation based on two identical components is made.

18. Fault-Tolerant Systems 483

Indeed, in these two cases, P and Q are the same. On the contrary, software
implementation of P and Q are generally different. This discussion
highlights the limits of our general presentation. So, recovery blocks can be
introduced conventionally as a backward recovery technique, signaling the
particular case of software implementation.

Inputs

~r +
/

P Q f

~, ,. ~, ,
KO

I Check ~ I Check
.. ... Error

OK OK

, ----+ Coatrol Flow

Outputs DalaFlow

Figure 18.15. Recovery blocks

18.4.3 Termination Mode

The termination mode technique consists in finishing the processing
started by a first module (or component) P in which an error is detected.
Figure 18.16 illustrates this technique. We see that Q achieves (or
completes) the activity actually realized by P, without starting with new
initial data but by using the current context. The data remains the same, as Q
uses the outputs issued from P, but the internal state of the functioning is
new, as Q replaces P.

The termination mode is, for instance, implemented by the exception
mechanism of the Ada language. P is the current treatment and Q is the
exception handler:

begin
Pi

exception
when others=> Q;

484 Chapter 18

end;

When an error is detected in the execution of the P statement block, an
exception is raised in order to signal this error. The processing is resumed by
execution of Q. The values of the variables modified by P are preserved (no
backward operation), while the instruction pointer has a new content (the
memory address where Q starts).

A second example of fault-tolerant mechanism based on the termination
mode is given by the on-line use of error detecting and correcting codes.
Indeed, the results produced by a module P are detected as erroneous by a
code violation, but theyare exploited by a corrective function Q (program or
circuit) in order to produce a correct final result.

In these two different examples (Ada exceptions and EDCC), the
treatment does not return into any previous state. In particular, the initial
input values are not re-used to handle the error. Even if the chosen state used
to resume the execution preserves the data obtained by the erroneous module
(outputs of P), the internal execution state is new, branching to (Q). Thus,
this technique is a forward recovery technique.

Inputs

" n
/

p
Q /

",-

l' ~ KO I Check
OK

""-"

""
,Ir -. Control Flow

Outputs Da1aFlow

Figure 18.16. Termination mode

18. Fault-Tolerant Systems 485

18.5 COMPARISON

The developers can chose between numerous and varied tolerance
techniques to design a specified high-dependable product. We must compare
their similarities and their differences to help for a better choice. In practice,
it will frequently be necessary to combine these techniques to deal with
many different c1asses of faults that have to be tolerated.

18.5.1 Similarities

18.5.1.1 Redundancy

All proposed fault tolerance techniques have an essential common
feature: they are based on the use of redundancy. The dependability of a
system evolves from 'fault detection' towards 'fault tolerance' by aglobai
increase of its redundancy. In all cases, this added redundancy is however
structural.

The redundancy involved by the N-versions approach is passive, as the
(N-l) replicates modules can be suppressed if no faults alter the first module.

The forward recovery approach is also based on passive redundancy, as
the new module (Q) to be executed in case of error in the first module (P)
can also be suppressed as far as no error occurs.

Another attribute characterizes the fault tolerance mechanisms: the
presence or the absence of error detection means. The tolerance mechanisms
that make use of an error detection action followed by a recovery of the error
are qualified as active tolerance. On the contrary, if no error detection is
explicitly needed, the tolerance is said to be passive. All techniques
presented here, except the N-Versions, belong to active fault tolerance.

18.5.1.2 Tolerance Mechanism Framework

Even if each technique presented in the preceding sections seems
specific, it belongs to a very general framework, which involves three
synchronized stages:

1. error detection, by on-line testing techniques previously studied,

2. error diagnosis by localization of the failing module (determination of
the state of the degradations caused by the fault just before the error
detection),

3. error recovery by the following sequence:

~ protection against further propagation of the detected error by anti
contamination process,

486 Chapter 18

~ then error correction and/or evolution towards a safe state,

~ and finally reconfiguration, leading to resume the normal activity of
the producl.

In the case of the N-Versions technique, the two first steps do not exist
since the error recovery is performed by compensation. The successive
degradation of the modules during a mission can lead to a 2-version system
which is no longer fault-tolerant. The introduction of error detection into the
N-Versions structure, proposed hereafter (such as the NMR technique) will
provide a useful knowledge of such degraded situation.

In the two other techniques, the detection and the diagnosis are
completed by a backward or forward recovery. It seems curious to use error
diagnosis in the case of backward recovery since the corrective treatment
starts from a previous state. However, the effects of the erroneous treatment
must be corrected before returning to any previous state. For example, if a
resource has been accessed but not released, this release must be done before
the recovery process calls again for the resource; thus, we avoid a deadlock
situation.

Depending on the alternative treatment Q, the tolerance mechanism can
either:

• restore the entire ability of the product to deli ver its service,

• or proceed to a progressive and graceful degradation of this service
when the available resources are not Ion ger sufficient.

without faults OK

passive fault OK

active fault error

error

crror

OK

fault

contamination

recovery

correction/
repair

Figure 18.17. Reconfiguration process

18. Fault-Tolerant Systems 487

Figure 18.17 illustrates such general active reconfiguration process.
InitiaHy in a faultless state (state I of the graph), the product is affected by a
passive fault (state 2), and then this fault is activated as an error (state 3).
This error is propagated by contamination in the product structure (state 4),
until an integrated on-line testing mechanism detects one of the active errors
(state 5). Then, the contaminated part of the product is isolated to block any
further error propagation, and a rescue service is provided (state 6) until a
correctionlrepair operation aHows to restore the initial capability of the
product (statel).

18.5.2 Differences

The choice of a tolerance technique must take several criteria into
account: the fault c1asses to be tolerated, the duration of the mission, the
'know how' and the mastering level of the development team, and the
impact of the technique on the development process.

18.5.2.1 Faults to be Tolerated

Each one of these techniques suits to the tolerance of some particular
c1asses of faults. It is thus important to know which fault c1asses are most
probable in a given project.

Techniques based on the backward recovery are weH adapted to transient
faults which have then disappeared when the module is executed again. Such
approach is then not relevant to handle design faults. However, a particular
case must be mentioned: applications very sensitive to values of parameters,
which have a very low probability. For example, areal-time application can
reach an error for some very particular configuration of its tasks. Such a
situation can have a very low occurrence prob ability . For example, the error
is reached when a temporal parameter has a precise value. For instance, to
avoid such error, the time between the arrival into a internal state and the
date of occurrence of an external event must not be between 0.07 ms and
0.08 ms, knowing that this event occurrence date is always between 0.00 ms
and 10.0 fOS. If these two dates are not correlated, the occurrence probability
of this external event when the system has reached the specified state is
1/1000. If this state is reached scarcely in a short duration mission, the
occurrence prob ability of the error is low. In this case, a simple retry in a
previous state has little chance to conduct again in the erroneous state.

Forward recovery techniques are weH adapted to tolerate design faults, as
another module replaces or completes the erroneous treatment. NaturaHy, the
redundant module must have been developed by an independent design team
with different realization constraints that prevent the introduction of identical
faults in the various modules. If the recovery blocks are implemented with

488 Chapter 18

two identical systems (P=Q), then no design faults are tolerated (cf. the
analysis of the failure of Ariane 501 in Appendix D). The only faults to be
effectively tolerated in that case should be those due to the ageing of the
electronic components. However, the stress puts on the product can bring
simultaneous faults of the hardware components used by the alternates P and
Q, making thus again inefficient the fault tolerance mechanism.

In the same way, the N-Versions technique does not tolerate design faults
of identical versions, or common mode faults, such as simultaneous faults
due to operational stress (temperature, etc.). The TMR makes the
fundamental assumption that only one module can fail at the same time
(single fault assumption).

18.5.2.2 Acceptable Extra-Cost

During the development stages
The development of a fault-tolerant system is very expensive: choice of

one or several specific techniques, design and verification of the system.
We have shown that fault-tolerant systems involve redundant

components. This implies quantitative extra-costs due to supplementary
components. Qualitative difficulties are added to these quantitative aspects:
for example, the realization of a fault-tolerant pro gram based on the
termination mode is complex, as the primary program P detected as
erroneous can be stopped at many different locations during its execution.
Hence, the program Q that must achieve the task started by P must behave
differently according to locations as weH as the nature of the detected error.

The example of the termination mode also shows that the implementation
of a fault tolerance technique influences the design choices. For example, if
a program P deli vers a result, an iterative algorithm is more suitable than an
analytical resolution to implement a termination mode. Indeed, if an error
occurs in the first treatment (P), the approximated result can then be taken as
input of the second treatment (Q) to produce the precise final value. On the
contrary, analytical algorithms generaHy produce no intermediate results that
can be properly exploited by a second algorithm.

The development of fault-tolerant applications requires also designing the
elements which are associated with the chosen technique: the voter for the
N-Versions, the recovery cache mechanism, the recovery point management
for the backward recovery, etc.

FinaHy, extra-costs and difficulties are added to verify the redundant
system. Two problems are encountered: the testing of the elements (versions,
etc.) of the application, and the testing of the fault tolerance mechanism. The
first difficulty is illustrated by the test (design, as weH as production or
maintenance test) of TMR structures whose failures of the modules are
masked. Consequently, a fault may exist in one of the three versions, which

18. Fault-Tolerant Systems 489

cannot be detected at the outputs of the system, because of the fault-tolerant
mechanism. In such a situation, the product is accepted, whereas it will not
tolerate the occurrence of a second fault on another version. In fact, the
compensation mechanism does not use any error detection techniques.

The second difficulty concems the fault tolerance mechanism testing.
This difficulty can, for instance, be due to the necessity to activate faults in
order to test the error detection means. Of course, the product is designed to
prevent faults, so more complex methods and devices have to be used, such
as the fault injection techniques which artificially add faults.

During the fabrication and the operation of the product

Extra-costs are also implied by the fabrication of a fault-tolerant product.
For example, each sampie of an electronic product implementing a TMR
technique will cost at least three times the cost of a basic component. In the
same way, every fault-tolerant software requires more memory space to be
embedded and executed.

The overhead due to the fault tolerance mechanisms can be expressed in
terms of supplementary execution time (CPU time), or necessary increase of
CPU performances to treat these mechanisms. We have noticed the
complexity, hence the duration, of the implementation of the context save
and restore procedures involved by the backward recovery techniques. When
time constraints belong to the specifications, and when faster components
(such as CPU) cannot be used for technological or economical reasons, the
redundant modules must realize approximated calculus. The recovered
function is hence degraded. The N-versions seems to be the more efficient
technique since a11 versions are active. N processors are then necessary for
efficient concurrent executions. This efficiency is to be paid by an extra-cost
in terms of electronic components (redundant processors).

The economical aspects of the fault tolerance are not to be neglected.
There are domains where quite expensive redundant solutions are accepted
(military, avionics, spatial). Will they be always accepted? In other cases,
where cost reduction is essential, only simple solutions can be envisaged.
For example, the re-initialization of a system and the re-starting of the whole
processing is a cmde but cheap implementation of the retry mode technique.
Obviously, such a technique treats the transient fault c1asses (due to parasitic
interference, or a rare blocking situation). Methods and technology choices
always result from trade-off between economical constraints and
dependability performance.

18.5.2.3 Mastering tbe Development and Mission Duration

The designer must know that the complexity of the fault tolerance means
can introduce new faults. This complexity is due to the fault tolerance

490 Chapter 18

mechanism itself, but also to its impact on the design process. This last point
will be considered in section 18.6.

In fact, the faults handled by the tolerance mechanism and the faults due
to the complexity of the implementation are coupled. For example, the use of
the N-versions technique by inexperienced development teams is not
advised: -the increase of the global complexity of the system (versions, voter
and integration of the modules and the voter) can bring new faults added to
those of the versions. On the contrary, the use of identical electronic boards
in order to tolerate transient and localized hardware faults (on one board
only) is efficient if it results from a weIl-rnastered manufacturing process.

The duration of the mission must also be taken into account to choose a
technique. For long duration missions, it has been shown that the TMR
approach is inefficient because the progressive accumulation of faults can
invalidate the fundamental single failing module assumption.

By the way, let us again stress on the fact that fault tolerance mechanisms
do not prevent fault occurrence during the operational stage. On the contrary,
in the case of the TMR, the probability of faults is about three times greater
(the complexity is three times greater). Also, the occurrence of errors at the
output of the modules is not reduced; masking technique only prevents final
output errors, i.e., failure occurrence.

The development of redundant components simpler that the original ones
is frequently justified by this need to minimize the fault risk as weIl as by the
need to reduce the execution times. For instance, the alternate module in a
recovery block technique will offer a degraded but safe service. This
approach is weIl known by tennis players who take less risk during their
second service ball.

18.5.3 Use of Multiple Techniques

Practically speaking, different techniques are often combined together to
implement a fault tolerance strategy. For example, if transient faults are the
most probable faults altering an electronic component, a backward recovery
technique is interesting. It can be completed by an approach based on
forward recovery to treat the case when several successive trials fail. We will
mention some other examples.

18.5.3.1 An Extension of the TMR: the NMR

The voter implemented in the N-versions approach has to determine the
correct result from the outputs given by the versions. Frequently, this
function could also be exploited to reveal the incorrect results given by the
versions, thus detecting their bad functioning. In the case of a majority vote,
all results different from the majority of the produced results are considered

18. Fault-Tolerant Systems 491

as false. When the values produced by the versions belong to a 'dense'
domain, the conclusion is not so obvious. We have already mentioned that
the 3 values 14.0, 14.1 and 14.2, although different, can be considered as
correct if the acceptable calculation uncertainty is 0.2.

Let us now consider a TMR. We add to this structure adeteetion deviee
which compares the outputs z}, Z2 et Z3, two by two, and signals an error as
soon as a difference is detected (see Figure 18.18).

The logical function performed by this detection block is:

error = (z) $ Z2) + (z) $ Z3) + (Z2 Ei' Z3) ($ is the XOR operator)

l
I Error

Detection I ~

A~ IU"
Inputs

..... Mt
" "\

~ Zl
~ Outputs

--+ M2
Zz ,.

.... Voter ... I ...

/'
M3 --+ I

Figure 18.18. Improvement of the TMR: error detection

Still continuing to deliver a correet final output, this system is able to
signal any error of one module. We have thus given to the TMR passive
redundant structure an on-line testing property. Moreover, it is now easy to
localize the erroneous module (this will be studied in Exercise 18.3).

We finally reach the NMR (N-Modular Redundancy) by adding several
spare modules, and areconfiguration mechanism which neutralizes the
failing module and replaces it by a spare module. Hence, we have combined
the TMR with a recovery block. Figure 18.19 shows the principle of this
structure: three modules MI, M2, M3, are active (they participate to the
vote), while (n-3) modules are waiting. When the detection circuit observes
an error, the failing module is identified, and a recovery procedure excludes
it, for instance by switching its power off, and aetivates one of the spare
modules that now participates to the vote. Reliability and availability
calculus show that the NMR is better than the basic TMR.

492 Chapter 18

Numerous variations and extensions have been imagined from this basic
scheme. In particular, some of these modifications concern the functioning
mode of the spare modules. When dealing with electronic components, the
best solution would be to keep the spare modules inactivated or cold
standby; these spare modules should be stored outside the product, in good
environmental conditions (temperature, protection against aggressions) in
order to preserve a better reliability than the one of the active modules. This
idea is not always excellent because when a spare module has to replace a
failing one, it is necessary to insert it and to initialize it by restoring the
reached context (cf. recovery points and recovery cache sections). For
systems implementing software, this operation is relatively long, the
resulting delivered service being slowed down.

I DetectioD r
Correction

reconjiguration + ~~~

Inputs
Mt i'

1'\ Zt

---+ M2
~ Outputs

Voter
Z2 r

l......+ M3 Vz3
~

...,
M4

spare

t modules

Mn
..-

Figure 18.19. NMR

In many present systems, the cold standby technique has been improved
by the use of hot swap modules. The faulty module can be replaced in-line,
without switching off the power of the system. The new inserted module is
rapidly and automatically initialized.

In more critical applications, one often prefers solutions using hot
standby modules. In this case, the redundant modules get the current
evolution of the context. The electronic components are powered on and

18. Fault-Tolerant Systems 493

they receive and treat the input signals; however, they do not participate in
the final vote. When an error recovery occurs, any spare module is in the
same state (flip-flops, registers, variables, etc.) as an active module; hence, it
can easily be switched as an active participant of the vote (by a simple
electrical switch) without any initialization procedure.

This approach is used by a lot of recent modular, flexible and efficient
techniques, offering fault-tolerant systems using active redundancy with
reconfiguration. The possibility to integrate continuous or discontinuous on
line testing mechanisms inside the modules lead to numerous redundant
architectures based on vote and switch operations: double-duplex, 2-out-o/-4,
3-out-o/-4, etc.

18.5.3.2 Structure with Adaptive Vote

The structure with adaptive vote is a particular case of the N-Version
technique. When an error occurs at the output of one module, this module is
switched off, the vote function being now performed on the (n-l) remaining
modules. This degradation process is continued as far as there are still at
least three functioning modules.

This idea has been adapted to various techniques such as the selj-purging,
the Shift-Out, etc. The selj-purging technique is explored by Exercise 18.5.

One can also implement such an idea in the case of distributed tasks on a
computer network. Other combinations of techniques will be presented in
section 18.7.

18.6 IMPACT ON THE DESIGN

The high complexity of the design of the mechanisms necessary to
implementing fault tolerance techniques has already been signaled several
times. Unfortunately, difficulties encountered during the development of a
fault-tolerant system are not restricted to specific problems relevant to these
techniques. Other difficulties result from architectural choices. Without
entering the details of such problems, we would like to illustrate one of these
aspects: the choice between confinement and error propagation.

Let us consider a system' s component introduced during a design step. If
an error is detected during the execution of this component, two actions can
be envisaged:

• the error is locally handled: the error is confined into the component,

• the error is communicated to the 'parent component', that is to say the
component who used the erroneous component: the error is then
propagated.

494 Chapter 18

The aim of the confinement is to avoid:

• collateral effects on the other components introduced at the same design
level that the erroneous component,

• parent effects on the components belonging to higher hierarchical levels
(parent, grand-parent, etc.),

• effects on the resources used be the components, such as the hardware
(microprocessor and memory) and the software elements (operating
system).

By avoiding this error contamination, we try to avoid the failure of the
global system.

Confinement of the effects of faults/errors on the resources is a more and
more important need, as recent systems use a same plate-form to execute
several various functions of one application. Formerly, a natural confinement
resulted from the fact that each function was executed on an independent
plate-form. This new situation is for example encountered in embedded
avionics systems: the 1ntegrated Modular Avionics concept.

Confinement means must prevent:

• direct contamination,

• indirect contamination.

As example of direct contamination, an erroneous task T2 assigns a
wrong value to a variable shared with another task Tl. Indirect
contamination is illustrated by a task T2 that enters an endless loop because
of an error and does not release the processor, causing a schedule failure of
another task Tl (starvation phenomenon).

Different and independent of the confinement mechanism, the error
propagation mechanism aims at signaling an error occurrence. This
propagation is justified if the erroneous state has been reached, not because
of the component itself, but because of its external environment, or because
of the other components of the system. For example, a subprogram can
behave incorrecdy because of the way it is used: incorrect values of the
calling parameters, inadequacy of the state at the calling time, etc. For
example, the call to a Pop function applied to an empty stack cannot be
correctly treated by this function. However, the caller is not necessarily
informed of this situation if this empty state is an internal attribute. The Pop
subprogram detects an error of which it is not responsible. Consequently,
this pro gram must propagate this error.

On the contrary, if a call to a Push subprogram is made when the stack is
full, two design choices can be made:

• error confinement by increasing the stack size in order to be able to store

18. Fault-Tolerant Systems 495

the value passed to the Push program as a parameter; we then consider
that the fault is due to a bad estimation of the stack size necessary to the
execution;

• error propagation by signaling the impossibility to execute the function;
the fault is then attributed to the component using the stack.

Frequently, these two possibilities are simultaneously used: the
component detecting an error makes a part of the error recovery, while
communieating the error to the user component for complementary actions.
For example, if the component is a subprogram, its partial execution before
the error detection can have modified some local or global variables; hence,
these variables must be restored to their initial values before the signaling of
the error to the calling program which will make other actions.

Whatever the choiee, adecision must be taken by the designer. The
worse case would be:

• not to explicitly signal an error which is not fully treated in the
component having detected it,

• not to perceive from the outside an error signaled by a component.

In the events chain that caused the destruction of the first Ariane V
launch, this last situation occurred. The two implicated components are the
Inertial Reference System (in charge of the determination of the rocket
position according to the vertieality) and the On-Board Computer (whieh
controls the evolution of the launcher: engines, etc.). A same parameter
shared between these two components could be interpreted as flight data or
diagnosis data (an error identifier). When the failure of the first computer of
the Inertial Reference System was detected, the second computer took over
(Recovery Blocks technique). This second computer reached rapidly the
same erroneous state. This alternate signaled then this error to the On-Board
Computer which interpreted this information as a flight data, provoking the
rocket swiveling. In this example, the communication of an error not
handled, caused an error contamination.

The implementation of tolerance mechanisms requires to explicitly
separate the expression of a correct execution of a module and the signaling
of an error. Thus, in the case of a pro gram, an error parameter, even distinct
from the normal output data returned to the calling routine, can be ignored or
misunderstood by this calling routine. On the contrary, the propagation of an
exception will interrupt the normal execution control flow by an automatie
branching to the exception handler.

496 Chapter 18

18.7 SOME APPLICATION DOMAINS

In this section, we briefly present some fault-tolerant applications, in
order to illustrate the techniques introduced in the preceding sections. We
also point out that numerous combinations and variations of the basic
techniques can be used.

18.7.1 Watchdog and Reset

At first, we consider an industrial electrical power distribution control
system. Several control units (boards) are connected through a CAN Bus, as
shown in Figure 18.20. The Master Control (MC) Board, connected to the
process, activates a watchdog every 500 ms, sending it a signal. If this
operation is not performed, the watchdog provokes areset of the board (re
initialization of the internal registers, the pro gram counter, the IIO interface
and the CAN bus circuitry). This example illustrates a retry mode technique
applied to the MC board by using a deadline detection mechanism. Very
simple, this technique allows escaping from blocking situations due to
transient faults (e.g. extern al perturbations or exceptional conflicts to the Bus
access).

This basic mechanism can be extended to other boards of the network
which must periodically answer identification requests emitted on the Can
Bus by a supervision module. These simple techniques belong to detection
and correction mechanisms implemented in this medium-criticality
application.

Figure /8.20. Use of a watchdog

18.7.2 Avionics Systems

The electrical flight control system of the Airbus A320 tolerates faults
using two techniques called N-selJ Checking and Double-Duplex. These fault
tolerance approaches jointly use techniques previously introduced.

18. Fault-Tolerant Systems 497

The specification of the system is used to produce several versions
created by different design teams. All the versions are embedded and are
executed, but the spares are only used if an error is detected. Bach version or
group of versions is self-checked, that is it possesses an acceptance test to
check the result. Two implementations will be now exarnined: N-SelJ
Checking, and Double-Duplex.

18.7.2.1 N-Self Checking

For the N-Self Checking, the N versions are executed in parallel, but the
N results are not compared. If an error is detected by the acceptance test of
the first version (V1 in Figure 18.21), then the result of the version is not
accepted. Therefore, the conclusion of the check (AT2) of the second version
(V2) is considered, etc. So, each version is self-checked and the first correct
result is supplied.

This solution combines the advantages of:

• the N-Versions, as the actual parallelism of the version computation saves
time, particularly when one or several versions run erroneously,

• the Recovery Blocks, as the detection of the failed version makes
maintenance easier. For instance, the identification of the erroneous
hardware subsystem is memorized and this subsystem can irnmediately
be changed after the aircraft landing.

Figure 18.21. N-Self-Checking

18.7.2.2 Double-Duplex

Double-Duplex structure provides another rnixing of tolerance
techniques. To avoid complex self-checking, couples of versions are
considered. The results of 2 versions are compared. If the results of the first

498 Chapter 18

couple are different, they are not considered, and those of the following 2
versions are examined. Figure 18.22 represents such a structure.

The simultaneous running of the N-Vers ions saves time. The comparison
of the results of 2 versions makes the check of the results easy. The second
version may be simpler than the first version and provide an approximated
result. Then, the checker examines the coherence between the two results,
and not their strict equality. This corresponds to a likelihood technique. The
final result is naturally taken from the first version.

The switching to the second couple uses the Recovery Blocks principle.
This avoids the implementation of a complex voter required by an
N-Versions technique.

Double-Duplex structure has a drawback: we know that at least one of
the versions of the couple detected as erroneous fails. However, additional
test must be applied to obtain its identity: the first, the second or both?

I ...---_ _--.,.

Figure 18.22. Double-Duplex

18.7.3 Data Storage

From the beginning of the Computer Science, detection and correction
mechanisms have been introduced in the computers in order to compensate
the reliability weaknesses of the technology. This has been especially the
case for the main memory, then for the mass memory. lliM began to use
error-correcting codes in the lliM 7030 (Stretch) computer with a modified
Hamming SEC/DED (Single Error Correcting, Double Error Detecting, code
presented in Chapter 15) for main memory. Besides, various redundant
techniques have been used in other units of this computer: parity checking
for registers, modulo-3 residue check for floating point arithmetic unit,

18. Fault-Tolerant Systems 499

parity codes for tape recording, and SECIDEC codes for disk.
Mastering of faults of main memory and mass memory reveals quite

different problems, as the used technologies are also quite different.
Consequently, the proposed solutions are also original.

18.7.3.1 Main Memory

Nowadays, Random Access Memories use semiconductor integrated
circuits (Static or Dynamic RAMs). These circuits can be affected by two
main classes of technological faults :

• permanent faults qualified as hard faults, such as a 'stuck-at l' fault of a
memory cell,

• temporary faults qualified as soft faults, such as a discharge of a memory
cell due to an alpha particle which enters the chip.

Coding
k+r

Memory Decoding r-+ ... ~ r'

Correctlon Error

.... A ~
Jogging

k bits k bits
~

Adress Bu!\,.
~ ...

..... ... ' Data Bus
~ " ... " Control Bus
~ ~

Figure 18.23. Main memory EDC

The use of error detecting and correcting codes like the Hamming
modified code to code the data stored in the memory allows the on-line
detection and the correction of certain errors. The general structure of such
an on-line detection and correction structure is illustrated by Figure 18.23.
For example, any single error due to a 'hard' or a 'soft' fault is corrected.
This correction mechanism is based on a forward recovery because it does
not use the incoming data value (k bit word); the correct value is elaborated
from the current output value (k+r bit word). A simple example of such code
is proposed in Exercise 18.8.

The differences between 'hard' and 'soft' fault can be exploited, in order
to increase the fault tolerance of this memory. For this purpose, we add a
memory management unit (EDC Unit) aiming at coding, decoding, detecting
and correcting. Moreover, this unit brings another functionality (Figure
18.24). Besides the classical detection/correction function, each time a word
is detected wrong, the unit checks if the detected error results from a 'hard'

500 Chapter 18

or a 'soft' fault. This is obtained by re-writing in the memory the corrected
word: if a new read gives again an error, it implies that it was a hard fault
wh ich is signaled at the error logging output, else, the word has been
corrected.

These scrubbing operations are conducted off-line, without any penalty
in the normal relations between the memory and the external units (CPU,
Direct Memory Access etc.). Specific integrated circuits are proposed by
various IC manufacturers to interface the main memory and to manage
errors.

.... Error EDC :-CPU

... Memory
Unit :::

~
A~i Adress Bus ...

....
" Data Bus ..

~ Control Bus:

Figure 18.24. Main memory error management unit

18.7.3.2 Mass Memory: Introduction

All mass storage devices, magnetic - optical - or magneto-optical, use
redundant EDC codes for on-line carrection of certain dasses of errors. The
faults that can affect such media are not exactly the same as those occurring
in main memories. Thus, a new fault dass leads to read erroneous words that
were however correctly recorded. These random problems are due to the
access technology, such as, for example, imprecision of the positioning of
the flying heads above the tracks of a magnetic disko Consequently, in
addition to EDC-ECC codes, a retry technique is used: when uncorrectable
read errors are detected, the word is read again several consecutive times (for
example ten times). We should note that this repetition is a cause of the
slowing down of the read access times of some mass memory units having
bad quality disks.

Error detecting and correcting mechanisms must be located as dose as
possible to the disk drive (in the external controller or entirely within the
disk drive), in order to eliminate the need far delay in the case of errors and
thereby to improve the system performance. Thus, no penalty is put on the
communications between the disks and the DMAC (Direct Memory Access
Controller).

Independently from the previous EDC code implementation, one can also
duplicate storage units on distributed storage systems for high dependability

18. Fault-Tolerant Systems 501

applications. An example of such redundant approach is the RAID
(Redundant Array of Independent Disks) technique, which is presently very
much used by many computer system and network manufacturers. Berkeley
University has developed this technique wh ich offers several safety levels.

18.7.3.3 CRC for Disc Drive

Disk drive is also subject to errors during read and write operations. The
errors can be induced by random noise, correlated noise, media defects,
mechanical non-linear phenomena, and other causes. The purpose of error
correction is to improve the integrity and the recoverability of data.

Burst-correcting code are appropriate to master such problems. Codes
that are frequently used are the Fire codes which are CRC codes (see
Chapter 15).

Example of generator of a Fire code:

g(x) = (x23 + l)(xI2 + x lO + x9 + x7 + x6 + x4 + 1).

This code allows the correction of a single 12-bit burst in a sec tor of the
disk (2147 bits). During a write of data to the disk, a division module the
above polynomial occurs. The remainder is appended to the data and written
onto the disko Hence, 35 bits are added in this coding process.

During a reading, the data stream is again divided modulo the chosen
polynomial. If the remainder, or syndrome, is equal to zero, the data is
correct. If the syndrome is not equal to zero, then an error has occurred.
There are two error types: correctable and uncorrectable. For a correctable
error, the syndrome contains information ab out the error pattern and the
error location.

Error detection/correction on Reads
Error detection is critical to ensure the integrity of customer data. The

Fire code can detect most uncorrectable errors. But there is a chance that an
uncorrectable error will be mistakenly found to be correctable and correction
attempted! To prevent this, a 16-bit CRC code is appended to the data on a
write before encoding. It is used for error detection after error correction
with the Fire code has occurred. This decreases the probability of undetected
errors to less than one occurrence in 1015 bits transferred.

Moreover, the correction is performed in real-time, during the normal
data access operations.

Fault Detection on Writes
A read operation is appended to the write operation, in order to detect a

bad recording. This helps preventing a customer from storing bad data
without knowing it.

502 Chapter 18

18.7.3.4 CD ROM

Data stored on CD-ROM also implement cyclic codes for the detection
and the correction of errors occurring during write and read accesses. The
solutions are different in the case of Audio CD and Data CD.

Audio CO ROM
An Audio CD-ROM has 330000 sectors; each sector has 3234 bytes and

is structured according to the format of Table 18.1. The User Data contains
the useful data coding the sounds. The control block stores information
conceming the duration and the number of each selection.

The EDCIECC (Error Detecting Code / Error Correcting Code) part
contains two groups of 392 bytes. The Reed Solomon code which is a BCH
cyclic coding (see Chapter 15) has been first used on the R-DAT (Digital
Audio Tape). This code has then been improved as the Cross Interleaved
Reed Solomon Code (noted CIRC). The code wh ich is used for the compact
disk adds some parity symbols and makes an interleaving of the bytes.
Thanks to 2 cyclic codes, one before and the other after the interleaving
operation, it is possible to detect many faults: thus, 4000 consecutive bits can
be recovered and 12000 bits compensated .

.. ",
Userdata EDClECC Control

19part 2- part

2352 392 I 392 98

Table 18.1. Audio sector

Oata CD ROM
The binary data stored in CD-ROM are structured in a quite sirnilar way.

The 3342-byte sectors are divided into three parts, as described in Table
18.2. A header and synchronization block is followed by the user data. Then,
two 441-byte EDC-ECC blocks integrating the control data are added, and
the sec tor is completed with a third 288-byte EDCIECC block .

Hlmder User
.2 ",

J;DC/ECC 8I1,d eo~tt~l
&

Synebron.b:aUon dafa parts 1, 2 & contI'GI 3rd pari H

124 2048 882 I 288

Table 18.2. Data sector

18. Fault-Tolerant Systems 503

Comparison
The tables given above show that the redundancy necessary for

synchronization, control and EDC-ECC respectively represent 27% of the
sector length in Audio CD and 38% in Data CD. The EDC-ECC parts
represent redundancies of respectively 32% and 35%.

The two domains do not have the same reliability requirements. A
perturbation of one sec tor of a 74-minute audio CD-ROM will affect 13
millisecond of the produced sound. This will probably have no consequence
on the user. On the contrary, any loss of a byte in a data file of a data CD
ROM can have severe consequences on the use of a file that is read
(executable program, parameters, etc.).

In fact, the reliability of actual Data CD-ROM units (media, read and
write operation, transfers) is high: we find industrial products with
announced values of 10.12 errors per CD (of 650 Mbytes).

18.7.4 Data Transmission

Data transmission makes use of classical EDC codes since the first ages
of this science. Thus the classical protocols, such as SDLC, HDLC, X25 use
cyclic codes. For example, the following standard polynomial code is used
for signature in disk controllers and data cornmunication protocols:

g(x) = x l5 + x l2 + x5 + 1.

The redundant codes are not often used in the classical data Bus of
computer systems. Frequently, only simple parity bits are used, which does
not allow error correction. On the contrary, in high-critical applications,
more sophisticated codes are implemented.

We will describe the tolerance mechanisms used by some significant
LAN industrial networks which does not belong to high-critical applications:
the Ethernet Bus, used in general purpose LAN network (cornmercial or
scientific networks), and the CAN and V AN Busses, more recent, which
belong to Industrial LAN dedicated to real-time applications.

18.7.4.1 Ethernet Network

Two error checks are made at the ISO level named 'control':

• detection of erroneous bits on the physical media,

• detection and recovery of message collisions.

The complete error handling is relegated to higher levels of ISO
architecture.

504 Chapter 18

According to the security criterion (confidentiality and integrity
parameters), we should note that no encryption of the transmitted data is
made.

Alarm Thresholds

Several parameters are used to detect the occurrence of errors in the
global functioning of the network.

First, the maximum workload on the network is evaluated and compared
to a maximum value. It is estimated that a network is overloaded when its
average use is higher than 25%. This figure corresponds roughly to traffic
peaks of 60%. Above, it is necessary to re-route apart of the traffic activity.
This threshold corresponds to:

• 750000 bytes per second for a lOMbitslsec with a load of 60%, as the
Ethernet network traffic is (lOMbits 1 8bits) x 0,6 = 750 000 bytes per
second;

• 3000 frames per second because, for an average frame length of 250
bytes, the network transmits 750 000/250 = 3 000 frames per second.

A network is considered as reliable if its error rate does not exceed
0,01 %. At full admissible load, 3 000 frames per second being transmitted,
this rate corresponds to an average of 0,3 error 1 second, thus 1 080 errors 1
hour. By experience, we admit that there are 3 brief error peaks per hour.
Hence, these peaks must not exceed 1 080/3 = 360, which justifies a guarded
peak limit at 300. The maximum value is then of 300 errors 1 second.

The workload is a first parameter used to detect errors; the message
collision number is a second one. The maximum number of message
collisions on the Ethernet Bus is estimated at 50. This result corresponds to
an average using, with peaks of 35 to 40%.

Finally, the broadcast frames are special frames send to all the stations
connected to the network. The average number of broadcasts per second is
about 0.3. We can use this threshold to separate possible broadcast storms
from the normal background noise. These storms are frequent under TCP/IP,
due to a bad interpretation of a local address. Unfortunately, they can
paralyze the network: a broadcast is treated by all the stations, resulting in a
saturation of the equipment. Thus, the reaching of the threshold must be
detected as error.

Error Model
The detection of anomalies leads to error logging. The erroneous frames

are stored in memory. These errors are, for example:

• too short or too long frame,

18. Fault-Tolerant Systems 505

• wrong CRC (redundant EDC-ECC),

• bad alignment of the data.

The 20 to 63 byte frames are considered as erroneous frames that do not
result from message collisions. Indeed, a collision produces a non-significant
frame whose length is generally between 5 and 20 bytes.

The too long frames correspond to a length greater than 1512 bytes.
Finally, errors on the transmitted data are detected if they alter the CRC,

or if they produce a bad alignment (wrong positioning).
The addresses of the erroneous frames are also recorded, in order to

diagnose the source of the problem (thanks to the identity of the emitter).

Diagnosis and recovery
The detected errors lead to a diagnosis and a recovery treatment. Here are

some examples:

• Short frames without significance: they are characteristic of collisions
which are tolerated thanks to the re-emission technique (retry mode).

• Erroneous frames coming from the same station: the station is declared as
failing, leading to a maintenance procedure.

• Intense traffic at certain times during the day: this is due to peaks of use,
leading to re-routing of some transactions.

• Intense traffic between two distant stations: they must be moved and
connected to a same network segment (reconfiguration).

• broadcast traffic over the pre-defined threshold. The destination address
of such frames is FFFFFFFFFFFF (12 'F'). A broadcast overflow can
come from a failure of the emitter of a station (stuck-at 1 type), or of one
application. Under TCP/IP, this can be astation that sends a wrong
broadcast by emitting the local address '0' instead of the correct 'F' one.
All the other stations will try to make this frame follow, as it should
normally be done; as they do not recognize the address, they send a
broadcast message. Hence a saturation occurs.

18.7.4.2 CAN Bus

Initially developed in Europe for automotive applications, the CAN
(Controller Area Network) protocol is now used in more general industrial
loosely coupled systems using control devices, sensors and actuators. It has
been standardized under ISO 11898, and many micro-controllers now
implement a CAN interface.

The CAN Bus is a two wire serial data bus able to transmit random
asynchronous information at up to 1 Mbit/s. It follows the ISO protocol

506 Chapter 18

standard and implements the levels 1, 2 and 7. Each frame contains aStart
bit, an identifier field for address and priority of the message (11 bits in
CAN version 2.0 A, and 29 bits in CAN version 2.0 B), a RTR (Remote
Transmission Request) bit, a 6-bit contral field, a data field of 0 to 8 bytes, a
15-bit CRC + I-bit delimiter (at high value), a 2-bit ACK field (including an
ACK delimiter at high value), and a lO-bit EOF + Inter Frame Space. The bit
stream is coded according to the NRZ technique (Non-Return to Zero). The
electrical level 'low' is dominant while the level 'high' is recessive. This
means that if two nodes emit a 'high' and a 'low' levels at the same time, the
'low' level is transmitted (wired AND). The bit stuffing technique is used:
after the 5th bit with equal polarity, a 6th additional bit with opposite polarity
is stuffed into the bit stream. The CRC delimiter and the ACK and EOF
fields have a fixed form and are not stuffed. When the Bus is not used, the
line is idle (level high). Any active node of the system is allowed to start a
message transfer. The CAN Bus is a multi-master with a CSMNCD + AMP
(Carrier Sense Multiple Access with Collision Detection and Arbitration on
Message Priority) Bus access method. Each node, which emits a message,
reads back the transmitted bits. As soon as it detects a collision (according to
the wired AND principle), it stops the emission and switches to the reception
mode. It will try again later when the Bus is free: this is a delayed retry
mode.

A CRC checksum is used for error detection only. It is possible to detect
up to 6 single bit errors or up to 15 bits burst errors.

The CAN controller contains an error management unit, which handles
errors. Each time an error is detected by anode, it will be immediately
noticed to the remaining part of the network by an error frame. After this
error message, all nodes discard the received bits and the emitter will repeat
its message later (retry mode technique). This activity is managed at low
level, by the CAN controllers.

The error process comprises 2 main steps, error detection, and error
handling, which are examined in the following paragraphs.

Error detection

Five different errors are detected on the CAN Bus:

• bit error: when the value which is monitored on the Bus is different from
the bit transmitted, according to the basic signal coding,

• bit stuffing error: when 6 consecutive bits have the same value,

• CRC error: when an error is detected by the cyclic code checking,

• form error: when a fixed form field (CRC delimiter, ACK, EOF) contains
illegal bits,

18. Fault-Tolerant Systems 507

• acknowledgment error: each active node that detects a correct message on
the Bus overwrites the recessive (high) delimiter of the ACK field with a
low level; if the transmitter does not monitor a dominant bit (low) during
the ACK field, it detects an acknowledgment error.

Error handling
When a CAN controller detects an error, it notifies this error to the

network by an active error frame which uses a violation coding. This error
frame contains a flag which is made of 6 or more 'dominant bits' realizing a
bit stuffing violation or destroys a bit field in fixed form. This violation is
detected by all the nodes which send error frames. In order to avoid error
contamination, an algorithm is used to disconnect the defective nodes and
restore the correct Bus access.

Two kinds of error frames, active (dominant) and passive (recessive), are
used on the Bus, and each node has three states according to Figure 18.25:

1. Error active: the node can communicate on the Bus, and it sends an
active error flag when an error is detected;

2. Error passive: the node can communicate on the Bus, and it sends a
passive error flag when an error is detected;

3. Bus off: this state is a fault confinement state in which the node cannot
send or receive any message.

Two counters, Transmit Error Count and Receive Error Count, are used
by each node to evolve between the normal state 'error active' and 'error
passive' state, and then possibly in Bus off state (which is a trap state which
need areset operation to return to the error active state).

RECs; 127
AND TEC s; 127

Figure 18.25. State graph of error handling

18.7.4.3 VAN Bus

The VAN (Vehicle Area Network) Bus is another random asynchronous
serial Bus used in Automotive industry and which offers interesting

508 Chapter 18

protective mechanisms. The V AN protocol normalizes the levels 1 and 2 of
ISO model (reference ISO 11519). The medium uses 4 wires (two Data
wires, Ground and V cc), and the Data are transmitted according to a
differential current mode for a better quality of service: better resistance to
electromagnetic perturbation, and possibility to continue the transmission if
one Data wire is cut or is in short-circuit to Ground or Vcc. The signal is
coded with a E-Manchester coding wh ich is a mix of NRZ and Manchester
introduced in Chapter 15.

The arbitration is based on a non-destructive CSMAlCD technique on all
the frames of the messages. A 15-bit CRC is used for error detection and
correction. The generator is:

g(x) = xl5 + x ll + x lO + x9 + x8 + x7 + x4 + x3 + x2 + 1

= (x7 + 1)(x8 + x4 + x3 + x2 + X + 1)

This Fire code is able to detect isolated errors, burst errors of length
lower than 15 bits and double burst errors of length lower than 8 bits.

18.8 EXERCISES

Exercise 18.1. Reliability ofthe TMR

Calculate the reliability of a TMR described in section 18.2, for
exponential reliability laws with constant failure rates:

1. If we neglect the reliability of the voter;

2. If we suppose that the failure rate of the voter is ten times smaller than
the failure rate of the duplicated modules.

Exercise 18.2. Fault tolerance ofthe TMR

Analyze the TMR structure and determine single and multiple faults
which are tolerated and those which are not tolerated.

Criticize this structure.

Exercise 18.3. NMR

We want to make the logical design of the detection and correction
module of a NMR structure.

1. Verify the logical expression of the error detection signal proposed in
sub-section 18.5.3.

2. Find the logical function having three inputs (S1, S2 and S3) and three
outputs (M 1, M2 and M3), and which identifies the failing module.

18. Fault-Tolerant Systems 509

3. Determine the logical function of a 3-input voter, then a 4-input voter.
What use would be a 4-input voter?

Exercise 18.4. Study olthe double duplex

Detail the analysis made in sub-section 18.7.2.2. Ca1culate the Double
Duplex reliability.

Exercise 18.5. Study 01 selj-purging technique

Each one of the n modules of a self-purging system compares its output
with the final output of the system. In case of difference, it switches itself
off, and the vote is continued with (n-l) modules.

What is the interest of such technique?
Imagine its implementation as several software tasks distributed into a

computer system.
Which properties still has this system when two modules only remain

active?
This question can also be applied to the double duplex redundant

structure of Exercise 18.4.

Exercise 18.6. Example 01 a tolerant program based on retry mode

A procedure Get (I) reads the characters which are pressed on a
keyboard until the 'return' key has been keypressed. These characters are
then converted into a decimal value which is assigned to the variable I. If
characters different from the figures are provided, the execution of the
procedure is suspended and the exception Data_Error is raised.

Define a procedure Safe_Get (I) able to tolerate the keypressing faults.

Exercise 18.7. Programming and evaluation ofrecovery bocks

1. Programming. Let us consider a function P having one parameter C of
type T, and returning a Boolean value signaling an error. Propose two
implementations of a procedure tolerating the faults of P, thanks to an
alternate Q, according to the two approaches of the recovery block
technique examined in section 18.4.2.

2. Performance. Study the temporal performance ofthese two solutions.

Exercise 18.8. EDC in a RAM

We consider a Memory Management Unit such as the one introduced in
sub-section 18.7.3.1. The data words have k = 8 bits, and they are coded with
a linear code using n = 12 bits (hence r = 4). The coding relations are the
following:

Y1 = U1 Er> U2 Er> u4 Er> U5 Er> U7,

Y2 = U1 Er> U3 Er> U4 Er> U6 Er> U7,

510

Y3 = U],

Y4 = Uz EE> U3 EE> U4 EE> US,

Y5 = Uz , Y6 = U3 , Y7 = U4,

Ys = U5 EE> U6 EE> U7 EE> US,

Y9 = U5, YJO = U6, YJ1 = U7, Y12 = Us·

Chapter 18

1. Draw the generator and the control matrices, G and H (see Chapter 15).
Study the coding and decoding of the 8-bit word: (00111011). Determine
the Hamrning distance between all codewords.

2. Analyze the influence of a single error on the previous word. How to
correct this error?

3. Discuss the implementation of this code in the MMU.

4. Is this code appropriate for scrubbing 'soft faults'?

Chapter 19

Conclusions

In this book, we have, for pedagogical reasons, introduced problems and
solutions in a progressive way, providing separated viewpoints on the design
of dependable computing systems. In this concluding chapter, with the same
pedagogical objectives, we will first make a synthesis of the numerous
aspects we have encountered. This synthetic view is now necessary to
reorder the most important notions explained in the preceding chapters.
Section 19.1 summarizes the needs and the impairments which are at the
origin of studies on dependability. In section 19.2, we consider the three
classes of protective means introduced to obtain dependable products: fault
prevention, fault removal, and fault tolerance. For each of these classes, we
have studied numerous techniques. The question of their respective
efficiency is now addressed. These techniques aim at increasing the
dependability, that is the reliance that can justifiably be placed on the service
delivered. Hence, we must evaluate them using the dependability attributes
and assessment techniques discussed in section 19.3. We analyze here only
three attributes of the quantitative approaches: the redundancy which deals
with the structure of the product andlor its intermediate models, the
reliability and the safety. An overview of the qualitative approaches is then
provided.

Finally, we conclude in section 19.4, with a brief analysis of the
difficulty of choosing adapted dependability means, but also a discussion
about the real (undeniable) contributions of dependability techniques.

From the basic knowledge provided in this book, the reader is now able
to go deeper into some aspects of the large domain dealing with the design
of dependable computing systems.

511

J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002

512 Chapter 19

19.1 NEEDS AND IMPAIRMENTS

19.1.1 Dependability Needs

One of the main evolutions of computing systems is the increase of the
responsibility delegated to them. Thirty years ago, their role was limited to
simple services explicitly controlled by users. These systems were
employed:

• to increase the human activity productivity such as numerical
computation allowing simulation results to be quickly achieved,

• to improve everyday life such as electronic ignition systems, reducing car
pollution.

Then, many systems became human assistants. For instance, an ABS
(Anti-Blocking System) prevents the car wheel blocking, taking the
reactions of the driver as weIl as the environmental conditions into account
at braking time. However, the driver sends an order to the system, pressing
the braking pedal. Nowadays, computing systems are substituting for human
to take themselves decisions. The airbag opening in a car is controlled by
such a system.

The increase of computing system complexity is a second characteristic of
the advancement of these systems. This increase is due to a greater number
of provided services (quantitative complexity), to complicated algorithms
(qualitative complexity) and to the increased interactions between the
constituent subsystems. Once again, computing systems embedded in cars
provide good examples. Their number increases: systems for fuel injection,
ignition of the sparks, management of braking, steering and stability of cars,
air conditioner regulation, etc. The implemented control laws are more and
more complex. For instance, the engine control algorithms are more
sophisticated to decrease pollution (ignition advance, feedback of data
characterizing the non-bumed gas composition, etc.). These systems become
more and more highly coupled. For example, to control a car going too fast
into abend, the engine control systems and braking management systems
must handle complex interactions.

The two quoted characteristics, that is, increase of the responsibility and
increase of the complexity lead to a contradiction. On the one hand, the
increasing complexity of the systems makes inevitable the rise of the faulty
design risk and, consequently, of system failure risk during operation. On the
other hand, more and more responsibilities being delegated to these systems,
the occurrences of such failures is more and more unacceptable.

This contradiction leads the computing system users to ask for
dependable systems. This demand is justified by numerous tragic isues,

19. Conclusions 513

including patients killed by the failure of medical equipment, drivers injured
in a car accident due to untimely airbag opening, the loss of the first
launching of Ariane V.

Dependability requirement has been extended to non-critical systems. For
years, computing system failures were accepted by users as inevitable.
Nowadays, economical constraints imposed on users of computing systems
(service quality, hard deadlines, etc.) make them less lenient.

19.1.2 Dependability Impairments

The book aims at defining the basic concepts associated with the
dependability domain. Setting the problem to be solved, structuring the
requirements at the origin of this problem and the means to solve it are
essential aspects. They constitute the basis allowing dependability to be
considered as a science and not as an aggregate of experimental techniques
used by engineers.

Faults, Errors, Failures, Consequences

This foundational work at first took up studies on dependability
impairments. Four essential notions were defined:

• Failure characterizes a wrong service delivered by the computing system.
The product has an actual behavior that is not in compliance with the
expected behavior, as defined by the specification. This notion concerns
the product considered as a black box.

• Fault is a failure cause. 1t is often expressed as a non-respect for a
property on the designed system structure. A connection of an integrated
circuit being broken, or a wrong program statement, are two examples.
Thus, this notion concerns the structure of the product, that is a system
defined as assembled components, and more precisely a static view of
this structure. To point out the failure origin is sometimes difficult, for
instance when detailed knowledge on the structure is not available, or
when the causes come from outside or are multiple and combined.

• Error is an intermediate notion. 1t characterizes the fault effect as an
undesirable internal functioning state of the system behavior. A gate
output stuck-at 1 or the access to an array element that is out of range are
two examples. Therefore, this notion concerns the dynamics of the
system.

• Consequence is an external notion. 1t defines the effects of the failures on
the environment (user and non-functional environment), and on the
product itself, as it may be destroyed.

514 Chapter 19

A cause and effect relationship exists between fault, error, failure, and
consequence. However, all faults do not mandatory lead to an error, which
does not necessarily provoke a failure. For example, a bad statement of a
program (that is, a fault) may have no effect (no error produced) if this
statement is not executed (particular use of the pro gram, or dead code due to
reuse). The assignment of a value in an array, out of range, is an error. It
does not provoke a failure if the assigned address is in the memory data
segment and if the crushed value is no longer used by the pro gram
execution. In the same way, a failure causes more or less perceptible or
acceptable consequences.

Modeling Tools
As in other sciences, dependability looks for modeling tools of the

handled concepts: faults, errors, failures and their consequences. Models
then allow generic solutions to be deduced, that is, solutions applicable to a
dass of problems or systems and not limited to one specific problem
concerning one system. These modeling tools also allow assessing the
efficiency of the means proposed to handle the impairments. For instance,
the test method relevance depends on its capability to detect the presence of
faults. As actual faults existing in a system are generally unknown, fault
models are often used to evaluate the test techniques.

The possible faults in a computing system are innumerable. They depend
on the functional characteristics of the system, on the used design modeling
tool, on the design process, on the implementation technology, on the user of
the system and on the non-functional environment (temperature, radiation,
etc.). The proposal of only one model of faults, errors or failures is not
realistic. On the other hand, the handling of each specific fault of each
system requires empirical and expensive studies. So, numerous modeling
tools for faults, errors, failures, or consequences were proposed. Modeling
tools being generic, that is, independent of specific characteristics of
particular systems, they led to a scientific approach of dependability studies.

A first set of modeling tools aims at characterizing the failures and their
effects. The considered modeling criteria concern human, economical or
environmental damages. The seriousness of the consequences of the
perturbations caused by the failures is assessed. The modeling tool based on
the following dasses is a conventional example: benign, significant, serious
and catastrophic. It is a model, that is, an abstraction of the termfai/ure; fault
models provide other abstractions on dependability impairments, which are
independent from this first abstraction. For instance, a given hardware fault
in a micro-controller may have quite different consequences depending on
whether this circuit is used in a game station or integrated in an embedded
flight control system. Seriousness is one model among many characterizing

19. Conclusions 515

failures. For example, inertia, that is, duration between failure occurrence
and its consequences, or Jailure risk, that is, the occurrence probability of a
failure, are other criteria leading to other classes characterizing the system
dependability. This example shows that various modeling tools must be used
to express dependability impairment concepts. Each modeling tool providing
one point of view, several of them are necessary to characterize faults,
errors, failures and consequences.

The study of system faults and of means to handle them requires the
choice ofJault modeling tools. A fault-modeling tool is defined by properties
on the system structure model. For instance, the programming language
syntax definition implicitly expresses a fault modeling tool: each violation of
a syntax rule by a program text is a fault. Of course, the fault modeling tools
depend on the modeling means used to express the system structure.
However, several fault models may be proposed for one system modeling
means. To define a fault modeling tool, the expected or unexpected
properties must be generic, that is, independent of specific systems. For
instance, a particular statement of a given program, which is not in
accordance with a rule of the programming language syntax, contains a fault
specific to this program. Nevertheless, the syntactic rules, which define a
fault-modeling tool, are applicable to any program.

Fault modeling tools have numerous applications, such as efficiency
measurement of fault detection techniques used to extract faults (fault
removal) or to tolerate activated faults (fault tolerance). Unfortunately, the
exclusive use of these models is not sufficient. In particular, numerous actual
faults cannot be expressed with these models. They do not offer a full
coverage. Such a situation exists for instance to study software design faults.
Consequently, the faults are also studied from their effects on the internal
system functioning. Bad states are defined by error modeling tools. Once
again, numerous error modeling tools have been proposed. Some of them are
general, that is, they do not depend on the system modeling means. For
instance, characterization of errors as permanent or temporary defines two
classes. Other models are derived from the semantics of the modeling means.
The use of the value of a variable not previously assigned is an example of
an error model associated with the behavioral model defined by the
programming language semantics. The run-time stack overflow defines
another property violation, that is, an error model, associated with the object
code model. A deadlock, that is, a system state progress blocking due to
internal interactions of subsystems is another error model for systems
modeled by Petri nets or concurrent tasks.

The assessment of the relevance oJ the Jault or error modeling tools is a
difficult issue. The answer often depends on the use of the models. For
instance, the program test technique evaluation method based on mutations

516 Chapter 19

considers the replacement of an arithmetic operation by another as a fault
modeling tool. Of course, no engineers probably do such a fault. He/she
makes more complex wrong structure modifications. However, these
mutations produce errors characteristic of behavioral effects of actual design
faults. Thus, these fault models are successfully used to assess functional test
sequences. Besides relevance, these modeling tools must be examined in
term of tractability, that is, their capabilities to be processed. For instance, a
fault simulation with a too precise model may take prohibitive duration.

GeneriC fault or error modeling tools do not allow to express numerous
faults or errors which are specific to the structure or the functioning of each
system. Therefore, specific faults or errors must be expressed. However, to
preserve the capability to do generic studies on them, macro-models (or
macro-Ianguages) are proposed to express them.

19.2 PROTECTIVE MEANS

To improve the computing system dependability, three approaches are
proposed:

• Fault prevention aiming at reducing the creation or occurrence of faults
during the system life cyc1e.

• Fault removal aiming at detecting and eliminating existing faults, or at
showing the absence of faults.

• Fault tolerance aiming at guaranteeing the correctness of the services
delivered by the system despite the presence or appearance of faults.

19.2.1 Fault Prevention

Fault prevention aims at reducing the creation or occurrence of faults
during the computing system life cyc1e. Several techniques can be used
during the system design phase. Some of them have an impact on the created
system. Others prevent faults occurring during its future useful life
(operational phase). These means concern the system modeling tools
(inc1uding implementation technologies), the system models and the
processes used to obtain these models. These three viewpoints are developed
hereafter.

The modeling means has an important effect on dependability of the
modeled systems. This fact is weIl known for implementation modeling
tools. Certain technologies are safer than others. For instance, they prevent
faults introduced during the hardware system manufacturing step or
occurring during the operational phase in ho stile environment (space for

19. Conclusions 517

example). Some investigations concern the software implementation
modeling tools. Studies on requirement, specification and design modeling
rrieans, using their capability to prevent faults as analysis criterion, is
relatively little-developed.

A modeling means being selected, numerous modeling choices, and
therefore numerous system models, exist for one particular product.
Generally , the choice is guided by performance or maintainability criteria
but rarely looking for fault prevention. At first, the obtained models aim at
being operational, that is executable. Due to this single goal, the pieces of
information corning from the system origin (Why this system is useful?
What system must be designed?) are lost: they are not present in the created
model. They are substituted for data associated with the realization,
answering to question: How the system is designed? The preservation of the
first type of pieces of information in the models, certainly not useful for
operation, is an efficient means to prevent faults. This example illustrates the
general concept of redundancy, also used for fault removal and fault
tolerance purposes. Whereas the term 'redundancy' is conventionally
regarded as the meaning 'supplementary' and 'not useful', we showed that it
is an efficient concept to obtain dependable computing systems.

Mastering the model creation process is a third means of fault
prevention. This point is correlated to quality policies, processes and
procedures. They aim at modeling the development process, at assessing its
efficiency to prevent faults and at improving the process. This approach is
original as it concerns neither the developed system, nor the means used
(modeling tools, etc.). It studies the human process used to create a system.
The underlying idea is that numerous design faults existing in systems are
corning from faults occurring in the design process. To avoid the
introduction of these faults, guidelines may be provided to master the design
process phases. Some of them were given to illustrate this approach on the
requirement, specification, design, and implementation stages.

Relationships exist between studies concerning tools, models and
modeling process. For instance, the intellectual capabilities of humans being
lirnited, the designers cannot simultaneously handle numerous concepts
(process issue). So, the modeling tool must allow abstraction hierarchies to
be expressed, offering suitable features such as modules (modeling tool
features).

19.2.2 FauIt Removal

Fault removal aims at detecting and eliminating existing faults, or at
showing the absence of faults. Studies on fault removal are older that those
on fault prevention. They were initially justified by manufacturing checks of

518 Chapter 19

hardware systems. Then, they were extended to model checking. The
proposed techniques are therefore numerous and varied. We do not want to
expose them again one by one. We synthesize hereafter their presentation,
introducing criteria allowing them to be dassified.

Firstly, fault presence may be detected by static analysis (for instance,
inspection or property checking) or dynamic analysis (for instance, testing).
The first dass of techniques does not need system execution which is
required by the second group.

Secondly, the examined model concerns the system realization
(structural approach), the function provided by the system (junctional
approach) or both (structural-Junctional approach). In the first case, the
presence of faults is highlighted; in the second case, the studies handle
failures; in the third case, error notion is the main concept as weIl as
relationships between faults, errors and failures.

Thirdly, fault detection turns on a certainty (for example, a specific fault,
error or failure) or a risk. In this second situation, the techniques search for
the potentiality of the presence of fault, error or failure (presence
probability). Measurements on systems are defined and associated with risk
levels (cf. section 19.3). For instance, the more complex the control flow of a
program is, the more difficult is the mastering of the program by its designer
and so, the greater is the risk of a design fault being present. The
measurements assess the model (complexity measurements) or the use of the
modeling tool features. For instance, the use of the 'goto' statement or of
shared variables increases the fault risk. On the contrary, the use of an 'else
null' option if no action is necessary when a test is negative, decreases the
risk of an omission fault.

Detection generally requires a reference model which is compared with
the created model. This reference model concerns system requirements or
specifications, but also system design or implementation. This model
expresses what is expected (approach based on good functioning) or
unwanted (approach based on bad functioning). The reference model is
given by extension (everything which is expected or not) or by intention
(properties). The reference model may be the one used by the current step
(for instance, the specification model at design step) or another. Certain
techniques do not need additional reference model. Faults, errors or failures
are detected by examining the current system model. Taking the
programming model as example, data flow analysis techniques show
variables assigned two times without being used, that is, an error.

Most of the techniques handle one of the three notions (fault, error or
failure). Some aim at handling links between them. Fault diagnosis methods
provide such an example. Faults at the origin of an occurred failure, or a
detected error are searched.

19. Conclusions 519

From the origin, fault removal techniques are used to detect the presence
of faults. They are also useful to prove the absence of faults. Then, they also
provide means to assess dependability of computing systems.

Finally, assessment of fault removal techniques is another large issue.
What are the interests and limits of these techniques? What are their specific
contribution and so their complementarity? The answers to these questions
are essential to define fault removal policies. This knowledge has an
immediate practical interest, as economical constraints do not allow all the
various offered techniques to be usedjointly.

Fault removal techniques are often considered at the end of the model
definition, particularly when an operational model of the system is
completed. However, these means may have a great influence on the system
model or on the modeling process. For instance, we showed how error
detection mechanisms can be introduced at design time to make on-line
detection easier at run-time.

Fault prevention and fault removal domains are put together under the
term Fault avoidance. Studies associating these two dornains are useful. For
example, the definition of a development process aiming at preventing faults
often uses fault removal techniques at each process step.

19.2.3 Fault Tolerance

Fault tolerance aims at guaranteeing the services delivered by the system
despite the presence or appearance of faults.

Fault tolerance approaches are divided into two c1asses:

• compensation techniques for which the structural redundancy of the
system masks the fault presence and,

• error detection and recovery techniques, that is, error detection and then
resumption of the execution from a safe state previously reached and
stored (backward recovery) or not (forward recovery), and/or after an
operational structure modification (reconfiguration).

In numerous industrial systems, intensive use of fault tolerance
techniques is too expensive, both in terms of development and resources. In
particular, this last expenditure is added to each produced system if a fault
tolerant hardware platform is developed. To reduce these over-costs, some
benign or at least not dangerous or catastrophic failures are accepted. For
instance, when a car quickly overtakes another car, the processor is full-time
used to control the engine; then, tasks managing the air-conditioner are
temporary suspended. Fail-safe techniques jointly study failure seriousness
and fault tolerance.

520 Chapter 19

Assessment of the efficiency of fault tolerance techniques is another
important problem. 1t uses fault and error models and again poses the
problem of the pertinence of such models. These faults or errors are injected
and the system operation is simulated, or their effects on the product
behavior are assessed (cf. next section).

Fault tolerance concerns the system for architectural viewpoint as weIl as
software and hardware implementation technologies. The projection of the
results of studies done on system modeling onto technological levels is not
so easy. This issue comes from the fact that hypotheses often implicitly used
at system level are not correct when technology characteristics are
considered. For instance, the switch from a failed component to a duplicate
is efficient to tolerate faults of hardware technologies. This technique is
inefficient to tolerate design faults or most of the software technology faults.
Moreover, most of the assumptions associated with a fault tolerance
technique are in accordance with one technology, whereas complex
interactions exist in real systems between hardware and software elements.

The various approaches used to obtain a dependable computing system
(fault prevention, removal and tolerance) were introduced separately. They
provide complementary contributions. However, we signaled that they are
also correlated. For example, fault tolerance mechanisms aim at increasing
the system reliability. However, as these means are often complex, they
increase the fault risk and thus they go against fault prevention requirements.
Moreover, they can make fault detection more difficult by reducing the
system observability. Thus, fault tolerance techniques may lead to a system
reliability decrease.

19.3 DEPENDABILITY ASSESSMENT

Whatever the protective means used to avoid failure occurrences, the
reliance placed on a computer system must be justified. The measurement of
this reliance (quantitative approach) or an evaluation of the presence or
appearance of faults and their effects (qualitative approach) provides this
justification.

19.3.1 Quantitative Approaches

Dependability, that is, the justified reliance placed on the services
delivered by a system, must be assessed to be justified. Numerous attributes
exist, taking various meaning for the term 'reliance on the services'. For
most of them, a measurement is defined as a conditional probability, which
is a function of time.

19. Conclusions 521

Attributes
Reliability is one of these attributes. It defines the aptitude to accomplish

a required function in given conditions. Thus, reliability measurement is a
function expressing the probability that the system has survived without
failure at time t, given that it was operational at time '0'. Availability, safety,
integrity are other introduced attributes.

Mathematical models describe probability laws of the correct operation
of system components. Parameters of these laws frequently depend on the
used technology. Their values are coming from experimental facts. Other
parameters influence these laws, such as the temperature for hardware
technologies.

As a system is a structure of components whose probabilistic models are
known, composition operations provide laws for the complete system.

Non-probabilistic models also exist. For instance, some of them are based
on the measure of the structural or functional complexity of the system: the
number of statements in program blocks, the number of paths in the control
flow of a program or in a behavioral model, etc. Since humans (the system
designers) have limited intellectual abilities, they cannot master highly
complex systems. A fault presence risk is therefore defined from the
designed system complexity measurement.

Redundancy
Redundancy is another criteria useful to evaluate a product and the

different protective mechanisms used to improve the dependability. It
measures the extra-cost implied by the use of the chosen technique, in terms
of quantity of resources (number of electronic components, of functions,
etc.), but also its effects on the system dependability.

In Figure 19.1 seven groups of techniques analyzed in this book are
summarized and ordered vertically according to the importance of the
implied redundancy. This figure symbolically shows the main life cycle
steps involved by each group of techniques (specification/design,
production, and operation). We observe that the redundancy of these groups
vary from a magnitude '1' (no redundancy) for most of the functional fault
avoidance techniques, to a magnitude '2' (100% redundancy) for self-testing
techniques, and finally to a magnitude '3' (200% redundancy) for fault
tolerance techniques by compensation (e.g. 3-Versions). In fact, these figures
are purely symbolic; redundancy figures of real dependable product are
frequently much greater:

• integration of redundant specification elements in the design model in
order to prevent or detect faults,

• fault-tolerant design techniques using quadrupie duplicate modules

522 Chapter 19

(Double-Duplex) for avionics control systems, or else using quintuple
duplicate modules for spatial applications.

Specificlltionl
Dnlg,.

PrOdllctiOll
Operlllioll

Avoidanee/Removal
of fllDetionai faulll

Avoldance of 4. 0 ~ technologieal fau]lI

Off-Une testing

Designfor
te,t&bWty

.,. rn (on-Une testl;g) H

Fall-safe systems

FanJt toleranee
4_

~
Redundancy

Figure 19.1. Dependability techniques and Redundancy

Let us note that one must not confuse redundancy with financial cost of
the product. Indeed, although globally related to the dependability level
required, the financial cost of a project is not at all proportional to the final
product' s structural redundancy. This cost also depends on human and tool
means implied by the chosen techniques. Unfortunately, this cost increases
very fast, in a non-linear way, along our symbolic vertical redundancy axe.
In other respects, the manufacturing processes, which lead to highly reliable
components, are very expensive. Consequently, the cost of a product
integrating highly reliable integrated circuits is high, even if no redundancy
is involved in this product.

Conversely, we insisted several times on the prohibitive cost of selling
failing products with the reason of making financial savings (of not using
dependability methods) . Not only the products but also the credibility of the
marks and the manufacturers is questioned by such approach.

The use of techniques based on redundancy is frequently criticized
because it increases the cost of each resulting product. This senten ce is true

19. Conclusions 523

if structural redundancy is introduced in the final implementation of the
product (for example, the use of redundant modules). On the contrary, it is
false if the involved redundancy is used in the development steps in order to
prevent or to remove faults. For example, consider the following sentence
«the use of the Ada language is inefficient because the redundant
information imposed by its programming features make the generated code
heavy ». It is true that Ada imposes redundant elements. However the
sentence is false. Indeed, the redundant information allows verification
operations at compile time, which detect numerous design faults; moreover,
most of the redundant elements do not induce redundant object code.

In the same way, design guidelines may introduce redundancy in the
design models without any redundancy in the operational models. For
instance, the writing

if Condition then Action;
else null ;

end if ;

instead of

if Condition then Action;
end if ;

is obviously redundant. However, it avoids any fault omission of the else
branch. Moreover, the code optimizers inc1uded in c1assical Ada compilers
do not produce any supplementary object code.

Reliability and Safety
The attributes used to assess dependability are sometimes antagonistic. If

we consider reliability and safety criteria only, we can note a potential
conflict between groups of dependability techniques of Figure 19.1.
According to the hypotheses generally made for hardware technology,
reliability is inversely proportional to the complexity expressed in terms of
number of elementary components. For example, with an exponential law
with constant failure rate, this failure rate is doubled when the number of
electronic components doubles; thus the MTBF or MTTF is divided by two.
Consequently, some techniques used for high reliability design try to reduce
the total number of components used. On the contrary, many safety
techniques try to detect and correct the errors, or to mask these errors; this is
accomplished thanks to the use of redundant codes which adds more
components. As a consequence, the resulting products have a higher
prob ability of fault occurrence. From this analysis one can deduce the
assessment:

« more safety = less reliability »

524 Chapter 19

The use of redundancy allows to create a safe product, as demanded by
the dependability requirements. However, this can lead to a final product
which is frequently performing error detection and reconfiguration
procedures. As a consequence, this can provoke adegradation of the normal
activity of the application (reduction of the performance), or even, to timing
failures.

19.3.2 Qualitative Approaches

Qualitative approaches examine relationships between faults, errors and
failures. The proposed qualitative assessment methods are distributed in the
two following classes.

• Deductive approaches consist in deducing potential failures from the
system faults or errors for instance specified by modeling tools. They use
structural and/or behavioral models of the system to process this
deduction. In this book, we have mainly introduced the FMEA (Failure
Modes and Effects Analysis) technique.

• 1nductive approaches consider unwanted failures and infer errors or
events, which may lead to these failures, or show that such failures
cannot occur. For instance, proof of properties, or FfM (Fault tree
Method) are tools to implement these approaches.

These two classes of techniques are complementary. On the one hand,
inductive approaches seem to be more realistic, in particular when fault or
error modeling tools used by deductive methods may leave out actual faults
or errors. On the other hand, inductive approaches are often not tractable, as
a huge number of functioning cases may lead the system into one given
internal state. Such a problem occurs, for instance, when a program uses
'whi 1 e' loop statements, as the actual number of iterations is often
unknown. Inferences are then constrained by hypotheses always debatable.

Two basic concepts have been associated with the introduced approaches,
namely:

• Controllability that defines the capability to put the system in a given
functioning state, by acting on its inputs,

• Observability that defines the capability to observe the internal state of
the system from the outputs, mainly by acting on its inputs.

These notions apply to faults, errors and failures. For instance, they
estimate the capability to activate a fault, changing it into an error, and then
to propagate this error to the output, as a failure.

Controllability and observability are two characteristics, which are
sometimes desired, and sometimes unwanted. Thus, controllability and

19. Conclusions 525

observability are desired for testing, as they increase the testability of the
system. On the contrary, fault tolerance required during system operation,
needs to reduce fault activation, error contamination and failure occurrence,
that is, to reduce global controllability and observability.

To conc1ude this section, let us note that the techniques dealing with
dependability measurement and impairment analysis are useful at first when
system design is completed. They provide means to assess the reliance that
can be placed on this system. These means are also efficient during the
design steps as they provide predictive tools. Design choices are validated or
rejected taking the obtained measures into account. Moreover, quantitative
and qualitative analyses are often handled jointly. For instance, the FMECA
(Failure Modes, Effects and Criticality Analysis) is a deductive qualitative
method using quantitative data. We have also noticed that the Fault Tree
Method could provide quantitative results.

19.4 CHOICE OF METHODS

Among the so numerous and varied dependability methods and
techniques how to choose one or several ones which are weIl adapted to a
given target application? Figure 19.2 caricatures some of these techniques
offered to the designer. How to make an efficient tradeoff between the
various and often contradictory dependability and performance criteria?

During the expression of the requirements of a product, according to the
c1ass of application considered, we can prioritize the attributes, for instance,
ensuring the continuity of service (e.g. reliability) or, the safety. Let us
consider as an example a robot aimed at human interactions (it could be a
domestic or an industrial robot application). One can easily identify several
complementary dependability requirements:

• concerning the safety refined into two categories:

~ safety relatively to the human (in order to prevent any injury of an
operator or the public),

~ safety relatively to the process (for example, in case of manipulation
of fragile objects),

• concerning the availability and the maintainability (if the product is
supposed to be repairable).

In order to satisfy these different elements of the specifications, different
solutions will possibly be implemented and mixed. Thus, the safety
problems can lead to

• passive solutions (choice of non aggressive technology: the 'rubber'

526 Chapter 19

robot) ,

• and/or active solutions (use of sensors to detect dangerous situations and
implementation of emergency reaction mechanisms).

The continuity of service can be increased by the use of high reliability
electronic and mechanical components and design choices facilitating the
maintenance. Naturally, independently from these actions, it is obvious that
the creation steps of this product must justify the required reliance placed in
the final delivered service.

HF High Reliability FSS Fail-Safe Systems

OFLT Off-Li ne Testing TMR TripIe Modular Redundancy

DFT Design For TestabiJity (passive)

RM Reed-Muller circuits NMR N-Modular Redundancy (active)

BIT Built-In Test OAR Other Active Redundancy

BIST Built-In Self Test I Interwoven Logic

FR Functional Redundancy D Dotted Logic

ST Self-Testing Q Quadded Logic

Figure 19.2. Some fruits of dependability

Appendix A

Error Detecting and Correcting Codes

In this Appendix, we compare some redundant codes:

• the single parity code (separable),

• the m-out-of-n code (non-separable), optimal for m = rn / 21,

• the double rail code (separable), particular case of m-out-of-2m code,

• the Berger code (separable), optimal for r = rlog(k+ I) l,

• the modified Hamming code (separable) which is a basic cyclic code.

We use the following notations: N is the total number of codewords, k the number
of bits of the words to be coded, n the number of bits of the codewords, and r the
number of redundant bits (n = k + r). All these parameters do not apply when the
code is non-separable.

Table A.I gives the general features of these codes and their error model (S and
NS means Separable and Non-Separable).

code parity m-out-of-n Double Rail Berger Hamming
(m 12m) modified

k, n, m, r k = n -1 m=fn/21 k=n/2=m r= n=2(r-l)
rlog(k+l)l

Separable S NS S S S

N 2k n
(m)

2k 2k 2k

errors odd unidirectional . unidirectional unidirectional double detected
detected , multi. / I rail single corrected

Table A.l. Basic properties

527

528 AppendixA

Table A.2 shows the evolution of the number of codewords that can be made
when n increases. Cells noted '-' correspond to situations without interest or
impossible.

parity m-out-of-n Double RaU Berger Hamming
n (m 12m) modified

4 N=8 6 4 4 -
5 16 10 - 8 -
7 64 35 - 16 -
8 128 70 16 32 16

9 256 126 - 64 -
10 512 252 32 128 -

11 1024 462 - - -
12 2048 924 64 256 -
16 32768 1287 256 4096 2048

19 262144 92378 - 32768 -
21 1048576 352716 - 65536 -
32 2147483648 601080390 65536 134217728 268435456

36 34359738368 9075135488 262144 214783648 -

Table A.2. Evolution with n of the number of codewords N

Appendix B

Reliability Block Diagrams

The Reliability Block Diagram is a very simple model used to represent
redundant structures and to analyze their reliability. It was one of the first tools to be
employed, and it remains pedagogically very interesting. We have introduced the
principles of 'series' and 'parallel' redundant structures in Chapter 7. The aim of this
appendix is to bring some complements on the reliability analysis of non-repairable
redundant structures, with simple hypotheses. We assume that the modules have
exponential reliability laws with constant failure rate. The reliability of the reference
module is:

RO = e -At, which gives MTTFO = 1/A..

1. ON-LINE REDUNDANCY

All modules are operating in parallel. As far as k of them are faultless, the system
functions correctly. The value of k depends on the technique used. This corresponds
to a passive redundancy according to the observability of the errors affecting each
module.

Structure n modules in parallel

The system does not fail as far as one module is faultless. In the general case of n
modules, we have: (1 - R) = ni (1 - Rj), MTTF = MTTFo . Li (1/ i), where R is
the global reliability, R j the reliability of module i.

Hence, for n = 2 (Figure B.1), R j = Ro; this gives:

R = 2 Ro - Ro 2 = 2 e -AI_ e -2).1, MTTF = 1,5 MTTFo.

Numerical value: if A. = 10-4, t = 103, then, R(103) = 0.9909.

529

530 Appendix B

For t = 103, the reliability of the reference module is Ra (l03) = 0.9048; hence,
R(103) > Ro{lO\

Figure B.l . Structure 2 modules in parallel

Structure m-out-of-n
The system does not fail as far as m modules are faultless. The outputs are
elaborated by a m-out-oJ-n voter. Hence, the global reliability is:

n
R = (L (~) Ro m (1 - Ra) n.m) Rv , where Rv is the reliability of the voter.

i=m l

3

a) 2-out-of-3 b) 3-out-of-4

Figure B.2. Two examples of structures m-out-oJ-n

a) Structure 2-out-of-3 (calIed TMR)
This technique, illustrated by Figure B.2-a), has been presented in Chapter 18 as

the trip/ex or TMR. The voter elaborates the final outputs from the outputs of the
three modules. This module is supposed hereafter to be faultless. Hence, the
reliability can be simply determined by enumerating the disjoined cases of good
functioning:

• one case where all modules are faultless (probability: R3),

• three cases where two modules are faultless and one module is failing
(probability: R2 (1 - R».

Reliability Block Diagrams 531

With a perfect voter, R = R03 + 3 R02 (1 - Ro) = 3 R02 - 2 R03 = 3 e -21.. 1 - 2 e -31.. \

MTTF = (5/6) _ MTTFo.

The MTTF of the TMR system is lower than the MTTF of the basic module.
However, these two reliability curves have an intersection point (see Figure B.5): for
missions of small duration, the TMR has a better reliability, and for greater mission
duration, the basic module is better.

b) Structure 3-out-of-4

This structure is represented by Figure B.2-b. For a perfect voter, we have:
R - 4 R 3 3 R 4 - 4 -31.. 1 3 -41.. 1 - 0- 0 - e - e .

Structure Double Duplex
Four modules are associated as two pairs. One of these pairs is connected to the

process, while the second one is in standby. As soon as a failure is detected on the
active pair, the second one replaces the defective pair. The detection results from the
comparison between the two outputs of a pair. The reliability of this quadri
redundant structure corresponds to the survival probability of one of the two pairs:

P«l.1 AND 1.2) OR (2.1 AND 2.2» = P(1.1 AND 1.2) + P(2.1 AND 2.2) -
P(l.1 AND 1.2) . P(2.1 AND 2.2) = P(1.1).P(1.2) + P(2.1).P(2.2) - P(1.1).P(1.2) .
P(2.1).P(2.2) (all probabilities are independent).

Hence, as all modules have the same reliability: R = 2 R02 - R04 = 2 e -21..1 _ e -41..1.

Figure B.3. Double Duplex

2. OFF -LINE REDUNDANCY

An off-line redundant structure pos ses ses n element:, one of them is connected to
the process, while the (n - 1) other modules are in off-line or cold standby. We
assume that faults only occur in active modules; thus, the reliability of the redundant
standby modules is supposed to be perfect. When the active module is failing, it is

532 Appendix B

replaced by a standby module. The detection and reconfiguration mechanism is not
considered in the reliability block diagram: it is supposed here to be faultless.

As the events are not independent, the reliability calculus is made easier by the
use ofthe Laplace transform. We obtain:

n
R = e 'AI. L «A, t) i-I) /((i -1) !), MTTF = n ,MTTFo.

i =1

Special case: n = 2

R = e ,A.I + A, t e ,A. I, MTTF = 2 . MTTFo,

Numerical value: if A, = 10,4 and t = 103, then R = 0,9953 .

1

2
'--_-' Standby

b) n = 2

n

a) general case

Figure BA. Off-line redundancy

3. COMPARISON OF SOME STRUCTURES

To conclude this Appendix, we show in Figure 8.5 the reliability curves of some
redundant structures:

• TMR,

• 2 modules in parallel,

• 3-out-of-4,

• Double Duplex,

• and off-line redundancy with n = 2.

These curves are drawn for A = 10'4, and they are referred to the reliability of a
single module called 'basic module'.

Reliability Block Diagrams

R(t) 1

0,9

0,8

Redundant Structures
1. Basic Module
2. TMR
3. 1-out-of-2
4.3-out-of-4
5. Double-Duplex
6. Standby 2

Figure B.5. Reliability of some redundant structures

533

time
(hours)

Appendix C

Testing Features of a Microprocessor

All semiconductor manufacturers are very much interested in the dependability
features of the components they produce (ASICS, microprocessors, micro
controllers, etc.). Naturally, this interest deals with all design and fabrication aspects
of their products: use of fault prevention and fault removal techniques during
specification, design and fabrication stages. In this general dependability framework,
production but also maintenance test has apredominant place. In particular, design
for testability techniques are integrated in the design process. We have already
mentioned the present IEEE 1149-1 boundary scan standard.

Some semiconductor companies go a step ahead in that direction and consider
critical applications with the use of redundant microprocessor structures. We report
in this appendix some very general information about the Pentium microprocessor,
interpreted from an Intel documentation. The interest of this presentation is to show
the rather great variety of dependability techniques offered by a general purpose
integrated circuit. Naturally, such an approach can be found in many other
concurrent circuits such as those produced by Motorola, AMD, etc. We will identify
three main levels of means: Aid to the debugging of microprocessor applications,
Off-Line testing, and On-Line testing.

1. DEBUGGING AID

During the debugging of an application running on a microprocessor, it is
necessary to understand the execution of the implemented programs. Like all
processors, the Pentium offers a debugging mode called 'Probe Mode' which allows
accessing from the outside to the internal registers, to the system memory 1/0
spaces, and to the internal state of the microprocessor. The Pentium has 4 debugging
registers used to insert breakpoints. Moreover, the specialist in charge of the
debugging can access to internal counters that records some events of the internal
evolution. All these features obviously belong to the design verification group of
techniques.

535

536 Appendix C

2. OFF-LINE TESTING

The Boundary Scan (IEEE 1149.1) standard has been implemented in the
microprocessor for testing at 'global board level'. This means that in any system
comprising a microprocessor connected to other circuits (such as memory unit,
interface circuits, etc.) on a PCB, it is possible to access through the Pentium to
these others circuits in order to apply test sequences to them and to collect the
resulting outputs.

The following pins of the test bus are accessible: TCK, TDIITDO, TMS, TRST, as
weIl as the test logic (the TAP automaton).

Finally, the Pentium integrates a BIST procedure that is automatically executed
when the microprocessor is switched on. This off-line testing procedure is called
Reset Self-Test but in reality the term 'self-test' refers here to a Built-In Self-Test
technique. Intel announces that this integrated test covers 100% of the single stuck
at Oll faults of the Micro-Code PLAs, memory caches (instruction and data caches),
and some other internal circuitry (TLB, ROM).

3. ON-LINE TESTING

This component also offers on-line testing features:

• internaion-line error detection, thanks to error detecting codes,

• redundancy capability allowing Duplex redundant structures.

Error Detection
During the functioning of the Pentium, some error detection mechanisms are

activated by a specialized automaton called the Machine Check Exception. These
errors are revealed by the use of single parity error detecting codes:

• single parity test on the Data Bus (DATA PARITY):

64 bit-Data Bus + 8 parity bits (one bit per byte of data),

• single parity on the Address Bus (ADDRESS PARITY):

32 bit-Address Bus + 1 parity bit,

• some other internal parity codes.

Microprocessor Redundancy
Finally, the circuit has been designed in order to allow a Duplex redundant

structure to be easily implemented, thanks to the Functional Redundancy Checking
(FRC) technique. Figure C.I illustrates this technique.

A 'Master' microprocessor performs the normal functioning of the application
and is connected to the extern al process.

A second microprocessor, called 'Check', plays the role of an observer. When an
error is detected (by simple comparison of the two functions), the output signal IER
is activated, calling for an external action (alarm, switch-off, recovery, etc.). The
commercial document of Intel ensures that more than 99% of the faults are thus
detected.

Testing Features of a Microprocessor

Figure C.l . Duplex Structure

IER

error
signal

537

Appendix D

Study of a Software Product
Ariane V Flight Control System

The first launch of Ariane V led to the destruction of the rocket, due to a failure
of the embedded computing system. Whereas most of the firms whose projects
failed had hidden the causes, the CNES (French national space agency) provided
numerous pieces of information whose study concurred in the improvement of
knowledge on dependability. The following presentation is based on the published
documents. The analysis developed in this appendix must above all strengthen the
opinion that the mastering of faults in complex computing systems is very difficult,
illustrating this idea on areal example.

1. FAlLURE SCENARIO

A simplified view of the architecture of the computing system embedded in the
rocket is provided in Figure D.l .

SRI

fromAriane 4

Running Expecting

OBC

Engines

SRI = Inertial Reference System
OBe = On-Board Computer

Figure D.l. Architecture of the Control System of Ariane V

539

540 AppendixD

The engines (Vulcan main engine and boosters) are controlled by the OBC (On
Board Computer) which receives data from various sensors which are autonomous
complex sub-systems. The SRI (Inertial Reference System) is such a sub-system. It
provides flight data concerning the rocket position. The OBC as weIl as the SRI
have redundant hardware boards based on a recovery block. The first hardware
board is in operation till an error is detected; then, the second board replaces the first
one. These hardware systems execute complex software real-time applications using
a multitasking kernel. The programs executed on the two hardware platforms SRIl
and SRI2 or OBCI and OBC2, are the same.

Among its numerous treatments, the program of the SRI (SRIl or SRI2) calls a
function which make a conversion between areal value expressed in a particular
format and an integer value. This function was previously used in the software
managing the flight control of Ariane IV. Being dependent on the acceleration, the
actual values handled by this function at Ariane IV launch time were in a given
range. Unfortunately, the acceleration of Ariane V being higher, the conversion
function was called with a value out of this range. This situation raised an exception
during the function execution.

The fault-tolerance mechanism implemented in SRIl handled this erroneous
state, switching on the SRI2 redundant system. Executing the same program, the
same exception raised. Its handling by SRI2 consisted in communicating a diagnosis
data to the OBC before switching off the SRI system. Thanks to this information, the
OBC should continue the flight in a degraded mode, for instance extrapolating the
evolutions of the rocket positions. Unfortunately, the diagnosis data communicated
by the SRI2 were interpreted by the OBC as a flight data. Thus, the OBC reacted by
swiveling the engines.

2. ANALYSIS

2.1. Fault Diagnosis
The first question raised is "who is responsible?" that is, "where is the fault?"

The conversion function seerns to be the obvious guilty: it was unable to convert the
given data. Is it so simple? We mayaiso consider that the failure comes from:

• the OBC because it interpreted a failure identification as a flight data,

• the OBC which did not perceived these flight data as erroneous, for instance, by
likelihood check,

• the SRI2 as it did not provide correct flight data,

• the SRI which did not tolerate a software fault,

• the conversion function which raised the exception,

• the too important acceleration of the rocket at launch time,

• the development team which did not detect the presence of a fault,

• the managers who required the reuse of this part of Ariane IV, etc.

Study of a Software Product 541

So, it is difficult to adjudge the fault to apart of the system or to a partner of the
project. However, this example illustrates several aspects highlighted in the book.

2.2. Fault Prevention
At first, the specification is an important phase of the development. The

specification model must define the role of the system but also the domain in which
the services will be provided. For instance, the constraints associated with the values
of the input parameter of the conversion function were not precise.

Secondly, the presence of redundant elements may be dangerous if redundancy is
not mastered. For example, the conversion function input presents a large functional
redundancy: the integer and real types constitute the Uni verses whereas the Static
Domains were reduced to ranges. On the contrary, the use of one output parameter
of SRI for two concepts (the flight data and the diagnosis data) was possibly due to
performance reasons. As several times mentioned, the dependability requirements
are often against the performance requirements (time, memory, costs, etc.). So, a
compromise must be found to develop industrial dependable real-time systems.

The fact that the conversion function is a component successfully used in Ariane
IV shows the difficulties of reuse. Apriori, the reuse of a component increases the
reliance which can justifiably be placed on the service it deli vers, that is, its
dependability. However, the justification of this reliance was obtained for a specific
functional and non-functional environment; this reliance was not preserved when the
environment changed.

The Ariane V control system is a complex system in which numerous elements
interact: hardware platforms interact with software applieations to detect errors and
to handle them (switching from the initial platform to the redundant one), complex
coupling between the sub-systems SRI and aBC, ete. These complex interactions
are at the origin of numerous faults in the recent systems which use the integration
of sub-systems. Each sub-system operates correctly, whereas errors occur when the
sub-systems interact each other. Most of the errors propagated during the first flight
of Ariane V are coming from integration issues: SRI2 interprets the exception raised
by SRIl as a hardware failure and aBC interprets the diagnosis data as a flight data.

2.3. Fault removal
The reader is probably amazed that the fault of the eonversion function was not

detected during the reviews and test procedures. Probably, as previously mentioned,
the reuse of the SRI was the cause of less eheeking. The successful use of a
component during several years increases an unjustified reliance on the component,
and then decreases the time and the money spent for its testing.

To be efficient, the fault detection in a component requires the handling of
information on the component domain. In particular, the coverage of 100% of a
structural testing may not detect any faults due to use out of the domain. The
structural test should take into account the domains of the components used to
implement the system: can a sequence lead the system operation to reach states out
ofthe domain? Consider, for instance, the following statement:

K :=. . I * J. .,

The assessment of the program must detect values of land J such as I*J
provokes an overflow, that is, the result of this multiplication is greater than the
higher integer which can be expressed by the run-time resources.

542 AppendixD

FinaIly, the complexity of the global system and of the physical devices of its
functional environment often limits the integration testing.

2.4. Fault Tolerance
After the failure, most of the criticisms concerned the exception mechanism

which raises the error. Several persons proposed the suppressing of the raising to
continue the execution. This viewpoint is dangerous. The absence of error detection
does not prevent the occurrences of errors; it just allows masking them. In this case,
as weIl as when the exception handler consists in doing nothing, the behavior of the
system is hazardous and causes an uncontrollable contamination of the errors in the
system. This situation is Illustrated by the relationships between the SRI and the
ÜBC: the SRI signals its failure considered as anormal data. The use of an
exception would force the ÜBC to take this information into account.

The wrong but not detected communication between SRI and ÜBC also shows
the importance ofredundant elements to detect error on-Une. For instance, the use of
likelihood checking certainly would have detected the flight data inconsistency. In
the same way, redundant information would be useful to detect that the exception
raised in SRIl was not due to a hardware failure but software one. This diagnosis
probably leads to another reaction to handle the error.

The described scenario presents a contamination of errors: from the conversion
function to SRIl then to SRI, ÜBCI and the engines. To handle the problems
coming from integration of components, the designer must pay a special attention to
the error conjinement.

Finally, the fact that only hardware faults were tolerated illustrates that engineers
or managers assume that the problems come from the aggressions of the
environment. üf course, these causes exist, particularly for spatial applications.
However, the Ariane V failure shows that the human is also often at the origin of the
faults.

Appendix E

Answer to the Exercises

FIRST PART

Exercise 3.1. Failures of a drinks dispenser

1. Static failure: the money change or return operations are incorrect.

2. Dynamic failure: when the machine has delivered a eoffee, the red light stays on
one minute before authorizing the next drink to be selected.

3. Temporary failure: this morning, the machine was unable to deliver tea.

4. Static and persistent failure: the ~$ coins are no longer accepted by the machine.

Exercise 3.2. Faults of a drinks distributor

1. Examples of functional and hardware faults.

Functional fault. The machine does not test the state of one of the resources
(coffee, tea, chocolate, cup, sugar, and spoon). Consequently, the service is no
longer delivered to the user who has paid and selected his/her drink. He/she obtains
an empty cup. This is a persistent and static failure. Thus, the 'money manager'
automaton which uses the state diagram is correctly functioning. On the contrary,
the 'drink delivery' automaton which interprets the orders and delivers the drink
does not execute the order.
Hardware fault. A fault of the tea selection button may lead to a quite different
failure. If this button become inactive, the machine does not receive any tea
selection order, so it stays in the 'seleetion' state, waiting for a user selection. This
user who would like to drink tea has to cancel or select another drink (for example a
coffee). The finite state machine cannot directly pass from the global 'selection'
state to the 'delivery' state allowing for a tea selection.
This fault is equivalent to the cut of the are connecting the state 'selection' to the
state 'delivery' for a tea selection.

543

544 Appendix E

2. Money management alteration. Money is implied in states 'payment', 'cancel'
and 'change'. Hence, functional and hardware faults altering this money service
are to be found in these states. The panel of possible faults is rather large: coin
rejection, impossibility to cancel a drink, incorrect money change, etc.

3. Functional transformation. The new proposed functionality can be obtained by
modifying the global functional state graph as shown in Figure E.l. When the
drink is delivered, its price is subtracted from the value of the total amount of
money introduced in the machine; then, the system comes back in the 'selection'
state. The user can then choose a new drink or order the return of the remaining
money (by pressing the 'cancel' button).

Modifled Graph

Figure E.l . Initial graph and modified graph

Exercise 3.3. Study of a stack

1. In order to simplify the study, we suppose that the real size of the stack is only
10 objects. We will now study some faults.

Design fault. The real size of the stack has been underestimated (for instance, 10
locations only), whereas the storing of 15 objects is envisaged. If 15 objects are
pushed, the fault produces a failure. Assuming that the stack memorizes integers, let
us consider the prograrn:

for i varying from 1 to 15, loop

PUSH A(i);

end loop;

If the Stack_Full mechanism is used, the preceding treatment will stop at the first
stack overflow. This overflow can raise an exception in the case of a software
implementation. Hence, the fault provokes a failure which is detected.

Hardware fault. If a breakdown affects the Stack_Full signal and maintains it
at '0' (no signaling) despite excessive stacking, the calling program can send too
many different values to store. In the case of the preceding program, what will
occurs after the 10th value sent to the stack?
If the stack refuses to store more than 10 values, 5 values will remain not stored.
The stack could accept all coming values and store the 5 values 11 to 15 at the 10th

memory address. Or else, the stack could return to the first address and store the
values 11 to 15 at the addresses 1 to 5, hence erasing the preceding stored data.

Answer to the Exercises 545

These possibilities depend on the implementation of this stack: hardware with gates
and registers, or simulation of the stack in the main memory.

A test sequence detecting this fault could be to Push 15 integers (from 1 to 15), and
then to Pop 15 values and to compare them with the initial values. Let us note that
this test sequence also detects the previous functional design fault.

External fault. The user of the stack ignores the signal indicating an overflow. The
sequence given for the case of design fault will transform this fault into a failure. In
both cases, the failure is the same, (but without any detection).

2. Anormal use of a stack is to apply a same number of Push operations than Pop
operations. If a fault provokes the application of a Pop action to an empty stack,
a failure occurs. The situation is very similar to the overflow studied in the
previous question, and the use of Stack_Ernpty signal allows the detection of
such situation.

Exercise 3.4. Study of a program

For an addition such as Exp1 + Exp2, where Exp1 and Exp2 are two arithmetic
expressions, the compiler generates a sequence of executable instructions allowing
the evaluation of these expressions. The two obtained results are placed in two
distinct registers. Then, the compiler adds an instruction which perform the sum of
the content of these registers. However, the programming language does not define
the order of evaluation of these two expressions: one can first evaluate Exp1, then
Exp2, or the opposite! This means that, for our example, we will compute first F1,
then F2, or the opposite.

Let us exarnine the functioning with '1' as the initial value of A.

After execution of F 1, A = 2, which is also the value returned by F 1. Then, after
execution of F2, the value of A and the value returned by F2 are equal to 4. Hence, B
will then take the value: 2 + 4 = 6. On the contrary, if F2 is evaluated first, the value
of A and the value returned by F2 are equal to 2 (A being initially equal to 1). Then,
the execution of F1 returns 3. Hence B will be equal to 2 + 3 = 5.
Consequently, according to the executable code generated by the compiler, the final
result of B is either 6 or 5!

What could be concluded from this analysis? The addition is a commutative
operation, so both interpretations of the compiler are acceptable. However, this
commutativity property is only effective for the addition of values (i.e. 5 + 3 = 3 +
5), and not for the addition of expressions having 'side effects' (in our example, the
execution of Fl and F2 modify A). Thus, a possible failure (only one of these two
interpretations is expected) may result from the fact that the designer does not know
how the technology he/she uses will operate on the source code. Here, the
technology deals with the implementation of the prograrn by the compiler.

Exercise 4.1. Latency of an asynchronous counter

The MSB (Most Significant Bit) will normally switch to the value 'I' after 8 clock
pulses. Hence, the latency is equal to 8 x 2 ms = 16 ms.
The fault will lead to a failure that remains 8 clock pulses and then disappear.

Exercise 4.2. Latency of a structured system

Error # 1: 10ms, error #2: 110ms, error #3 = failure of the system: 140ms.

546 AppendixE

Exercise 4.3. Consequences of failures

Mean cost = (2 x 0 + 3 x 5 .103 + 2 x 6 .103 X 4 + 3 (103 + 3 .103 X 4» /10.
Mean cost = 10.2 ku.

Exercise 4.4. Fault - Error - Failure in a program

1. As the actual last right page number is 325, the expected result is (325+ 1)/2 =
163 sheets.

If the faulty expression provides 326 instead of 325, the result computed is
(326+1)/2 = 163, taking the integer division semantics into account. So, the
result is good: no failures occur.
Considering 327, the returned value is (327+1)/2 = 164. The procedure execution
fails. The same result and conclusion is obtained with 328.

2. An error characterizes an unacceptable state or state evolution occurring at run
time. The states being characterized by values taken by attributes, consider Last
Right-Page as attribute. ''The last right page number of a book is odd" is a
property. Therefore, no error is detected in the first case (326), no error is
detected in the second case (327), and an error is detected in the third case (328).

3. Conclusion. Consider Table E.I which synthesizes the three cases. A fault may
provoke an error which may provoke a failure. In the first case, the fault is
activated as an error, but the last statement tolerates it (no failure occurs). In the
second case, no error is detected, as the observation means is not sufficient. The
property which characterizes the error is not accurate enough: all even values are
not correct values. However, the program fails. The last case is the conventional
one: the fault activates an error, which propagates as a failure.

case fault error failure
detection

1 yes yes no

2 yes no yes

3 yes yes yes

Table E.l. Fault - Error - Failures cases

Exercise 5.1. Faults of a MOS network

The determination of the logical expression of a 'structured' MOS network can be
obtained by an iterative decomposition of this network into 'series' and 'parallel'
sub-networks, till reaching the basic MOS components.

1. We perform this analysis for the fault-free network and for the two faulty
networks:

• Faultless circuit: R = a b' + b c,

• Circuit with fault FI: RI = b c,

• Circuit with fault F2: Rz = (a + c) (b + b') = (a + c).

The 3 corresponding functions, N (faultless circuit), NI (with fault FI) and Nz (with
fault F2), are shown in Table E.2. The output takes the same values for four input
configurations only: 000,010,011, and 111.

Answer to the Exercises 547

abc N NI N2 N3 N4

000 0 0 0 0 1
001 0 0 1 0 1
010 0 0 0 0 0

01 1 1 1 1 1 1
100 1 0 1 1 1
101 1 0 1 1 1
1 10 0 0 1 0 0
111 1 1 1 1 1

Table E.2. Normal and erroneous functions

2. Nz becomes N3 = (a + b) . (b' + c) = a b' + a c + b c = N, without fault. Thus, this
fault has no influence on the function performed by the network (see Table E.2).

Let us note that in the faultless circuit, the permutation between transistors
controlled by band c has no influence on the functioning. However, the same
fault Fz will have different effects, (failures) according to the chosen network!

3. Fault F3: the function becomes N4 = b' + b c = b' + c, shown on the previous
table. It induces two failures highlighted in bold.

Exercise 5.2. Faults of a full adder

1. Functional fault F]. The 'sum' output (S) is not modified, but the 'carry' (C)
becomes Cl = a b + a' b' c. There are three failures on the carry output, for
abc = 001, 101 and 011.

2. Hardware fault F2• The c1assical Stuck-At 0/1 fault model supposes that a fault
occurring on a gate input line has no backwards effects. Here, the NAND gate
receiving a and b is not altered by the fault a.
The input b no longer acts on the output S, producing 4 failures. The carry
function becomes Cz = [(ab)' . «a Et> O).c)']' = a b + a c, instead of ab + ac + bc.
A failure occurs for a' b c = 1.

abc CS CI SI C2 S2

000 00 00 00

001 01 11 01

010 01 01 00

01 1 10 00 01

100 01 01 01

101 10 00 10

1 10 10 10 11

111 1 1 1 1 1 0

Table E.3. Truth tables: without fault and with faults FI and F2

548 AppendixE

Table E.3 gives the output values without fault and with faults F1 and F2• The
values noted in bald characters show the failures.

3. The two faults produce quite different failures. It is possible to distinguish
between these faults by applying to the circuit an input vector such as Oll. The
diagnosis is as folIows:

• if the output C only is erroneous, then fault F1 is present,

• if outputs C and S are erroneous, then fault F2 is present,

• if both outputs are correct, none of these two faults is present.

Exercise 5.3. Fault models and failures

1. We draw the truth table associated with each fault. Thus, the erroneous function
for c stuck at 0 (noted co) is z = a b; it provokes 3 failures for the input vectors
001, 011, and 101. We observe on Table EA that faults aO, bO and Jl are
equivalent, and that faults d l , Cl and Zl are equivalent.

abc z aO al bO bl CO Cl dO dl ZO Zl FFI FF2

000 0 0 0 0 0 0 1 0 1 0 1 1 1

001 1 1 1 1 1 0 1 1 1 0 1 1 0

010 0 0 1 0 0 0 1 0 1 0 1 1 1 -
011 1 1 1 1 1 0 1 1 1 0 1 1 0

100 0 0 0 0 1 0 1 0 1 0 1 1 1

101 1 1 1 1 1 0 1 1 1 0 1 1 0

110 1 0 1 0 1 1 1 0 1 0 1 0 0

111 1 1 1 1 1 1 1 1 1 0 1 1 0

Table E.4. Correct and erroneous functions

2. Let us assume that the functional faults can affect each gate by transforming it
into any other gate type: AND, OR, NOT, NAND and NOR. We illustrate these
faults with two cases (Table EA):

- FFI which transforrns the AND gate into a NAND gate:
z = (a b)' + c = a' + b' + c.

- FF2 which transforms the OR gate into a NOR gate:
z= (a b + c)' =a 'c' + b'c'.

These two failures do not belong to those induced by the stuck-at fault model. Going
further, we can wonder if this functional gate-transforming model is able to
complement the set of all theoretical failures (255 classes!). The answer is not: for
instance, the erroneous function Z = a b' + b c' cannot be obtained with these fault
models. Now the question not answered here is:

Can such ajailure occur, andjrom wh ich technologicalor junctionaljaults?

Answer to the Exercises 549

Exercise 5.4. Faults of a sequential circuit

From the circuit, we can write the logical expressions of the D-inputs of the Flip
Flops; then, we deduce the transition table and the state graph shown in Figure E.2 .

Correct Functioning

z= 0 0/1
state yl y2 DID2

x 0 1

1 00 01 01

2 01 11 10

3 11 00 00

4 10 01 11
z=l 1 z=O

Figure E. 2. Transition table and state graph of the correct circuit

1. The transformation of gate A into a NOR modifies the logical expression of D2
which becomes D2 = y2' + x'+ yl'. Figure E.3 shows the new transition table and
state graph. We observe that two transitions are modified: the arc joining state 2
to state 4 when x = 1 is now going to state 3, the are joining state 3 to state 1
when x = 0 is now going to state 2.

This analysis led us to represent the initial funetional fault at 'state graph level' by a
new fault model (arc modification). If we suppose that state 1 is the initial state, then
by applying the input sequence <0, 1>, the cireuit goes into state 2 and finally state 3
instead of state 4 ; the final output is z = I instead of z = 0: hence a failure oeeurs.

Functional Fault

z= 0 0/1
state yl yl DIDl

x

1

z = l 1 z=O

Figure E.3. Influence of the functional fault

2. The 'stuck-at l' fault noted a modifies the logieal expression of Dl which
becomes: Dl = yl.y2' + yl' .y2. Figure E.4 shows the new transition table and
state graph. Only one transition is modified : the are joining state 4 to state 2
when x = 0 is now going to state 3. Here also, we have transformed the hardware
fault model into a graph fault model.

550 Appendix E

If we apply the input sequence <0, 1, 0> to the initial state 1, the system goes into
states 2, 4 and 3 instead of state 2. However, no failure occurs at the output z! A
failure is produced if a new vector x = 0 is added to this sequence: the incorrect
circuit reaches state 1 instead of state 3 and gives a final output z = 0 instead of 1.

Hardware Fault

z = 0 0/1

state yl y1

1

z=l 1 z=o

Figure E.4. Influence of the hardware fault

Exercise 5.5. Software functional faults

1. FauIt analysis: Line 5: Sum := A(i) - Sum;

The Sum is iteratively subtracted from each value A (i) . Then, we divide the resuIt
by the number of values. We obtain a final Sum value = -15 and a final Average
value = - 3.75 instead of + 3.25. The difference between the correct value and the
erroneous one is quite important; hence, the external consequences of such a failure
can be serious. However, this difference depends on the values stored in the array A.
For example, if we add a fifth figure equal to 0, the erroneous average becomes 3
instead of 2.6: thus the difference is only 0.4 in that case!

Line 7: return Sum / (A'last - A'first);
This fault provokes a bad counting of the total number of numbers to be averaged:
correct number minus 1. The seriousness of the resulting failure decreases with the
number of values to be considered. Consequently, this fauIt has more 'regular'
effects than the preceding one.

2. The result becomes - 7.375. The performed mathematical function is
transformed:

T= 2'\ A(4) - 2-2 A(3) + 2.3 A(2) - 2.4 A(l).

Exercise 5.6. Software technological faults

The proposed program converges when N increases, whereas the series
mathematically diverges. This failure comes from the Iimited precision used to
represent the floating numbers in computers. When I reaches a certain value, 1.0 /
f10at (/) is computed as 0.0. This situation is an example of technological fault, as
the real number representation differs from their mathematical definition.
Let us note that for most programs, this fault actually exists but has no serious
effects, even if division operations are used. Such a situation occurs in exercise 5.5,
as the value of N does exceed the precision limit.

Answer to the Exercises

SECONDPART

Exereise 7.1. The 'fault - error - failure - detection - repair' eyde

1. Figure E.5 shows the interpreted cycle:

Le J: latency of the fault according to the occurrence of the first error,

Lf. latency of the fault according to the occurrence of the failure,

D: detection time, R: repairing time,

SF: mean time of good functioning to the occurrence of a fault.

product product product
availtlble lIoll-tlVlIÜIlble tlVfliltlble

t I I TIME

I I
~

fault error detedion repalr fault

faDure diagnosil
l.e1 __ + • U ~

~ ~ ~
D R SF

Figure E.5. Cycle of a repairable product

2. MTBF study. MTBF = LI + SF: mean time to the occurrence of a failure.

The integration of the latency phenomenon increases the MTBF/MTTF:

MTTR = (D - LI> + R.
The availability rate of this system is: (SF + LI> / (D + R + SF).

Exercise 7.2. Reliability of a eomponent

551

The component follows an exponential reliability law with a constant failure rate A..

1. We perform adefinite mathematical integration of R(t) = e'~, from 0 to 00. The
mean time is 1 / A., that is to say 106 hours.

The reliability at the mean time is R(l/ A.) = e -1.

2. dR / dt = - A. R. It is the derivative of the survivallaw, that is to say the failure
density at time t. The tangent at the origin is given by the equation: y = A. x + 1;
this line met the abscissa at time l/A..

3. A. = - (dR / R) / dt. It corresponds to the conditional probability of a fault
occurring at time t during a time unit (1 hour).

4. The second version is more reliable than the first one, as it has a smaller failure
rate: R2(104) / Rl(104) = e 0,099 = 1,1041.

Note. The failure rate has been multiplied by 10, but the reliability at time 104 H is
multiplied by 1.1 only.

552 Appendix E

Exercise 7.3. Composed reliability

1. Series diagram. The global reliability function is the product of the reliability
functions of the constituting modules:

R(t) = RI (t) . R2(t) = e -Alt. e -Alt = e -(A1+ Al) t.

Hence, the faiIure rates of the components are added:

'A = 'Al+ 'A2, MTBF = 1 / ('Al+ 'A2).

If 'Al= 'A2, the MTBF is divided by 2. We note that the value of the MTBF is
inversely proportional to the number of components (if they are identical).

2. Parallel diagram. 1 - R(t) = (1 - RI(t» . (1 - R2(t».

Thus, R(t) = RI(t) + R2(t) - RI(t).R2(t).
MTBF (or MTTF) = 11 'Al + 1 / 'A2 - 1/ ('Al + 'A2).

Ifthe two components are identical, R(t) = 2Ro - R02 (where Ro is the reliability of
each one). MTBF = 1,5 MTBFo.

3. Reliability of one module: Ro (103) = 0,9048.

Series diagram: R(1 03) = e -0,2 = 0,8187 -+ the reliability is smaller.

Parallel diagram: R(103) = 0,9909 -+ the reliability is higher.

Exercise 7.4. Comparison of two redundant structures

a) Series- Parallel b) Parallel-Series

Figure E.6. Two redundant structures

1. Structure 'parallel-series':

Rps = (1 - (1 - RI) (1 - R2» (1 - (1 - R3) (1 - R4»,

Rps = R4 - 4 R3 + 4 R2, if Ri = R.

Structure 'series-parallel':

1 - Rsp = (1 - RI. R3) (1 - R2 . R4),

Rsp = 2 R2 - R4, if Ri = R.

2. Comparison of the two structures:

Rps - Rsp = 2 (R2 - R)2 which is always positive; so Rps > Rsp.

Thus, the first structure is always more reliable than the second structure.

Answer to the Exercises 553

Note. As the faults altering the modules are independent, these reliability results can
also easily be determined by the composition reliability theorems. For example, for
the PS structure we have: Rps = P«l or 3) and (2 or 4)) = P«(1 or 3) . P (2 or 4)) =
(P(l) + P(3) - P(1).P(3)).(P(2) + P(4) - P(2).P(4)) = (2R - R2)2, if all modules have
the same reliability R.

Exercise 7.5. Safety analysis by a Markov graph

The evolution matrix which gives the probability to pass from astate to another
(with a sampling rate expressed by hour) is shown in Figure E.7. After two
elementary periods (hours), the probability to reach state 4 (considered as
dangerous) is equal to pl.p3 + p2.p4. The raising of this matrix to the successive
power of 2, 3, etc., gives the progression of the probability values to reach this
dangerous state (hour after hour). As this system does not posses any regeneration
mechanism, all parameter values always increase and are bounded by 1; this means
that the degradation probabilities increase with time.

[

I ~ I I ~ 2 I ~ 3 I ~ 41 [(1- pl- p2) p2 pi 0 1
p= 2~1 2~2 2~3 2~4 = r2 (1-p4-r2) 0 p4

3~1 3~2 3~3 3~4 rl 0 (1-p3-rl) p3

4~1 4~2 4~3 4~4 0 0 0 I

Figure E.7. Evolution matrix

Exercise 7.6. Representation of a system by a stochastic Petri net

Figure E.8 shows the failing and restoring mechanisms of this system. When an
active unit fails and if the spare is available, the spare unit replaces the failing unit
with a rate p. This failing unit is then symbolized by a token in place P5, waiting for
repairing (with rate f.1). Then, it is considered as the new spare unit (a token in place
P3). The spare unit is submitted to failures and repair with rates Ä.s and f.1s.

Spare avaiJabk 1'3 As

Active wriJs

t.. TI Spare down

Figure E.8. Stochastic Petri net

The analysis of this graph can be performed by means of a finite state machine (non
parallel model), called the marking graph, which shows all possible evolutions from
the initial state (3 tokens in PI and 1 token in P 3). We can notice that the total
number of tokens is constant.

554 AppendixE

Example 0/ evolution:

(Pl=3, P3=1) - (Pl=2, P2=1, P3=1) - (Pl=3, PS=l, P3=0) - (Pl=3, P3=1), etc.

Exercise 7.7. Fault Tree and Reliability Block Diagram

The fault tree can be analyzed with the knowledge of the reliabilities of the basic
events (leaves of the tree) . Hence, we start from the leaves and go up towards the
studied event which is the failure of the system. The probability at the output of a
AND node is the product of the probabilities at its inputs. The probability at the
output of a OR node (here with 2 inputs) is the sum of the probabilities at its inputs
minus the product of these probabilities (this can be generalized to a more
complicated formula for n inputs). The failure ofthe system has the probability:

F= Fl2 + F3 - Fl2.F3 = (1-R}).(1-R2) + (1- R3) - (1-R}).(1-R2)·(1 - R3),

Hence, R = 1 - F = (RI + R2 - RI.R2).R3.

F = F12 + F3 - F3.F12

Figure E.9. Fault tree analysis

Figure E.lO shows the Reliability Block Diagram of this redundant system: two
modules MI and M2 in 'parallel', in 'series' with M3. The analysis by the method
already studied gives the reliability: R = Rl2 . R3 = (1 - (1 - RI).(l - R2)) . R3 = (RI
+ R2 - RI.R2).R3. We obtain the same result.

Figure E.l O. ReIiabiIity Block Diagram of the system

Exercise 8.1. Functional redundancy of an adder

1. The number of input vectors producing a same output value is variable. This
function increases from 1 to 10 according to a linear law when the output value
varies from 0 (only one possibility: 0 + 0) to 9 (10 vectors: 0+9, 1+8, ... ,9+0).
Then, it decreases from 10 to 1 when the output value passes from 9 to 18 (only
one case: 9+9). Finally, it takes the constant value 0 when the output values are
between 19 and 99, corresponding to 'impossible' cases. The input values being
supposed as having the same occurrence probability, we deduce the probabilistic
domain shows in Figure E.II.

Answer to the Exercises

P(c) = (c + 1)1100, for c E [0,9], P(c) = (19 - c)/lOO, for c E [9, 18],
and P(c) = 0 for c > 18.

P
P(c) = (c + 1)/100

0,1 I--__ ___ P(c) = (19 - c)/IOO

c

o 9 18 99

Figure E.ll. Probabilistie statie funetional domain

555

Failure detection. A typical application of the functional redundancy deals with
failure detection. Let us imagine an external observer receiving the output values.
The preceding domains reveals that the output values belonging to (19, 99) are
strictly impossible: if the observer receives a value belonging to this sub-domain, it
can without any doubt signal the occurrence of a failure due to an unknown fault. If
the output values belong to the acceptable sub-domain (between 0 and 18), this
observer must record a11 produced output values and compare their occurrence rate
with their probabilistic rate. In case of significant difference, this observer can raise
a warning signal indicating that a failure might have occurred.

2. Input redundancy. There are 2 x 4 = 8 bits, i.e. 256 configurations, but only
100 of them are used by the considered code: 10 values for A and 10 values for
B. The resulting input redundancy rate is: (256 - 100) / 256 = 0.61 (number of
unused vectors divided by the total number of possible vectors).

Output redundancy. There are also 8 output bits, i.e. 256 configurations. Only
19 ofthem are used. So, the output redundancy rate is: (256 - 19) /256 = 0.93.

3. The numbers have 2 bits and they are constrained by the property A :5 B. This
leads to 1 + 2 + 3 + 4 = 10 cases. Hence, the redundancy rate is:
(24 - 10) /24 = 0.38.

Exercise 8.2. Functional redundancy of astate graph

First of all, we observe that the graph has no redundant unreachable part: from the
initial state 1, we can reach any other state. Then, we analyze the state graph to find
if it accepts sequences that are forbidden by the input constraint: 'c is never applied
after b'. There are two such situations (see Figure E.12):

a) The first one occurs when the graph is in state 2 or 3, if we apply the forbidden
sub-sequence <b, c>. As this situation will never occur, the arc 3-2 (by input c) is
redundant and thus can be removed. Indeed, this transition is never fired by any
acceptable sequence.

b) The second one occurs when the graph is in state 4, and if we apply the same
sub-sequence <b, c>. However, the arc 4-2 (by input c) is not redundant. Indeed,
the sequence <a, a, c> from state 1 is quite acceptable: it passes through states 2,

556 Appendix E

4, and finally reaehes state 2 by the are 4-2. In that ease, the funetional
redundaney eannot be expressed as a redundant are but as a redundant path:
<4 - 4 - 2> is redundant.

Figure E.12. Redundant graph

Exercise 8.3. Structural redundancy and faults

1. This eireuit implements the logical funetions:j = a' + b, g = b'. The table of
Figure E.i3 shows the resulting input/output eonfigurations. Both faults
eonsidered here have no effect on f Fault a has also no effeet on g.
Consequently, there is no failure. On the eontrary, fault ß is aetivated as a failure
when a.b = 10: henee, the outputjtakes value '0' instead of '1'.

a ab fg
b f

00 I I

01 10

ß g 10 01

I I 10

Figure E.13. Redundant circuit

2. We deduee from the previous study that the line a is totally superfluous. Thus, it
eorresponds to passive redundaney. Going a step further, the analysis shows that
the output g is independent from the produet term a.b produeed by the AND
gate. Thus, this gate (noted X in the figure) can be removed, the NOR gate
producing g being hence a simple INVERTER.

3. The truth table shows that the input eonfiguration (00) never oceurs at the output
of the eireuit: this eorresponds to an output junctional redundancy.

Exercise 8.4. Structural redundancy of several circuits

We suggest the following analysis to deteet possible 'structural redundaneies'. We
establish the logical expression of eaeh node of the eircuit, starting from the primary
inputs (the extern al inputs of the eireuit) and going backwards to the primary outputs
(the externaioutputs of the eireuit). At each step, the resulting logical expression is
analyzed in order to determine possible simplifieations. If such simplifieations exist,
then they reveal structural redundancies.

Answer to the Exercises 557

Circuit 1. We determinej= a + a.b' + c = a + b' + c. Hence, the input line b ofthe
AND gate is redundant. We can remove this line and also the AND gate, a entering
directly into the NOR gate. This redundancy is passive.

Circuit 2. This circuit possesses passive structural redundancy: gate (b + c) can be
removed. No stuck-at 1 faults of this gate can be detected on the output!

Circuit 3. This circuit realizes the majority function of its inputs without any
structural redundancy:j= a.b + a.c + b.c.

Circuit 4. The input lines of circuit 4 are all different, excepted variable b which
intervenes twice. The XOR being commutative, we can modify the network by
shifting the terms band b.e to the beginning of this network. The function becomes:
j = b 61 be 61 ac 61 d. Now, b 61 be = be'; hence, this circuit can be simplified.
However, there is no passive redundancy: all stuck-at faults can be detected.

Exercise 8.5. Software redundancy and constraint types

1. The feature new creates a new type from another one (here the type 'integer').
Specific operations (subprograms) must be defined, as the ones provided by the
other types cannot be used. For instance, two Size_oCShoes cannot be added or
divided.

The declaration

type Size_of_Shoes is new integer;

P: Size_of_Shoes;

instead of

P: integer;

is not a functional redundancy. The two versions lead to the same executable code
which allocates one word in memory for the variable P.

On the contrary, it constitutes a structural redundancy of the source program. It is an
active redundancy ifsubprograms using parameters oftype Size_of_Shoes exist.
Indeed, the associated operations are specific to Size_of_Shoes and not to any
integers. On the contrary, this redundancy is passive if the program makes only use
of integer operations.

2. The adding of the constraint

type Size_of_Shoes is new integer range 28 •• 45;

reduces the number of acceptable values. For subprograms having parameters of this
type, this declaration reduces the functional domains, hence having an impact on
their functional redundancy. The type declaration itself constitutes a structural
redundancy, as it corresponds to an element of the structure of the 'program model'.
It seems to be passive, as it omission has no effect on the behavior of the system.
The reality is more complex. If the structure of the program is such that no value
outside the interval [28 . .45] can be attributed to P, the answer is 'yes': there is
passive redundancy. On the contrary, if this hypothesis can be guaranteed, then the
constraint cannot be removed from the declarative part, because the execution of the
pro gram leading to the assignment of a value outside the [28 . .45] range produces the
raising of an exception (Constraint_Error in Ada), and thus a different
behavior. In this case, the redundancy is active.

558 AppendixE

Exercise 8.6. Exception mechanisms of languages: termination model

The functional redundancy depends on the types of the parameters and on the actual
values received and returned by the procedure. Let us signal that if the exception
handler implements a full-tolerance, the returned values are the same, whatever an
exception is raised or not during the body execution.
Structural redundancy exists. The exception handler is not useful if no exception (no
error) occurs. So, the redundancy is passive. However, let us signal that if an
exception is raised, it is then propagated in the software hierarchy when no handler
exits. Hence, the handler removal changes the program behavior where errors are
concerned.
This redundancy is separable: the handler is explicitly separated from the body. This
feature thus constitutes an interesting means to show the normal body and the error
handling part.
The redundancy is off-Une (or inactive), as the handler starts its execution only when
an exception is raised.

THIRDPART

Exercise 9.1. Requirement analysis

Two families of entities are defined in the text.
The first one concerns the capability of the product to be moved. This notion is
specified by two entities: the product must be contained in a hand and the product
must be moved by car.
The second family concerns the notion of autonomy specified as maximized.
Let us note that numerous specifications can be derived from these requirements.
For instance, the autonomy can be provided by an efficient battery included in the
mobile phone, and/or by a connection to the car battery.

Exercise 10.1. Verification ofthe adder

The functional fault considered transforms the adder into the circuit of Figure E.14.

a_--r:~
b ~-4-.-~

S S=aE9bE9c

Figure E.J4. Erroneous adder

1. Verification by extraction. We determine the new logical expressions of this
circuit, starting from the primary inputs and progressing towards the primary
outputs:

• S = a EB b EB c, the sum is not altered by the fault considered,

• C = a + b + c, the carry is erroneous (the correct function is ab + ac + bc).

Answer to the Exercises 559

There is a failure on output C each time one input only is at '1': so there are three
erroneous vectors.

2. Verification by double transformation with intennediate model. We choose
as intermediate model the modular description of the adder as two interconnected
half-adders. The fault modifies each one of these half-adders: the behavior with
and without fault is the same only when both inputs have identical values. The
combination of these two modules is correct if and only if: a = b = c = 0 or
a . b . c = 1. All others vectors give a wrong output.

3. Verification by double top-down transformation. The behavior of the circuit
is simulated with a functional input sequence significant of the correct behavior.
For example, we perform an addition without carry (1 + 0 + 0), and an addition
giving the maximum output value (1 + 1 + 1). Then we compare the results given
by the circuit with the computed theoretical values.

Exercise 10.2. Programming style (C language)

The four situations described hereafter stress examples of bad programming style,
which increase the risk of introducing faults. Let us note that in each case, the
program is syntactically and functionally correct. However, the bad style which is
used makes it very probable to produce faults. Moreover, even for such simple
functions, the style used for its specification will probably lead to utilization faults
(calls to the function).

• The type of the returned value (int) is absent. This is syntactically correct (use
of default type), but the user of this function may think that this function does
not return any value. In a general way, the use of 'by default' or 'implicit'
constructions is not at all advised.

• The name of the function is not explicit. In particular, the fact that it proposes
two mutually exclusive treatments is not specified.

• The value '5' used in the specifications to define the size of the array is then
reused in the loop! First, no link exists between these two values dealing with the
same constant (same concept). Moreover, the maintenance operations can
introduce faults if the size of this array is modified. It is much preferable to
explicitly define a constant by means of a #define before the function.

• The parameter B has a non-explicit name; moreover, the associated type (int)
reinforces this ambiguity. One always must explicitly define the Boolean type by
an enumerated type or by defining the two constants TRUB and FALSE.

Exercise 10.3. FSM synthesis

The reasoning has been presented in section 10.4 of Chapter 10 dealing with
functional testing. It is based on a simulation of the automata, in order to compose
them as one automaton. This composition process reveals the input/output relations
and removes the internal interactions between the automata (these relations have
been introduced by the design process).

Exercise 10.4. Functional test sequence

In order to obtain a functional test sequence of the drinks distributor, we develop a
three-step procedure:

560 Appendix E

• formal specification of the behavior,

• definition of an input sequence which provokes the complete activation of this
behavior,

• deduction of the expected output values in response to the preceding input
sequence.

The formal specification is derived from the informal specification. It describes two
aspects shown in Figure E.15: the interface and the behavior.

01D ElItend
alu"ö_ColD)

D rink_S.lecUd

-
C all.oo.l1ol1

ColD. R. turnod
111) (VoIüo_Co

-Cofr"_Av aIIablo

1) Interface

Coba ElItend
(Val •• _C'!!")

AmoRat Provfded :
Am01lll(Providod + Val.o_Coba

COID_Eat.~
(Valuo_Coi;)-).-

Coffet: AvaUablo
Do.e Number
CO _Retumed

(Amollllt_Provided - 75c)

2) Behavior

Figure E.15. Interface and behavior

Functional modeling is made by an automaton which is weIl adapted to the
sequential features of this system. We have added to this automaton some
annotations dealing with the data treatments (e.g. the addition operations, etc.). Let
us note that this model describes only functional aspects of the specification. Other
points, such as those dealing with the ergonomics of the system, are not expressed.

The formal modeling of the specifications for test generation purpose is interesting
for two main reasons:

• Rules allowing to deduce what are 'all possible behaviors' can be defined for
each modeling means. For example, in the case of an automaton, one might want
to pass through each state or else through each transition between states. This
aspect is developed in Chapter 13.

• The application of the rules can be systematic; that is to say, we are able to
deduce a sequence activating all behaviors (in the sense of the rules). Tools can
then automate the production of the test sequences.

In our case, we will make this work 'by hand', with the following assumptions:

• every path must be exercised at least once by the sequence,

• if an arc is conditioned by a Boolean expression, we must pass through that arc:

~ with one internal value belonging to each domain defined by this expression,

~ and with the limit values between these domains.

Answer to the Exercises 561

At first, we define the set of all paths, we give a name to eaeh path, and we
enumerate its states.

• Enter a eoin and caneel: {I, 2, 3, I}.

~ Enter two eoins and eaneel: {I, 2, 2, 3, 11. The presenee of a loop from state 2
introduces an infinite number of paths; we limit the number of iterations to 1.

• Order a coffee after having entered a suffieient number of eoins, if the number of
doses is greater or equal to 1: {I, 2, 4, 5, I}. The eondition labeling the are (4, 5)
induces a domain of values for the eouple (Amount_Provided, Dose_Number). It
is necessary to take a value ~ 75e (for example 1$) and a number of doses> 0
(for example 2). Moreover, we must apply ' limit tests', i.e. 75e and 2 doses, then
1$ and 1 dose. Consequently, 3 sequenees must be defined for this path. This
situation shows also an interesting aspeet dealing with the memory implied by
the used variables. Indeed, when we apply the first part of the sequenee {I, 2, 3,
1 }, the expected behavior is the same, whatever the past of the system.
Moreover, this behavior will have no effeet on the future. On the eontrary, in
order to test the behavior of the system when only one dose remains, it is
necessary to first apply sequenees leading the system in the required initial state
(one dose only); these sequenees are ealled initialization or homing sequences.
Finally, onee the test consuming the last eoffee dose has been performed, it will
be neeessary to eontinue the test proeedure with test sequenees, assuming a null
number of doses. To eonclude, the various test sequenees we have defined are
not independent; henee, these fragments must be seheduled in a coherent order,
maybe with extra link sub-sequenees.

• Case where the user orders one eoffee after entering a suffieient number of eoins,
but when there are no more eoffee doses: {I, 2, 4, 3, 1} . As said before, the
preeeding parts of the global test sequenee must have led to a situation where no
eoffee doses remain. Otherwise, the eondition labeling the are (4, 3) being
eonstituted by a Boolean expression using one OR, it is also neeessary to test the
opposite situation, e.g. 'AmounCProvided < 75e', and the two simultaneous
situations, i.e 'AmounCProvided < 75e and Dose_Number = 0' .

From this analysis, we ean deduee the various pieces of sequenees assoeiated with
each tested fragment of behavior. Table E.5 gives an example for the first ease
considered. We will not develop the whole set of test sequenees. Its obtaining is easy
as far as we take eare of the necessary relationships between those fragments,
aeeording to the state of the system. This job may seem to be tedious. However, it is
systematie, providing a good guarantee that the resulting funetional test sequenee
aetivates properly the whole set of possible behaviors.

Input Output

Coin_Entered (50e)

Caneellation

Coins_Returned (X$)

Table E.5. Sequence

562 AppendixE

Exercise 10.5. Property research

In the previous Exercise, the need of the client is to ear money. One can ask the
question: "Is it possible to get a coffee without paying or with less than 75c?".

This analysis must first be conducted on the specification model. Here the answer is
'no', as Coffee_Available is conditione by' AmounCProvided ;::: 75c' (because of
the OR function). On the contrary, one must then ask himself if AmounCProvided
effectively contains the amount of money which has been entered in the machine. It
would not be the case if AmounCProvided were initialized to 1$, and then not
a signed in the model. The analysis of the backward path shows that the amount of
entered coins is effectively the value of Amount_Provided i state 4.

Exercise 10.6. Properties oe functional graphs

Independently from any functional aspect of the product (we ignore its function), we
try to define properties which are significant of the studied functional graph.

1. If state 4 is suppressed, the graph is split into two independent sub-graphs;
hence, it is no more possible to pass from one sub-graph to the other. Let us note
that each sub-graph is aliv . This situation can corre pond to two independent
modules. The global functioning res Its from the 'Cartesian product' of these
two sub-graphs: every state couple from the two graphs is theoreticaUy possible.

2. 0 the contrary, if we add an arc joining state 5 to state 1 (in bold in Figure
E.I6), the connexity of the graph is increased. It is then possible to draw a table
containing all the states reachable from any state:

from state 1 or 2 or 3, one can reach states 1, 2, 3, 4; from state 4, only state 4
can be reached; from state 5 or 6, one can reach states 1,2,3,4,5,6.
State 4 remains astate which definitely blocks the functioning of the system:
hence, this situation corresponds to a locking.

Figure E.16. Graph

Exercise 10.7. Verification of a floating-point unit

Black box verification by functional simulation. We are looking for a simulation
sequence which passes through each module of the product and activates a
maximum of functions and connections. A simple sequence would incIude aseries
of additions on several numbers:

Al = MI 10 EI and A2 = M2 10 E2.

Answer to the Exercises 563

We must check the module performing the subtraction (El - E2) with different
exponents: (El > E2), then (El < E2), positive values, then negative values. These
operations also verify the circuit which performs the 'adjust' operation (right shift of
the mantissas).

Then, we must check the circuit ca1culating the final 'sign' of the result. For this
purpose, we make several '+' and '-' operations with numbers having the same sign,
and finally opposite signs. The sign S of the final result must take into account the
carry corning from the +/- circuit. Hence, we consider a situation such that
M' 1 > M'2 for an adding control (signal +/-): e.g. subtraction of two negative
numbers, the absolute value of the subtracted one being greater than the first one. If
the result ofthe circuit '+/-' is greater than 1, there is a carry, and we must perform a
normalization operation, i.e. add '1' to the exponent and make a one-figure shift to
the right of the mantissa.

Finally, the overflow situations must be considered. For example, we add two
negative numbers with maximum value positive exponents (+999 if Eis expressed
with 3 digits), and such that IMli + 1M2 I ~ 1.

Exercise 10.8. Inductive formal proof

1. We must demonstrate that Al ==> A2 when R ~ B after the execution of R := A
and Q := O. The second condition of A2 is evident: it is the loop assertion(R ~ B).
As R := A and Q := 0, then Q*B + R = O*B + A = A. So, the first condition of A2
is true.

2. We must demonstrate that Al ==> A3 when R ~ B is false after the execution of
R := A and Q := O. The condition 'R ~ Bis false' implies that R < B. We have
Q*B + R = Q*B + A = A. So, the first condition of A3 is also true.

3. We must demonstrate that, when [A2 is true and R := R - Band Q := Q + 1 are
executed and then R ~ B], then A2 is true with the new values of Rand Q. Let us
note Rb and Qb the values of Rand Q before the execution. The hypotheses are
A = Qb*B + Rb (relation 1), and Rb ~ B (relation 2). After execution of the loop
statements, we obtain R = Rb - B (relation 3) and Q = Qb + 1 (relation 4). The
relation R ~ B is true due to the loop condition. We must demonstrate that
A = Q*B + R. Relations 3 and 4 give: Q*B + R = (Qb + 1)*B + (Rb - B) = Qb*B
+ B + Rb - B = Qb + B + Rb = A (relation 1). So the second condition is
demonstrated.

4. The demonstration of A2 ==> A3 after the execution of the loop statements and
when condition R ~ B is false is quite similar concerning the second condition.
The second condition R ~ B is due to the negation of the loop condition.

Exercise 11.1. Component choice

Failure rate of the first structure. The failure rate is the sum of the failure rates of
the components (as these values are very smaII: this would not be true otherwise!):

Al = 12.10-7 + 1.10-6 + 3.10-5 = 3.22.10-5•

Failure rate ofthe second structure: 1.,2 = 4.10-6•

Thus, the second structure has a better reliability than the first one.

564 AppendixE

Note. This exercise does not consider the influence of temperature or radiations on
the reliability of these components, or their mutual influence.

Exercise 11.2. Comparison of the reliability of two products

The two failure rates 1..1 and 1..2 evolve according to power of 10. Hence, IOglO(A.1)
and IOglO(A.2) are linear. We deduce from this the two logarithmic equations for the
two products:

1) For 1..1: IOglO(A.1(1) = [lOglO(10. A.01) - IOglO(A.01)]T 1 (38-18) + b, where A.01=
1..1(18°).

When T = 18°C, we have b = -59/10.

So, IOglO(A.1(1) = TI20 - 59110.

2) The same reasoning for 1..2 gives IOglO(A.2(1) = TI10 - 88110.

Finally, we deduce T for 1..1 = 1..2: from 58°C the reliability of Pl becomes better
than the reliability of P2.

Exercise 11.3. Shared FIFO

1. The result is hazardous, as the data structure (array and indexes) is shared (same
situation as in sub-section 11.2.2.2). Moreover, the data structure value may be
incoherent. For instance, consider the scheduling described in Figure E.17,
where WI expresses the variable Wr i te_Index.

Write (Xl): Write (0):

• Buffer(WI) :=Xl; • Buffer(WI) :=X2;

• WI:= (WI mxl Buffer_Size) + 1; • WI:= (WI mxl Buffer_Size) + 1;

TIME
11,

Figure E.17. Incoherent value ofthe array

After execution of this sequence of statements, only X2 is memorized, as it
overloaded Xl, and an empty item is created, as Write_Index is incremented
two times. Such a situation defines an error, that is to say an unacceptable state
of the data structure value.

2. No problems occur if we consider that the list is never empty, as the two couples
of data structures (Write_Index, Buffer (Write_Index) and
(Read_Index, Buffer (Read_Index) have no common elements.
However, no mechanisms guarantee that a reading cannot occur when the FlFO
list is empty.

To conclude, this implementation induces a high risk of error occurrences. The
problems come from a characteristic of the task management implementation: the
preemption of a task by another task does not guarantee exclusive access to the

Answer to the Exercises 565

shared resources. To be safe, a mechanism managing the access authorizations (such
as a semaphore) must be added.

Exercise 11.4. Hazards in shared variable implementation

No problems seem to exist in the sharing of variable using one statement. Indeed,
the design is correct. However, assurne that the incrementation and decrementation
operations are processed on a register AX. Then, 1++ is translated as Taskl:

Move AX, @I

Inc AX

Move @I, AX

In the same way, the statement r' is translated as a Task2:

Move AX, @I

Dec AX

Move @I, AX

Consequently, several instructions are necessary to implement one statement. Figure
E.I8 shows the two considered implementations of these tasks: sequential or
interleaved.

Taskl Task2 Taskl Task2

Mlve AX,@I MlveAX,@I

Inc AX M:lVe AX,@I

M:lVe @I,AX Inc AX

Mlve AX,@I Dec AX

Dec AX MIve@I,AX

Mlve @I,AX Mlve @I,AX

TIME '
TIME ,

Figure E.18. Hazardous result

Let us show that the result is hazardous. On the left side of Figure E.I8, the result is
unchanged at the end of the execution of Taskl then Task2. This is the expected
result, as the value of I is incremented and decremented. On the contrary, on the
right side of Figure E.I8, each task saves and restores its own context (in a local
Task Control Block) at each task switch. After the execution of the second line of
Taskl (Ine AX), this value is not transmitted to Task2 that decreases its own copy
ofAX when executing its second line. Thus, the final value of I is incorrect.

Exercise 12.1. Signature testing

1. The sequential treatment of the binary flow comprises 64 (i.e. 1024 / 16) XOR
operations on consecutive 16-bit words. If we suppose that the signature of the
faultless circuit is known, any multiple error altering one or several words is
detectable if and only if any modified bit of a word is also modified an odd
number of times in the same position of several words. According to the output
stream, this corresponds to erroneous bits repeated an odd number of times

566 AppendixE

modulo 64. For example, a multiple error altering bits 1, 15, 65, 121 is
detectable: errors 1 and 65 neutralize themselves, but each error 15 and 121 is
detectable. All functional or technological faults producing such errors are thus
detected. All other faults are undetectable.

2. Without any knowledge about the electronics implementation of this system
(gate or MOS structure), one cannot deduce any class of technological faults that
produces the preceding errors.

Exercise 12.2. Toggle test sequence

A Toggle Sequence is such that every line in the circuit takes the values '0' and '1':

• each XOR must receive a vector from the set {OO, 11}, and a vector from the set
{01, 1O},

• each NAND must receive the vector (11), and, either the two vectors (01) and
(10), or the vector (00).

We propose the following Toggle sequence: <010, 101, 111> (there are other
solutions). The reader will verify that this sequence applies '0' and '1' to each line.

Exercise 12.3. Test of components

1. Statistically speaking, y% of the products are good and are tested with a duration
of n 'time units'. The faulty products correspond to (1 - y)% of the production.
As the test coverage is c = 80%, 20% of these faulty products, that is to say
(1 - c).(1 - y) of the total production, will be considered as good by the test
sequence after a duration of n time units. Finally, c.(1 - y) products will be
declared as wrong after a mean duration time of n/2 time units.

Therefore, the mean time dedicated to the test of this production is:

d = [n . y + nI2 . c.(1 - y) + n . (1 - c).(1 - y)] = [n .(1 - c / 2 + C.y / 2)] = 0.996 n.

2. The rate offaulty products not detected as faulty is: (1 - c).(1 - y) = 2%.

3. If only 70% of the products are submitted to test, the mean time is reduced.

The ratio of non-detected faulty products has two terms:

t.(1 - c).(1 - y) + (1 - t).(1 - y).

The first term corresponds to faulty products which are tested but not detected as
faulty; the second one corresponds to faulty products which are not tested.

Numerical value: 4.4%.

Exercise 12.4. Fault coverage

Figure E.19. A 3-input NOR gate

Answer to the Exercises 567

The NOR gate is symmetrieal, according to its inputs a, band c (Figure E.19).
Consequently, the study can be reduced to the case of one input only, e.g. a. The
other inputs (b and c) must be set to the value '0' in order to let the error pass to the
output. If an input is set to the value '1', it forces the output to the value '0'.

1. Optimal test sequence. There is only one optimal test sequence comprising 4
test vectors: <000, 100, 010, 001>.

2. Coverage. Each input vector covers some stuck-at faults of the 110 Iines. Table
E.6 shows the fault coverage of each input vector.

We notice that some input vectors have a very small coverage; they should not
be taken to test this circuit; thus, (Oll), (101), (110), and (111) test the stuck-at 1
of line d only. On the contrary, the vector (000) covers half of stuck-at 0/1 faults.

Input vectors Test coverage
abc a b c d

000 1 1 1 0
001 - - 0 1
010 - 0 - 1
01 1 - - - 1
100 0 - - 1
101 - - - 1
1 10 - - - 1
111 - - - 1

Table E.6. Fault coverage

Figure E.20 shows the coverage curves of: 1) the exhaustive sequence, 2) the
optimal sequence, and 3) the very simple toggle test sequence <000, 111>.

Faults coverage

\00% 8
I l i J I i i 1 -!-·-t'- - -'F--+-1 --

7 - -+--Jt-I~I-tl-+I -+-1 --r-ir-ll'"'""ti--+-r--
6 - _. I I I +-1 -+-j -+-1 --+--i-+--1---t-'r-
! --t-l!t I I I I I J
3 _

2

\

o

I I I I I I I -I, __ +-~I __
I ! ! I I ! i I I
1 I I I i " !

i ! I I i i ; I I I
000 00\ 010 Oll 100 10\ 110 '1Il 000 100 0\0 10\ 000 111 Input

Exhaustlve Optimal Toggle Vectors
sequenc:e sequenc:e

Figure E.20. Fault coverage evolution

Exercise 12.5. Simple fault diagnosis

Let us analyze the coverage table obtained in the preceding exercise.

568 Appendix E

We observe that all stuck-at 0 faults are detected by distinct test vectors. Hence, they
can all be distinguished by the sequence <000, 001, 010, 100>. All these faults can
also be distinguished from the stuck-at 1 fault ofthe output. We also observe that all
stuck-at 1 faults of the inputs and the stuck-at 0 of the output are detected by the
vector (000) only. Consequently, they cannot be distinguished from the outside.
Hence, they are said to be equivalent.

Exercise 12.6. Optimal test sequence

Figure E.21 rerninds the gate structure of the circuit. Input vector 1 (respectively 2)
apply 11 to gate A (respectively B), and 10 (respectively 01) to gate C. (see Table
E.7). Hence, any stuck-at 0 fault is detected: activated as an error, and the error
propagated to fLet us note that the input vector 111 would apply 11 simultaneously
to gates A and B, but no stuck-at 0 of these gate would be observable on fLet us
also note that when receives 11, B (or A) receives one of the vectors 10 or 01;
unfortunately, these vectors cannot be 'counted' as belonging to the minimal AND
test sequence, because gate C will not propagate any error coming from B (or A).

Figure E.21. AND-OR circuit

Hence, input vectors 3 and 4 are necessary to apply the missing configurations: 01
and 10 to the AND gates, and 00 to the OR gate. These vectors will detect all the
stuck-at 1 faults: activation as an erroneous '1' error, and propagation of this
erroneous '1' to the output. The optimal test sequence has 4 vectors: <110, 011, 010,
101>.

Inputs Gates
abc A B C

vectors 01 10 11 0110 11 0001 10

1 110 X X
2 01 1 X X

3 010 X X X
4 101 X X X

Table E.7. Optimal test sequence

Exercise 12.7 Sequential circuit testing

1. Table E.8 shows the evolution of the sequential system submitted to the input
sequences STI and sn, applied to the same initial state 1.

2. A simple simulation of the logical circuit allows establishing the different values
of each node for test sequences STI and sn. Then, we deduce lines that take
both values 0 and 1.

Answer to the Exercises 569

ST1 ST2

e 0110 011011001

q 2431 243124231

s 1010 101010110

Table E.8. Correct and erroneous functions

3. Complete structural test.

• First, we determine those faults which are not detected by the functional test
sequence sn. This step can be performed thanks to a 'fault simulator' such as
Verifault of Cadence. Thus we can identify the 5 stuck-at faults which are not
detected, reducing to 3 classes of equivalent faults.

• Now, if we want to test one of these remaining faults, we can proceed as for
combinational circuits. We first try to activate this fault by setting the faulty line
at the opposite value. Then, a backward procedure is applied. Because of the
feedback loops, this procedure generally does not easily converge towards a
solution. The fault is detected when it is transformed into an erroneous output
value. The Reset input can be useful to perform this procedure, assuming it has
previously been tested.

4. The problem of the initialization of a circuit prior to the application of a testing
sequence is not always easy. Generally, it is assumed that there is areset input
which switches all flip-flops to the zero state. In the very general case of
asynchronous sequential systems without such inputs, it is necessary to find
special initialization input sequences called homing sequences. Initialization is a
real problem for testing complex systems.

Exercise 13.1. Test of a small circuit

1. Fault Table. Faults detected by the different input vectors can be obtained from
the logical circuit of Figure E.22, by applying the methods studied in Chapter
13, either column after column, or row after row.

Figure E.22. Two-gate circuit

Table E.9 shows the results obtained. There are three 'best test vector': 010, 100
and 110. Each one covers 4 faults. The input vector having the lowest coverage
is 111 with only I fault detected.

2. Minimal test sequence. Some faults are detected by one test vector only; it is
the case of faults 11 (vector 010), 1° (vector 110), i (vector 100), and 2° (vector
110). Hence, the 3 vectors 010, 100 and 110 belong to any minimal test
sequence. There are three minimal-Iength test sequences, for example TS = <001,
010, 100, 110>.

570 AppendixE

abc 1 2 3 4 S
000 - - 1 1 1
001 - - 0 - 0
010 1 - 1 1 1
Oll - - 0 - 0
100 - 1 1 1 1
101 - - 0 - 0
1 1 0 0 0 - 0 0
1 I 1 - - - - 0

Table E.9. Fault table

Exerdse 13.2. Test vectors detecting a fault

The fault aetivation eondition implies to put a '1' value to line 11. By baekward
propagation of this eondition, we find three possible eases on lines 5 and 6, i.e.
he = 10, 01 and 11. The forward propagation of the error produeed on <X ean follow
two different paths: PI (through lines 10 - l3 - j), and P2 (through lines 15 - g).

These two paths will never simultaneously eonduet errors to the outputsfand g.

Path PI. The loeal propagation eonditions are 9 = 0 and 12 = 1.

We find the 5 following test veetors (a b e d): (0 10 -), (0110), (- 010).

The resulting failure on outputfis a '1' value instead of a '0' value without fault.

Path P2. The loeal propagation eondition is 16 = O.

So we must have 7 = 8 = 1. We find the 4 following test veetors: (a b e d) = (- -11).

The resulting failure on output g is a value '0' instead of a value '1' without fault.

Summary: there are 9 test veetors for this fault, 5 of whieh produee a failure on f
(0100, 0101, 0110, 0010, 1010), and the 4 other ones produee a failure on g (0011,
0111, 1011, 1111).

Exercise 13.3. Analysis of test procedures

1. This proeedure explores the input spaee with a partition teehnique. The first
objeetive is to aetivate the fault. A tree is built, eaeh braneh eorresponding to a
disjoined input eube (sub-set expressed with '0', '1' and 'x' values). The
simulation propagates the known values towards the fault loeation (Figure E.23).

f

Figure E.23. NAND-gate circuit

Answer to the Exercises 571

Then, the fault is propagated to the output with the same exploration procedure until
a solution is found (if any test vector exists). Obviously, this very simple technique
can be long to converge towards a solution if the first possible test vector has many
'1' values for a, b, c, etc.

Let us now complete the given procedure:
Now, the objective is to propagate the eITor through gate E. A propagation
towards gate E of the known values is performed (if it has not already be done!):
E = 0, so the eITor cannot be transformed into a failure on outputf. We make a
backtracking in the input assignment.
Input c is set to 'x', and input b is switched to '1', and a propagation is
performed: the fault remains passive.
Input c is set to '0', and a propagation is performed: A = 1, B = 0, C = 1, hence
the fault is activated.
Now, the objective is to propagate the eITor through gate E. Input d is set to '0',
which forces output f to '1': this is a case of inconsistency, so we go backwards.
Input d is switched to '1', and the eITor is finally propagated to f.

Thus, we obtain the test vector: (a b cd) = (1 1 0 1).

2. This procedure makes a backward propagation along one path from the fault
activation. At a given gate, if several vectors satisfy the desired output value, we
choose the easiest path only (the closest path to the primary inputs). If several
inputs must be set (to '0' or '1 '), we choose the hardiest path first (having the
higher number of gates to the primary inputs). As usual, when the fault is
activated as an eITor, we try to propagate the eITor along a path. All the process
uses a backtracking technique in case of inconsistency. This method is close to
the PODEM algorithm.

Input b is switched to 1, and we perform a propagation action: it brings nothing.
Input c is set to '0', and we perform a propagation: A = 1, C = 0, so the fault is
activated.
Now, the objective is to propagate the eITor through gate E. Input d is set to '1'.

We obtain the same test vector (a b c d) = (1 1 0 1). It is the only vector which
detects the fault.

Let us note that this procedure is not pertinent for this circuit. Indeed, at step 5 we
have chosen to set b to '0' in order to force A = 1; this led to an inconsistency. Then,
we have abandoned this path to try another one. Instead, at this point, we can try the
second way to have A = 1, which is to set c to '0'. Then, the procedure sets a and b
to '1'. Thus, the test vector is rapidly found.

Exercise 13.4. Fault coverage of a test vector

1. The structural analysis of the circuit gives the fault detection table shown in
Table E.I0): detection at outputj, and at output g.

Note about 'reconvergent fanout' structures. We observe that the stuck-at' l' of line
2 is not detected on output f this fault produces an eITor on line 9 and an opposite
eITor on line 10, these eITors being neutralized by gate 13. We also note that the
stuck-at 1 of line 3 is detected on outputf it produces two identical eITors on lines

572 Appendix E

13 and 15, which propagate through the output gate givingj This same fault is also
detected on output g: it produces two identical errors on lines 15 and 16, which
propagate to the output g.

abcd 1 2 3 4 5 6 7 8 9 10111213 14 15 16 17 18

1001 detection on f - - 1 - I I I - 0 0 0 o 0 0
detection on g - 1 - - - - - - - - 1

Table E.I0. Fault detection

2. This test vector covers 11 of the 36 possible faults. The theoretical maximum
coverage of a test vector is 18. Now, we can try to find the best test vector by
analyzing the structure of the circuit. We know that the best test of ANO, OR,
NANO and NOR gates is obtained when their inputs take the neutral element
value. The worst case is when all their inputs take the opposite values. The
circuit we consider is made of a mix of ANO, NANO, OR, and NOR gates; it is
easy to see that no input vector will apply the optimal configuration to each gate.
So no test vector will covers 50% of the faults! A good exploitation of all these
local constraints is given by the input vector (0101) which covers 13 faults!

Exercise 13.5. Diagnosis of a circuit

1. Faults 2° and 5° are activated by the same constraint: b = 1. Fault 11 1 is activated
by b = 0, or by b = 0 and c = 1. Hence, we can separate these two groups of
faults by applying test vectors with b = I, and test vectors with bc = 01. A first
test vector could be (a b cd) = (- 0 I 1) which detects fault 11 1 at output g. Now,
we must try to distinguish faults 2° and 5°. Fault 2° can only be detected onfby
applying the input vector (1110). Faults 2° and 5° can be detected on f (through
the path 11 - 10 - 13 - 17) by the input vectors (010-). So, here is an example of
diagnosis sequence: DS = <0011 , 0100, 1110>.

The related fault tree is drawn in Figure E.24. It gives all information necessary
to diagnose one of these faults . For instance, if the signature corresponding to
the application of the test sequence is <OK, f KO, f KO>, then the identified
fault is 2°.

Figure E.24. Fault tree

Answer to the Exercises 573

2. We first determine all faults detected by vectors (1000), (1001), and (0110) on
outputs f, g and both. This step is achieved by using the backward analysis
method presented in Chapter 13. We obtain the partial fault table of Table E.ll.
Note that some faults are detected onjonly, on g only, or on both outputs.

From this table, we deduce the fault tree (Figure E.25) corresponding to the test
sequence: TS = <1000, 1001,0110>.

T abcd 1 2 3 4 S 6 7 8 9 10 11 12 13 14 IS 16 17 18
Tl 1000f - - 1 - I I - - - 0 0 0 0 0 - - 0 -

g I

T2 100 I f - - I - I I I - - 0 - 0 0 0 - 0 0 -
g I I

T3 o I IOf 1 - - - - - - - I I I - I - - - I -
g 1 0 0 I

Table E.II . Partial fault table

3. The diagnosis power of this sequence is not good. Many faults belonging to the
resulting fault c1asses can easily be distinguished by adding other test vectors.

OK

{.p, 1°,2,30,4, SJ, GI, ,0, So,
9°,12\ 141, 15, 16°, ISo}

X
{51, 61,10°,11°,12°,13°,14°, 17°}

OK

X
{51, 6\ 10°, UO, 13°, 14°, l'tl }

Figure E.25. Fault tree

Exercise 13.6. Complete diagnosis of a small circuit

The minimal test sequence obtained in question 2) of Exercise 13.1 is also a minimal
diagnosis sequence: <001 , 010, 100, 110>. This sequence separates the following
c1asses: {I!>}, {li}, {21}, {3°} , {50}, {10, 20, 4°}, {3 1,4I,SI}.
All faults belonging to these groups are equivalent. They cannot be distinguished
from the outside

574 Appendix E

Exercise 13.7. Logical test of a full-adder

1. To activate this fault, we must set input b to ' 1'. This initial error (noted e in
Figure E.26) is propagated to output S, for any values of inputs a and c: hence,
we obtain 4 test vectors (a b c) = (- 1 -) according to the output S.

This initial error can also be observed on output C if it can be propagated
through the two NAND gates (see the figure). For this purpose, we must have
a = 0 and c = I. It leads to the test vector: (a b c) = (011).

a _---r::::::-l

c

Figure E.26. Test of the half-adder

2. In Exercise 5.2, we have found all the failure configurations by a different
approach: functional extraction, then comparison with the truth tables.

3. Any input vector detects every functional or physical fault that modifies the
output value. Hence, it is not surprising if a vector obtained in question 1) is able
to detect the functional fault consisting in transforming the XOR gates into
IDENTITY gates.

Let us analyze the fault on the circuit's structure. Any vector (a b) will provoke an
error at the output of the first IDENTITY gate; this error (noted e in the previous
figure) will again be transformed through the second IDENTITY gate and produce a
correct output value. Thus, the fault is not observed on output S (we have already
proved this property by extraction in Exercise 10.1). The conditions necessary to
propagate error e towards the carry output C are exactly the same as for fault a of
question 1). Hence, the functional fault is detected by the input vector
(a b c) = (0 1 I) which also detects fault a.

Exercise 13.8. Functional and toggle test of a full-adder

The structure of the circuit is given in Figure E.27.

c

10 11
a - __ --r-::-l 1------ S
b --++"''-i

4

3 c

Figure E.27. Logical structure of the adder

Answer to the Exercises 575

1. Function test sequence. A very simple functional sequence will make one
addition with (SC) = (00), and one addition with (SC) = (11). This sequence is
TSI= <000, 111>. The two first lines of Table E.12 show faults detected by this
sequence. These faults have been determined by the structural method proposed
in Chapter 13 applied to the logical structure (Figure E.27).

Test abc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Sequence
Functional 000 1 1 - 1 1 - I 1 - 1 1 - 0 0 1 1

I 1 I 0 0 0 0 0 0 I 1 - 0 0 - 1 - 0 0
Toggle 101 0 0 - I I - 0 0 0 0 0 0 - 1 I 0

001 1 1 - I I - I 1 1 0 0 - 0 0 0 1
010 I 1 1 0 0 - 0 0 - 1 1 1 0 0 0 1

Complete 100 0 0 - 1 1 - 0 0 0 0 0 0 - 1 1 0

Table E.12. Test coverage

2. Toggle test. In order that each line takes values '0' and '1', we add the test
vector 101; hence, the sequence becomes: TS2 = <000, 111, 101>. The third line
of the table shows faults detected by this new vector. We observe that TS2 does
not detect 4 faults, confirming the fact that a toggle test is generally not sufficient
to test every stuck-at fault.

3. Complete test sequence. Faults not detected by sequence TS2 are 31, 61, 91 and
121• To detect these faults, we must add three test vectors to TS2 : 001 , 010 and
100. The resulting complete test sequence has then 6 vectors: TS3 = <000, 111,
101, 001, 010, 100>. This complete test sequence is not optimal in terms of
number of test vectors. An optimal sequence, is made of 5 test vectors, such as:
TSop = <001, 010, 100, 110, 101>.

Exercise 13.9. Test of a structured circuit

1. Test of the structured adder. We will see that it is possible to apply the given
complete test sequence to each module.

Test 0/ module FAI. The controllability of this module is complete, so the five test
vectors can be applied. The observability of output SI is also complete. The only
problem that remains is the observability of signal cl. Any error on this line will
change the parity of the inputs of module M2; hence, this error is propagated to the
primary output S2. ConsequentJy, the first full-adder is completely tested.

Test 0/ module FA2 . Here, the only problem to analyze is the controllability of line
cl . Whatever we put on inputs a2 and b2, it is easy to bring either a value '0' on line
cl (no carry for bits cO, aO and bO) or a value '1' on line cl (by producing a carry for
bits cO, aO and bO).

2. Test sequence. A complete test sequence of 5 input vectors (cO, aI, bI, a2, b2)
can be obtained: TS = <00101, 01010, 10011 , 11000, 01110>

In conclusion, this structured circuit is easy to test. Naturally, one should not deduce
that all structured circuits are easy to test.

576 AppendixE

Exercise 13.10. Diagnosis study of the full-adder

We draw first the partial fault table indicating, for each input vector, the outputs
where the faults are detected (Table E.J3).

abc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
OOOS 1 1 1 I I 1 I I I

C - - - - 0 0 I

I lOS 1 1 0 0 0 0 1 I 0
C 1 1 - - I I 0 0 I

I I I S 0 0 0 0 I 1 0 0 0
c 0 0 - - I - 0

Table E.13. Fault table of the full-adder

Then, we deduce the fault tree, drawn in Figure E.28, allowing the diagnosis of the
test sequence <000, 010, 111>. To simplify the representation, all impossible
situations are not represented. This tree partitions all the 33 possibilities (32 faults +
one good state) into 11 groups. All the elements belonging to a group cannot be
distinguished by the sequence (they are said to be equivalent with regard to this
sequence). In particular, it is not possible to answer the question: "is the circuit
faultless?".

Figure E.28. Diagnosis tree of the full-adder

Exercise 13.11. Complete test sequence of a circuit

To be tested, each AND gate requires 4 input vectors: 111, 011, 101 and 110. As
these two sets are not compatible, this leads to 8 different input vectors. Hence, all
the 8 input vectors constitute the complete test sequence! As a consequence, the
exhaustive sequence is also the optimal one.

Exercise 13.12. Redundancy analysis

1. Structural redundancy. A logical analysis gives:f= a' + b.c, g = b.c + a.b.c.

Functionfhas no structural redundancy; the gate 'abc' of gis structurally redundant.
Table E.14 gives the faults detected by all input vectors. It shows that 5 faults cannot
be detected: 9°, 7°, 5°, 51, 14°. They correspond to a passive structural redundancy.

Answer to the Exercises 577

abc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

000 1 - - 1 - - - - - 0 1 - 1 1 0 1
001 1 1 - 1 - 1 - - - 0 1 - 1 1 0 1
010 1 - 1 1 - - - 1 - 0 1 - 1 1 0 1
011 - 0 0 - - 0 - 0 - - 0 - 0 - 0 0
100 0 - - 0 - - - - - 1 1 1 1 1 1 1
101 0 1 - 0 - 1 1 - - 1 1 1 1 1 1 1
110 0 - 1 0 - - - 1 1 1 1 1 1 1 1 1
111 - 0 0 - - 0 - 0 - - 0 0 - - 0 0

Table E.14. Fault table

2. Detection and diagnosis masking.

Detection masking. The fault noted y in Figure E.29 cannot be detected. The fault
noted a in the figure can be tested by the input vector (001). The output g takes '0'
when this fault is present. But if y is also present, the output g remains erroneously at
value '1': hence fault a is no more detected.
Distinction masking. We assume that the untestable fault is present in the circuit.
Its occurrence can lead to a wrong diagnosis if we apply the test sequence <110,
l1l> aimed at diagnosing between faults noted a and ~ . If the circuit is altered by
fault a, this sequence will erroneously signal the presence of ß because of a masking
provoked by fault y.

4 a

2
b

c
:

5 7 9

Figure E.29. Redundancy

Exercise 13.13. Stmctural testing of a program

1. The function modi fy _tempera ture increases or decreases the temperature,
depending on the action parameter (1 = heating, 2 = cooling, else no action). The
temperature is increased or decreased by a number of degrees function of the
duration parameter value. The final temperature is then returned.

The main function regulator brings back the initial_temperature in
the range 0 to 90 by a variation of 10 degrees ifvariation = 0, or a variation
of 20 degrees else. It returns the final_temperature or -3000°C if the
heater or the fan is damaged (heating_state or fan_state = 0).

578 Appendix E

2. We test the functional correctness of the regulator by analyzing the domains of
the input parameters:

• three cases for ini tial_temperature < 0, in [0, 10], and > 90,

• two cases for heating_state = ° or 1,

• two cases for fan_state = ° or 1,

• twocasesforvariation=Oor 1.

As the domain of initial_temperature is not discrete, we test three
values: -50, 30, 150, and the limits ° and 90. These values are combined with the
discrete values of the other parameters.

3. When this sequence is applied, the coverage depends on the elements considered.
For a statement testing, the coverage is not 100%. Indeed, the default part of the
switch statement ofthe function modify_temperature is never executed.

Exercise 13.14. MCIDC testing of a program

Table E.15 gives a sequence of Boolean values for ConditionIDecision, compatible
with the requirements of MCIDC Testing.

Condition
A=B C2 D>3
True True True
False True True
True True True

True False True
True True True
True True False
True True True

Table E.J5. MC/DC testing

Exercise 14.1. Ad Hoc techniques

Te~t:
OutputSTI

Decision
Action

True

False

True

False

True

False

True

Olltpllt

Telt:
output ST2

Figure E.30. Ad Hoc technique

Answer to the Exercises 579

We suppose that new inputs and outputs can be added to the circuit, in order to
increase its controllability and observability. Figure E.30 shows the modifications
proposed to cut the feedback line between the two modules and to directly observe
the outputs of each module.

Hence, two inputs (/TI and IT2) and two outputs (STl and ST2) have been added.
When ITl and IT2 take the value '0', we block any uncontrolled evolution of the
circuit. Hence, each module can be directly accessed.

Exercise 14.2. Analysis of a redundant circuit

1. We have: /1 = a' c, j2 = a' c, ß = a + c'. The output variables do not depend on
input b: thus, this circuit is redundant. In particular, the stuck-at 1 fault shown in
Figure E.3I cannot be detected from the inputs/outputs; indeed, to test this fault,
we must satisfy:

• the controllability constraint: b = 0,

• the observability constraints: a = 0 and c = 1; this produces a '1' on line x, a '1'
at the output of gate A, and finally a '1 ' at output 11 which masks any detection
of the fault.

2. The second circuit has a different logical behavior: /1 = a' b' c + a b + b c',
j2 = a' c, ß = a + c' . The output 11 is a logical function of input b. Obviously,
this circuit could have been realized with a SIGMA-PI structure; however, it is a
totally testable circuit.

a
C --'--.y,)--I

b

a
C

f2

I--..L...-_- f3

Figure E.31 . Redundant circuit and its simplification

Exercise 14.3. Anti-glitch circuit

1. If gate A is removed from the given circuit, the logical function remains
unchanged: 1 = a b + b' c. However, the output 1 can produce a glitch (a short
negative pulse) when the inputs switch from (111) to (l01).

This anti-glitch circuit is useful but not completely testable: no stuck-at 0 of gate
Aare testable; indeed, their test requires a = c = 1, which implies that either the
output of gate Borgate C is at '1', hence, the final output 1 always takes the
value '1' (with or without fault). Consequently, this circuit has passive
(untestable) redundancy, which cannot be removed!

580 Appendix E

2. The anti-glitch circuit can easily be modified as shown in Figure E.32 in order to
make it completely testable. When T = 0, the outputs of gates Band C are equal
to '0', and we can test all stuck-at 0 faults of gate A.

T-,----t

f

Figure E.32. Redundant circuit

Exercise 14.4. Easily testable gate network

The initial circuit requires 8 input vectors to be totally tested with the single stuck-at
0/1 fault model. It is an exhaustive test sequence.
In the modified circuit, input T must be at '0' during the normal functioning. This
ensures that all XOR gates behave as INVERTERs, like in the initial circuit. During
test operation, input T are set to '1', which applies the same inputs to the two AND
gates. The circuit is completely tested with the 4-vector sequence of Table E.16.

abcT comments
01 10

o 1 0 1 these three vectors

001 1 detect all stuck-at' l' faults

I 1 1 1 detects all stuck-at '0'

Table E.l6. Complete test sequence

Exercise 14.5. Reed-Muller structure

1. Test sequence of the SIGMA-PI realization of the logical function:

TSO = <1010, 1100,0110, 1111, 1011, 1110,0010, 0101, 1101>.

r--,. abcad

output

b c a d
inputs

Figure E.33. RM circuit

Answer to the Exercises 581

2. We determine the logical expression of this circuit (see Figure E.33), and we
compare this expression with the given SIGMA-PI expression. To facilitate this
logical comparison, we may use an intermediate verification model such as a
truth table (which corresponds to a canonicallogical form).

3. A XOR network has a very interesting property concerning error detection: any
single error occurring on one input is automatically transmitted to the output.
Indeed, a single input error changes the parity of the number of 'I' inputs. As a
XOR network produces an output 'I' if and only if an odd number of 'I' is
applied to it, any change in the input parity of 'I' values provokes a modification
of the output. The 4 vectors of sequence TS1 apply to each AND gate the three
testing configurations 11, 01 and 10. Hence, every fault of each AND gate is
activated as an error which enters the XOR network, and is consequently
propagated to the final output where it can be observed.

4. Electronics specialists have shown that a 2-input XOR gate is fully tested by the
exhaustive input test sequence only. With the previous TS1 sequence, this
property is not satisfied. It is very easy to verify that the proposed 5-vector TS2
sequence applies the 4 input configurations to any XOR gate.

Exercise 14.6. FIT PLA

1. /1 = a'b + bc,j2 = ab' + bc. Hence, 3 product terms are needed: a'b, ab' and bc
(common to both functions).

2. Figure E.34 shows the symbolic structure ofthis PLA.

x y
1 2 3 4

ANDparity

a

b c:t=:f=~i=~==~= AND - Net

c

Shift Register

ORparity

Figure E.34. FITPLA symbolic structure

3. Test sequence. It is made up of two parts: one sequence of 6 vectors to test the
AND network, and a sequence of 4 vectors to test the OR network.

AND network test. xy = 01 -+ TSl = <011,101,110>.
xy = 10 -+ TS2 = <100,010,001>.

For example, the test vector Oll forces the first line of the OR matrix to take value
'0', all other lines being at '1'. Thus, the 4 product terms take the values 10 11;

582 AppendixE

hence, if no faults are present in the AND network, the parity error line is at '1'. Any
fault equivalent to a stuck-at 0 of one active node (represented by a dot in the figure)
belonging to columns 1,3 and 4 is detected.

OR network test. A '1' bit is shifted 4 times from left to right in the shift register
(scan in input). All single or multiple permanent hardware faults are detected, apart
from the ones that do not modify the parity property of the AND parity vector (4
bits) and the OR parity vector.

Exercise 14.7. Scan Design

For each test vector Vi:

• The circuit is switched to Test Mode.

• Aserial input operation through the Scan In input is performed, in order to load
in the state register the 4-bit state belonging to the Vi test vector. This state
loading operation takes 4 clock couples (HM - HE); in parallel, the state register
containing the result from the previous test vector is read.

• The circuit returns to the Normal Mode, and one normal treatment step is
executed with one clock pulse (HM - HE).

A last reading of the interna! state register completes the test sequence.

Exercise 14.8. LFSR

1. This generator elaborates a deterministic cyclic sequence of 3-bit vectors. It is
based on a synchronous shift register whose input is the XOR of bits 1 and 3.

Hence, the initial condition gives the starting point of the sequence produced;
this sequence is shown in Table E.17.

Clock QIQ2Q3
0 010
1 001
2 100

3 110
4 111
5 o 1 1
6 101

Table E.17. Sequence

2. The modified circuit behaves as a LFSR. From the initial state 111, we obtain the
following cycIic output sequence: <111, 011, 001, 001, 100,010, 110>.

Let us note that the LFSR property is not guaranteed for any XOR feedback
function. For example, if we take the XOR of bits Ql, Q2 and Q3, and if the
initial state is 111, then the circuit remains al ways in this state!

3. We analyze in Figure E.35 the evolution of the circuit from the initial state 100
when the first input vector 111 is received. Values in gray are the next state of
the register. This study can easily be extended to the rest ofthe applied sequence.

Answer to the Exercises 583

I.
(lk. --"""'T'"---I---"""'T'"-- --....,

1 1

o

Ql Q2

Figure E.35. Analysis of the PSA circuit

4. Non-detectable errors are necessarily multiple errors on several words of the
incoming sequence. For example, is not detectable the modification of the first
two words as folio ws (two single errors): <110, 111, >. Naturally, based on
the mathematical properties of the Galois Fields, the class of non-detectable
errors can be formally determined.

5. Such a BIST technique is very attractive, because the coding and decoding
functions are easily implemented as logical circuits or software procedures.
Moreover, the speed of the corresponding circuitry is high. Unfortunately, the
efficiency of this technique in terms of fault detection strongly depends on the
product to be tested.

FOURTHPART

Exercise 15.1. Single parity code

1. The redundant parity bit is obtained by making the XOR of all the other bits. The
redundant codeword becomes (10111). This code detects:

• any single error, i.e. 5 errors (the parity bit belongs to the codeword),

• any tripie error, i.e. 10 errors (all 3-out-of-5 words),

• any quintuple error, i.e. 1 error (the word: 01000).

Trus makes 16 detected errors, amongst the (25 - 1) = 31 theoretically possible
errors; hence, the error coverage of this simple code is c = 16/31 = 0,516.

2. Example of odd non-detectable error: 11101 (bits 2 and 4 are erroneous).

3. Characteristics of the code:
n· (

Capacity: N = 2 = 16.

Density: d = NI 2n = 16/32 = 0.5.

Coverage rate for each codeword: C = number of detected errors/total number of
n-l n

possible errors = 2 1 2 -1 = 0.516.

584 AppendixE

Redundancy: rr = r 1 k = 114 = 0.25 (or 1/5 ofthe codewords).

Exercise 15.2. Hamming Code C(7, 4)

1. This separable code adds to the initial bits three redundant bits, Yh Y2 and Y4,
calculated by the expressions given in the exercise text. One can easily deduce
three properties, called control relations, which allow to detect and/or correct
errors. We order these relations as follow to make error correction easier:

Y4E9Y5E9Y6E9Y7=0 (1), YZE9Y3E9Y6E9Y7=0 (2), ylE9Y3E9Y5E9Y7=0 (3)

We call syndrome, noted s = (sI, s2, s3), the vector obtained by computing these
expressions. This syndrome is equal to zero if no error occurred; it is different
from zero if a single error or a double error occurs. For example:

• if Y3 is false, expressions 2 and 3 are modified and the syndrome is s = (0 1 1),

• if Y3 and Y6 are false, expression 1 is equal to '1', expression 2 remains at '0'
(because two modifications are neutralized in a XOR function), and expression 3
is equal to '1'; hence s = (1 0 1).

Erroneous bit 1 2 3 4 5 6 7

syndrome sI 0 0 0 1 1 1 1

s2 0 1 1 0 0 1 1
s3 1 0 1 0 1 0 1

Table E.18. Syndrome values

All multiple errors with rank higher than 2 cannot be detected. For example, if
YI, Y2 and Y3 are false, the resulting syndrome is equal to '0', hence this tripie
error is not detected. If only single errors occur, they are detected. Moreover, a
non-null decimal value of the syndrome indicates the position of the erroneous
bit, as shown in Table E.18: this property justifies the chosen relation order.

2. Any 'double' error is confused with a 'single' error when considering the value
taken by the syndrome. For example, we have shown that the double error
altering Y3 and Y6 produces the syndrome value s = (1 0 1): this error has the same
effect than a single error altering Ys.

3. This code is very close to the one presented in Example 15-4. Indeed, it
corresponds to a simple re-organization of the coding relations. Consequently,
both codes have the same detecting and correcting capability. The interest ofthe
version of this exercise is only to facilitate the identification of the erroneous bit.

4. In order to allow the detection of single and double errors, and to allow the
correction of single errors, we add a height redundant bit obtained by the E9 of all
the bits. This redundant bit add a fourth control relation:

YI E9 Y2 E9 Y3E9 Y4 E9 Y5 E9 Y6E9 Y7E9 Y8= 0 (4)

This relation produces the fourth bit of the syndrome, s4. Thanks to this fourth
relation, we can distinguish between any single error, which lead to s4 = 1, and
any double error, which maintains s4 = o. This new code is called the modified
Hamming code C(8, 4).

Answer to the Exercises

Exercise 15.3. Linear code

1. Matrices G and H are deduced from the coding and control relations:

G_[~~1001~~~1
- 0101010'

1101001

[
0001111]

H= 0110011.

1010101

We verify thatH.GT = 0: 0110011 . [
0001111]

1 1 0 1

1 0 1 1

1 0 0 0 = 0000 . [
0000]

1010101 o 1 1 1 0000
o 1 0 0

o 0 1 0

o 0 01

2. Coding: Y = U.G, i.e. [yj, Y2, Y3, Y4, Ys, Y6, Y7] = [uj, U2, U3, U4] . G.

For example, if U = [11 0 1], then Y = [1 0 1 0 1 0 1].

wl
w2

3. Detection and eorrection, S = H. W. i.e. H. :; = [:~] = S

w6

w7

585

If we analyze Ibe eodeword W = [1 0 1 0 1 0 11. we ean verify !hat H. W = m.
1

o

Ifbit 3 i, erroneou, in Ibi, eodeword. H. ~ = m identifi., Ibe faulty bit.

o
1

586 AppendixE

Exercise 15.4. Eneoding of a eyeUe eode

The first phase of the coding process uses 4 dock pulses and deli vers at the output Y
the higher bits of the codeword, i.e. the bits of the word to be coded u in the
decreasing order: 1, 1, 0 and 0 (see Figure E.36).

InputU

OutputY
UJ.-I _. Uo PM-I •• Po

Figure E.36. Encoding circuit

Clock pulse FFI FF2 FF3
1 1 1 0
2 1 0 1

3 1 0 0
4 0 1 0

Table E.19. State evolution

During this phase, the state of the 3 D-Flip-F1ops, initially at '0', evolves as shown
in Table E.19. Then, the content of the register is shifted to the output Y. Hence, the
codeword is y = (0100011) corresponding to the polynomial: y(x) = x + x5 + x6.
Now, let us calculate the codeword by a direct division of i n-k) u(x) by g(x), which
gives x(n-k) u(x) + r(x) :

0+ x5 +x4 + x3

X5 +X3 +X2

r(x) = x

g(x) = x3 + X + 1

x3 + x2 + X = quotient

We obtain the same codeword y(x) = x(n-k) u(x) + r(x) = x + x5 + x6.

[

1101000]
. 0110100

The generator matrIX assocIated wlth thlS cychc code IS: G = .
1110010

1010001

Answer to the Exercises 587

[

1 101000

. 0110100
We venfy that [0 1 000 1 1] = [00 1 1].

1110010

1010001

Exercise 15.5. Single parity bidimensional code

This code uses redundancy at two levels: Longitudinal Redundancy Checking bits
(noted LRC) are added to each word, and Vertical Redundancy Check words are
added to the block (VRC). Each row and each column of the coded matrix belongs
to an error detecting and correcting code.

Table E.20. Bidimensional code with single parity

1. One parity bit is added to each word (LRC) , and a word (VRC) is added to the
block. Table E.20 gives an example of coding with p = 5, k = 4. After treatment
(e.g. a memory storage), a parity check is applied to each word, and a parity
check is made between all words. Any erroneous row or column is recorded.

2. Any single or multiple error is detectable if at least one error occurs on a row or
a column. It is obviously the case for any odd multiple error. It is also the case
for some even multiple errors; for example, a quadrupie error on a same word
will be detected four times.

3. To be undetectable, an error must have an even rank on each altered row and
each altered column. For example, the quadrupie error altering the bits of rows 1
and 3 and columns 2 and 4 cannot be detected, as no parity violation occurs.

4. Any error detected on rows 4 and 5 and columns 2 and 3 is a double error. Two
errors can produce this signature (Table E.21), but we cannot identify which one
is present:

column 2 column 3 column 2 column 3

row4 error error

row5 error error

Table E.21. Errors detected on rows 4 and 5 and columns 2 and 3

5. Two cIasses of errors can be corrected:

• All single errors. The erroneous bit is identified by intersection between the
detected row and column; then, the identified bit must be complemented.

588 Appendix E

• All odd errors on a same row or a same column.

Note. The practical efficiency of such a code is strongly related to the technology
used to store the data words. The error model considered here must be validated by a
statistical fault analysis.

Exercise 15.6. M-out-oJ-n code

1. Let wl and w2 any two different words of the m-out-oJ-n code. Having both
exactly m bits '1', they are different for at least 2 bits. If we compute the OR
function of these two words, the number of '1' bits will be at least (m + 1) bits,
and if we compute their AND function, the number of '1' bits will be at most
(m - 1). Thus, in both cases the resulting combined word does not belong to the
m-out-oJ-n code. For example, if wl = 1100101 and w2 = 1001110, then wl OR
w2 = 110111, wl AND w2 = 1000100, both outside the code.

2. The smallest distance between two words is 2, as seen in the previous question
(e.g. 1100101 and 1101001). The greatest distance between two words is 2.m if
n :2: 2.m, or 2.(n - m) if n < 2.m. Examples:

• d (1100101,0011011) = 6 for a 4-out-oJ-7 code,

• d (11001010, 00110101) = 8 for a 4-out-oJ-8 code.

3. By definition, a unidirectional error modifies the number of bits' l' of the altered
word; thus, this error is easily detectable by counting the number of bits' 1 '.

4. It is necessary to count the number of bits '1' of the word after treatment, and to
compare this number with m. This operation can be performed by a specific logic
circuit or a software procedure written in assembly language, according to the
speed requirement of the final application: a circuit is more expensive but faster
than a software procedure.

Exercise 15.7. Berger code

1. If k = 4, we need r = 3 redundant bits to express the number of '0' contained in
the data part. Thus, this code is not optimal (with r = 3 we could have k = 7).
Table E.22 shows all the obtained codewords.

X R X R
abcd efg abcd efg
0000 100 1000 01 1

0001 01 1 1001 010

0010 o 1 1 1 010 010

001 1 010 1 0 1 1 001

0100 o 1 1 1 100 010

0101 010 1 1 0 1 001

01 10 010 1 110 001

o 1 1 1 001 1 111 000

Table E.22. Berger code for k = 4

Answer to the Exercises 589

2. The Berger code is separable and can thus be structured into two fields (X, R),
where X is the word before coding and R the redundant field. R is the binary
number of '0' bits of X. Let us first consider a unidirectional fault that increases
the number of '0' bits of the complete word. Three cases can be considered:

• If the X field only is altered, the number of '0' of X is increased and becomes
greater than the value in R: hence, this error is detected, as NbZero (X) > R,

• If the R field only is altered, the value of R decreases whilst the real number of
'0' bits of X is not modified: here also this error is detected, as R < NbZero (X),

• If X and R are both altered, the value of R becomes again smaller than the
number of '0' of X which has increased, so the error is detected.

The reasoning is similar with a unidirectional error that reduces the number of
'0' bits of the complete word.

3. Now, R is the binary expression of the number of '1' in X. We follow the same
reasoning as in the previous question with first an error that increases the number
of '0' bits of the complete word:

• If the X field only is altered, the number of '1' of X is decreased and becomes
smaller than the value in R: hence, this error is detected, as NbOne (X) < R,

• If the R field only is altered, the value of R decreases whilst the real number of
'1' bits of X remains unchanged: here also this error is detected, as R < NbOne
(X),

• If X and R are both altered, the value of R decreases whilst the number of '1' bits
of X also decreases: the error is not necessarily detected.

Exercise 15.8. Unidirectional codes

The comparison between the capabilities of these codes is presented in Appendix A.

For n = 10: the 5-out-of-1O code gives 252 codewords, the double-raiI5/1O code has
32 codewords, and the (m = 7, r = 3) code has 128 codewords.

Exercise 15.9. Modulo 9 proof

1. The c1ass of any integer A modulo 9 is the remainder of the division of A by 9.

If A = AO + Al 101 + A2 102 + ... + An 10 n, its c1ass, noted CCA), is:

CCA) = (AO + Al 101 + A2 102 + ... + An 10 n) / 9 [MOD 9],

CCA) = AO + Al + ... + An [MOD 9], as any power of 10 gives 1 as remainder.

This means that the research of the remainder of a division of an integer by 9 is
equivalent to the determination of the remainder of the sum of the figures of this
integer by 9. And this process is iterative. For example, if A = 591:
CCA) = 5 + 9 + 1 [MOD 9] = 15 [MOD 9] = 1 + 5 [MOD 9] = 6 [MOD 9].
This procedure is very simple to implement as hardware or software module.

2. Verification of the operation:

189 = 1 + 8 + 9 [9] = 18 [9] = 9 [9] = 0 [9], 47 = 11 [9] = 2 [9].

• We perform the addition of the c1asses of the two considered numbers,

590 Appendix E

o + 2 = 2 [9], and we observe that the resulting dass belongs to the same dass as
the expected final result: 236 = 2 + 3 + 6 [9] = 11 [9] = 2 [9].

• In order to verify the second operation, we multiply the two classes,
o x 2 = 0 [9], value which is different from the dass of the expected final result:
8867 = 8 + 8 + 6 + 7 [9] = 29 [9] = 11 [9] = 2 [9].

• The third operation is verified by subtracting the two dasses of the numbers,
0- 2 = 7 [9], value which is different from the expected resuIt: 144 = 1 + 4 + 4
[9] = 9 [9] = 0 [9].

Hence, we have detected an error on the operations 2 and 3. However, we cannot
correct those errors, as this code is only an error detecting code. Moreover, all
the faults are not detected, as shown by the fourth operation:

• 189 - 47 [9] = 7, and 97 [9] = 7; however, the correct value is 198 - 47 = 142,
which is different from the proposed result 97. This condusion is generalized by
question 4.

3. With the example 48 / 12 = 4, we obtain 48 = 3 [9], 12 = 3 [9], 3/3 = 1, value
which is different from the dass of the correct result: 4.

4. An error transforms a result N into another number N* = N + E (E is the error,
either positive or negative). This error is not detectable if and only if N* = N [9],
that is to say, if Eis a multiple value of9.

Exercise 15.10. Binary residual code

1. The binary number can be expressed as: N = No 16° + NI 161 + ... The remainder
in the division by 15 = 24 - 1, is obtained as in the previous exercise, by an
iterative process on the Ni elements. Practically speaking, we divide the binary
numbers into 4-bit slices (as 16 = 24), starting from the LSB (the least significant
bit), and going towards the MSB (most significant bit). If necessary, some '0'
value bits can be added to the left of the number to complete the last slice. Then,
these slices are added together modulo 15 = 1111.

• N= 0010 111110111100 1101
(two '0' bits have been added to the left of the number),

• N = 0010 + 1111 + 1011 + 1100 + 1101 [15] = 11 0100 [15] = 0011 + 0101 [15]

= 1000 [15]
(this result can be obtained directly or, on the contrary, by progressively adding
the slices two by two).

2. Verification of the operation:

0011 0010 + 0110 1110 = 1010 1100? In decimal, this gives: 50 + 110 = 172?

Classes of the two operands and ofthe expected result: 0101 (5),0101 (5),0111 (7).

We add the two dasses of the operands: 0101 + 0101 = 1010 (10).
We do not find the dass of the expected result. Hence, the operation is false (this
can easily be manually verified in decimal).

Exercise 15.11. Checksum code

1. These five words are added without carry. The resulting word is joined to the

Answer to the Exercises 591

others, hence constituting a block of six 4-bit words. Here also, this computation
can be made, either globally, or in a cumulative way:

• 1101 + 0011 = 0000 (the carry is ignored),

• 0000+ 1110= 1110,

• 1110 + 0110 = 0100,

• 0100 + 0101 = 1001 which is then complemented to '2': 10000 - 1001 = 0111.

This last word is then added to the block.

2. The stored block contains 6 words: (1101, 0011, 1110, 0110, 0101, 0111);
indeed, the addition of the 5 first words gives the previous 1001 value which is
by construction the 2's complement of the fifth word 0111. Their addition
modulo 24 gives 0000.

3 - 4. This modulo 24 code detects any error that does not add or subtract to the
correct result a value which is a multiple of 16.

Exercise 15.12. GCR(4B - SB) code

Obviously, this mapping is redundant: 5 bits are needed instead of 4. Its property is
to ensure that at most two successive zeros occur:

• in a word, as there are no more than 2 successive '0' bits,

• in consecutive words in aserial transmission, as data combinations with more
than one zero at the beginning and the end of any word are prohibited.

This property is desirable in some applications (transmission, storage) to increase bit
density (e.g. for data storage on a magnetic tape) and ease clock synchronization.

Exercise 16.1. Test of a control system

1. The test of regulators Rl and R2 is performed off-line, according to a cyclic
mode. Areal-time clock periodically activates the test task. An efflcient testing
procedure will require a proper access to the regulators in order to test their
various regulation functions and process interfaces: amplifiers, sampie and hold
modules, analog to digital and digital to analog converters, etc. The tester
module can, for example, order the regulators to perform some pre-defined
regulation treatments, then to compare the obtained results with correct values
stored in memory. The periodicity of the test is here of 168H for Rl and 24H for
R2. If we know the reliability of the equipment, we can deduce the probability of
the occurrence of a fault between two consecutive tests: assuming simple
exponential laws with constant failure rates, the fault probability during the test
is approximated to the value: test-period x A..
Dealing with R3, an interrupt procedure is envisaged with a time slot of 10'
every hour: hence, the test period is IH. We suppose that during this 10' test
operation, R3 is totally checked.

2 - 3. On the contrary, if the complete test of the regulator is longer than 10', it is
necessary to split the testing task into several shorter test sequences, for example
one 8' and one 7' sequences. Thus, the periodicity of the complete test is
increased to 2 hours.

592 Appendix E

Exercise 16.2. Duplex technique

1. Any multiple fault altering the functional module is detected as soon as it
produces an output error (failure of this module). This also stands for any fault
altering the duplicate module.

Faults altering the comparison module are detected only if they lead to an
incorrect error signal value. For example, the stuck-at 0 of this erroneous output
cannot be detected if '0' is considered as the specification of a correct result.
The undetectable faults in the functional modules are those that modify in the
same way and at the same time both duplicated modules: they provoke the same
failure. This is the reason why these duplicate modules must be realized with
different methods and technologies.

Note. When an error is detected, it is not possible to locate it.

2. The number of faults of this product is about twice the number of faults of the
basic module; hence, the fault probability of the product is twice the fault
probability of one module. Consequently, the reliability of a duplex is lower than
the reliability of a non-redundant product. This is the price to pay for an
immediate detection (on-line testing technique) of the failures.

Exercise 16.3. On-line testing of a half-adder

1. Table E.23 provides again the truth table of the half-adder. We observe that,
whatever its structural implementation, this half-adder possesses natural
functional redundancy: the output vector (s c) = (l I) never occurs. An external
observer can exploit this property in order to detect 'on-line' any fault producing
a failure characterized by this forbidden vector (a simple AND gate is sufficient
to detect this case). However, this on-line testing capacity is very limited and
covers only a few real faults; in particular no stuck-at 0 fault can be detected on
line.

ab scp

00 000

01 101

10 101

1 1 011

Table E.23. Truth table

2. Figure E.37 shows the modified gate circuit and the corresponding truth table
when a parity output p is added to this half-adder. Error detection is performed
by a 3-input XOR gate.

In that case, aseparate structural redundant circuit has been added to the basic
circuit. The on-line testing capability is better than in the previous technique.
However, some faults are still not tested, such as the stuck-at '0' noted a on the
figure: indeed, if a = 1 and b = 1, this fault produces the undetected failure
(s c p) = (l 0 I) instead ofthe normal vector (Oll).

Answer to the Exercises 593

Figure E.37. Half-adder with a parity output

3. In order to improve this situation, the previous circuit is modified by using three
independent circuits (Figure E.38). Any fault altering only one of these three
independent circuits is detected as soon as it provokes an error at one output
only. Hence, this on-line detection capability concerns all faults belonging to the
stuck-at fault model. However, the detection circuit is not concerned by the on
line testing property. Indeed, the stuck-at 0 of the output of this circuit is not
detected! To remedy this problem, we can use a self-checking circuit, as shown
in the right part of Figure E.38. The final error outputs fand g belong to the 1-
out-of-2 detecting code {1O, 01}. Hence, any single fault in the whole circuit is
now detected.

a -T""".......;>\""
)----1

}-----I-r-- c

p

error

self-checking
cbccker

~-k;llr
p~g

Figure E.38. Use of independent circuits and corresponding see

a -r--i
b -+~-;

Figure E.39. Duplex approach

r
g

594 Appendix E

4. A Duplex structure is shown in Figure E.39. It uses two half-adder modules and
a 2-bit double-rail see (this see is studied in the next exercise). We suppose
that the two duplicated modules are not affected by the same faults
simultaneously. The advantage of such approach is its simplicity. On the
contrary, it is much more expensive in terms of gate number.

Exercise 16.4. Double-rail self-checking checker

1. If each input pair (aJ, az) and (bio bz) belongs to the set {OI, 1O}, 4 input vectors
(22) can be applied to this see during a normal operation of the tested circuit.
This circuit (see Figure E.40) uses 4 product terms: A = al. bz, B = az. bio
C = al. bio and D = az· bz.

Figure EAO. Double-RaH see

It is easy to verify on the circuit that, in each case, only one AND gate (A, B, C,
and D) is active, hence producing an output vector belonging to the set {OI, 1O}.
All other input vectors (12 vectors) produce different output values:

• if the number of inputs' l' is lower or equal to 2, no AND gate is active and the
output vector is 00,

• if the number of inputs '1' is greater than 2, at least one AND gate of each output
is active, producing an output vector 11.

This behavior is shown by Table E.24. We can deduce from this table that this
circuit is code dis joint.

Now, to prove that this circuit is a see for the 2-bit double-rail code, we must prove
that it is selJ-testing for the normal input vectors. So, all its stuck-at faults must be
tested during the normal operation, i.e. by application of the previous four
codewords only! Obviously, the circuit presents symmetry property between the
AND and the OR gates. We see in Table E.24 that each AND gate is activated once
and is activated alone; hence, all stuck-at 0 are tested by producing an output vector
00 which is outside the code {OI, 1O}. Let us consider the gate A; it receives the
input vectors 01 (input codeword 0101) and 10 (input codeword 1010), and each
time gate B is inactive: hence, all stuck-at 1 of gates A and E are tested by producing
an output vector 11 outside the normal code. Symmetrical situations can be found
for all other AND gates.

Answer to the Exercises 595

Inputs a1 a2 bl b2 cl c2
0 I 0 I D 0 1

2 / 4 codeword 0 1 1 0 B 1 0
(4 vectors) I 0 0 I A I 0

1 0 1 0 e 0 1

wrong 2 / 4 words I 1 0 0 0 0
(2 vectors) 0 0 1 1 0 0

less than 2 bits' I' 0 0 0 0 0 0
(5 vectors) ---- --

I 0 0 0 0 0
more than 2 bits ' l' 0 I I I I I

(5 vectors) - -- --
I I 1 1 I 1

Table E.24. Truth table of the see

2. Let us analyze the global circuit of Figure E.41 which combines 3 elementary
checkers to check a 4-bit double-rail code. To prove that this circuit is a sec, it
is sufficient to verify that each checker receives the four 2-bit double-rai!
codewords defined in question I.

Figure E.41. Association of three sees

Test vectors Internal Outputs
a b d e c f g

01010101 01 01 01
011001 10 1010 01
10011010 10 01 10
10101001 01 10 10

Table E.25. Minimum test sequence

596 Appendix E

Table E.25 shows that the whole SCC is tested by a sub-set of only 4 input
codewords: each checker receives a testing set of 4 input vectors.

Exercise 16.5. Parity self-checking checker

1. The circuit (Figure E.42) is a SCC converting a 4-bit odd-parity input code into a
l-out-of-2 output code. We must verify that it is code disjoint and self-testing.

abc d

ilvJ,L.g
l!J~f

Figure E.42. Parity checker

• The circuit is obviously 'code disjoint' . If an odd number of inputs (1 or 3) take
the value '1' (8 cases), the outputs fand g belong to the code {O 1, 1O}. On the
contrary, if an even number of inputs (0 or 2) take the value '1', the output
signals take the values 00 or 11 .

• We assume that the test of each XOR gate requires the application of all its input
vectors (00, 01, 10 and 11). Any error is then propagated to the final output, as
XOR gates propagate any input modification (the observability ofaXOR
network is complete for single errors).

Table E.26 shows an example of test sequence constituted of four input vectors
belonging to the normal odd-parity input code. This 4-length sequence is
minimal. So, the circuit is self-testing. It is a self-checking checker for an odd
parity code.

Lines Outputs
a b V c d f g
0 0 0 0 1 0 1

0 I I 0 0 1 0
I 0 I I I 0 I

I I 0 1 0 I 0

TabLe E.26. Minimal test sequence

2. We know from question 1 that a subset of only 4 input codewords is sufficient to
ensure the self-testing property. However, not any subset guarantees this
property: for example, the circuit is no longer self-testing if the circuit under on
line testing produces the first three codewords only.

3. Consider the minimal test sequence given in question 1. If we operate a
permutation of inputs band c, the resulting set of input vectors does not provide
the self-testing property to the circuit. Indeed, the second XOR gate receives two
input vectors only (00 and 01).

Answer to the Exercises 597

Exercise 16.6. Software funetional redundaney

First of all, the used formal parameters and local variables represent temperatures
lower than O°C, as the function is called only if the freezer is freezing. In the present
case, the function calling with Min = +372 °C, or the return of a positive I value, will
not be detected. To remedy this problem, we introduce a new type
Freezing_Temperature:

subtype Freezing_Temperature is integer range

Minimal_Temperature .. 0;

where Minimal_Temperature is an negative constant previously declared.
Hence, Min, Max and I belong to this type.

Moreover, this function implicitly assumes that the value of Min should be lower
than the value of Max. However, no verification of this property is made. We
propose to add to the program a pre-condition as the first statement of the body of
the function:

if Min > Max then raise Erroneous_Call;

end if;

Finally, the returned value must belong to the range [Min, Max] . Here also, this
condition is implicitly expressed by the name of the function. However, the violation
of this property due to a design fault is not detected. We propose to add just before
the 'return' statement the post-condition:

if not (Min<=I and I<=Max) then raise Erroneous_Design;

end if;

Exercise 17.1. Trame Light Controller

Figure E.43 gives the coded state table and the symbolic Moore structure of the
traffic light controller.

J>resent state Next statc
y 1234 y 1234

I I 100 1010

2 10 I 0 1001

3 1001 011 0

4 01 10 0 10 I

5 0101 00 1 1

6 00 II 110 0 Ok

Figure E.43. Fail-Safe design of the controller

1. The 2-out-of-4 code can represent N = (~) = 6 codewords, which is exactly the

number of internat states of the state graph to be coded.

2. Four synchronous D Flip-Flops are used to implement this circuit. The D-inputs
(Di = yi) are logical functions of the outputs of these Flip-Flops (Q1 = Y 1):

598

DI = QI.Q2 + QI.Q3 + Q3.Q4

D2 = QI.Q4 + Q2.Q3 + Q3.Q4

D3 = QI.Q2 + QI.Q4 + Q2.Q4

D4 = QI.Q3 + Q2.Q3 + Q2.Q4

AppendixE

They are realized by 4 independent AND/OR logical networks. The outputs are
also realized by monotonic circuits (AND/OR gates only) of the outputs of the D
flip-flops:
RI = QI.Q2 + QI.Q3 + QI.Q4 + Q3.Q4, YI = Q2.Q4, GI = Q2.Q3

R2 = QI.Q4 + Q2.Q3 + Q2.Q4 + Q3.Q4, Y2 = QI.Q3, G2=QI.Q2

3. We will examine a few faults of the Di equations to show the principle of the on
line detection. Any stuck-at 0 altering an AND gate will be transformed into an
error (1 -+ 0) when the present state of the FSM normally activates this gate;
hence, the next state will have one bit '1" only. Consequently, all the AND gates
will take an output value '0', and, at the next dock pulse, the FSM will reach a
null state (0000). The convergence towards this null safe state is achieved in two
dock pulses. Moreover, this is a stable trap state. A same reasoning applies to
any stuck-at 0 fault of the OR gates. Now, let us consider a stuck-at 1 fault in a
AND gate which provokes an error (0 -+ 1), for example gate QI.Q2 of DI. A
necessary condition for this error to be propagated to D 1, is that the present state
is different from (1100). Whatever the considered stuck-at 1 fault, there is a
present state that leads the FSM to astate having 3 bits '1'. The structure of the
Di expression is such that, in that case, the next state will be the stable trap safe
sate (1111). Here also, the convergence is made in two dock pulses.

To complete this study, we could ask the question: is any stuck-at fault detected
during the normal functioning of this FSM? The answer is 'yes', if we assurne
that the whole state graph is totally used (each state and each transition) during
the normal life of the circuit. This is required to guarantee the implicit single
fault assumption. If not, we could have double faults that inhibit the fail-safe
property.

4. Any fault affecting one flip-flop will provoke an evolution of the internal state of
the circuit outside the 2 / 4 code, like in the previous question. If the Clock input
is blocked (stuck-at 0 or 1), the whole state rnachine remains in the same correct
state; hence, this fault is not safe. To remedy this problem, the specialists have
proposed special duplicated dock systems.

5. With a l-out-of-n coding of the internal states, we need 6 internal variables
instead of 4. However, the logical expressions are very simple.

Exercise 17.2. Mathematical function processing

According to the first approach, if the treatment is stopped, no value is available for
Y. On the contrary, after each iteration of the second approach, a value of Y is
available and this value is doser and doser to the correct result. Consequently, an
approximate value may be used if the deadline is reached before the end of the
normal processing.

So, this second solution is much preferable to implement a fail-safe pro gram.

Answer to the Exercises 599

Exercise 18.1. Reliability of the TMR

1. There is no failure as long as 2 of the 3 modules function correctly. We suppose
that the three modules have the same reliability, Ro(t) = e -Ä.t, and that the voter is
faultless. The global reliability corresponds to all situations leading to no
failures. We can deterrnine it by different methods.

• We enumerate all these statistical situations: 2 modules are faultless and the third
one is faulty (3 cases), and the three modules are faultless (1 case).

Thus, we obtain: R = 3. Ro2.(1 - Ro) + Rl= 3. R02 - 2. R03.

• We make a logical treatment based on the theorems of composed probabilities:

R = P(AB OR AC OR BC) = P(AB OR (AC OR BC» = P(AB) + P(C.(A OR B» -
P(ABC), P being the probability and A, Band C being the 3 modules.

Let us note that P(ABC) is subtracted as it is the only event counted twice in the
two other terms.

R = P(AB) + P(C). P(A OR B) - P(ABC),

R = P(A).P(B) + P(C).(P(A) + P(B) - P(A).P(B» - P(A).P(B).P(C),

R = P(A).P(B) + P(C).(P(A) + P(C).P(B) - 2. P(A).P(B).P(C),

-+ R(t) = 3.Ro(t)2 - 2.Ro(t)3 = 3.e -2A! _ 2.e '3A!,

as all modules have the same reliability.
By mathematical integration of the previous function, we deduce the MTBF (or the
MTTF): MTBF = 5/6 MTBFo, which is lower than the MTBF of one module.

Note. In fact, the reliability curve of the TMR has a horizontal asymptote for t = 0;
this reliability is greater than the reliability of the basic module when t is 'small' , but
it becomes lower after a certain time (see Appendix B).

2. According to the reliability diagram, the voter module is in 'series' with the three
modules. Thus, its reliability must be multiplied by the reliability of the triplex:

R(t) = (3.e -2A.I _ 2.e -3A.I).e -A.t1JO

Exercise 18-2. Fault tolerance of the TMR

In terms of reliability, we assume that the TMR system fails as soon as two modules
fail. To simplify, we neglect the reliability of the Voter. Any functional or
technological fault altering only one module is tolerated. In fact, such a redundant
structure tolerates much more faults: any fault altering one or several modules is
tolerated if and only if it does not modify the behavior of 2 or 3 modules in the same
way and at the same time. For example, a fault producing the same simultaneous
error at two module outputs induces a global failure of the system. Moreover, the
latency phenomena slightly complicate this analysis. Indeed, we know that a fault is
not necessarily activated as a failure as soon as it occurs. Thus, the tolerance is
increased as the occurrence of a possible failure on 2 or 3 modules is delayed.

Let us now examine the TRM structure with hardware fault hypotheses. In an
electronic circuit made of a set of components, faults are supposed to be independent
probabilistic events (and we use prob ability theorems with this assumption). The
assumption of a fault altering one module only, generally used (see the reliability
computation made in the previous exercise), is justified by the fact that the

600 Appendix E

probability of having a double fault affecting two modules is the product of the
probabilities of having a fault in each module. With electronic components, the
actual values of the 1.. are very small (e.g. 10-7) , hence, we neglect the product terms
(10.14). This assumption cannot be made if strictly identical components are used in
the TMR. Indeed, these components can have the same design faults or
environmental weaknesses (e.g. sensitivity to temperature); thus, faults cannot be
considered as independent phenomena and all reliability computations are false.
Another criticism deals with other faults violating the independence assumption.
They produce failures at the same time on non-identical components. For instance,
this situation can result from external perturbations, such as an Electro-Magnetic
parasite.

Exercise 18.3. NMR

1. Let us assume that each module has only one output. During anormal
functioning, the output vector (z] , z2, z3) must take the values (000) or (1 1 1).
Any other value is erroneous, hence the detection function is:

error = (zl ' . z2'. z3' + zl. z2. z3)"
where '+' , ' .', and '" represent the operators OR, AND, and NOT.
This expression can directly be implemented by a very simple circuit (containing
few MOS transistors). We will develop it further to make a transition with
question 2. We obtain the expression given in Chapter 18:

error = (zl$ z2) + (z] $ z3) + (z2 $ z3).

The 2-input $ operation gives a '1' if and only if its inputs are different.

2. First we create the three elementary comparison functions:

ja = (z]$ z2),jb = (z] $ z3), andje = (z2 $ z3).

If z] is erroneous,ja AND jb is equal to '1',

If z2 is erroneous, ja AND je is equal to '1',

If z3 is erroneous, jb AND je is equal to '1'.

Hence: M] = ja AND jb, M2 = ja AND je, M3 = jb AND je.

sI

s2

sI

s3

s2

s3

Figure E.44. DetectionlDiagnosis circuit

Answer to the Exercises 601

The corresponding circuit is shown in Figure E.44. The signals M1, M2 and M3
identify the failing module (their value is a 1-out-o/-3 codeword in case of error),
and allow its inhibition (thanks to apower switch-off, for example), and finally
its replacement by a spare module.

3. The voter must behave as the majority of its inputs: this function is the logic
MAJORITY. For 3 inputs, we have:

MAJ (zl, z2, z3) = zl.z2 + zl.z3 + z2.z3.
The corresponding electronic CMOS component is simple.

This function can easily be extended to 4 inputs:

MAl (zl, z2, z3, z4) = zl.z2.z3 + zl.z2.z4 + zl.z3.z4 + z2.z3.z4.
Note: The MAJORITY function is not associative (no possibility for combining
smaller MAJORITY modules).

Exercise 18.4. Study of the double duplex

1. Reread Chapter 18, sub-section 7.2.2.

2. The product functions correctly as long as one of the two couples (LI, 1.2) or
(2.1, 2.2) functions correctly. The reliability of the product is then:

R = P«1.l AND 1.2) OR (2.1 AND 2.2» = P(1.l AND 1.2) + P(2.1 AND 2.2)
P(1.l AND 1.2). P(2.1 AND 2.2),

R = PO.1) . P (1.2) + P(2.1) . (2.2) - P(1.l). P (1.2). P(2.1). P (2.2),

where + and - are the addition and subtraction operators.

If the modules have the same reliability RO, we have:

R = 2. RO 2 _ RO 4 = 2 e -2")..1 _ e -4")..1.

Note. The reliability curves of this structure are given in Appendix B.

Exercise 18.5. Study of self-purging technique

1. The switch-off of a failing module is performed by each one of the modules of
the structure. This approach is interesting because it eliminates a part of the
centralized commutation unit which is always a delicate part of a fault-tolerant
system (such a part is called the kernel of the system). This technique is a step
towards a complete decentralization of the duplicate modules and of the decision
function (thanks to a distributed voter). Such distributed structure can be
encountered in the framework of distributed software tasks in a distributed
multiprocessor system.

2. When only 2 modules remain active, the product regresses to a simple Duplex.
Thus, the next error occurrence will not be tolerated. The system operates
according to a degraded mode until a maintenance operation restores the
tolerance capacity of the product.

Exercise 18.6. Example of a tolerant program based on retry mode

The fault to be treated being associated with a provided data, the use of the retry
mode is pertinent. Indeed, the Get procedure is not the cause of the problem. Fault

602 Appendix E

tolerance mechanism must detect an error if a non-integer data is provided from the
keyboard. In this case, the data sampling must be reiterated (the Get function is
executed again) after having restored the initial context. Let us consider the
following solution:

Procedure Safe_Get{I : out integer) is

begin

loop

beg in

Get{I);

exit;

exception when Data_Error => Skip_Line;

end;

end loop;

end Safe_Get;

As soon as an integer value is provided and acquired by the Get (I) function, the
exi t statement allows to exit from the loop (loop), hence to finish the execution
ofthe Safe_Get procedure.

On the contrary, the reading by Get of an erroneous data value leads to the raising
of an exception (Data_Error) and the branching to the associated exception
handler. This treatment erases (thanks to the operation Skip_Line) the content of
the buffer containing the keypressed characters; these characters have not yet been
all extracted because of the partial execution of Get. For example, if the user has
keypressed the 5-character sequence <17 A28>, and then 'Carriage Return', the
execution of Get (I) can let characters '2' and '8' in the keyboard buffer, as the
left to right analysis of the expected figures has been interrupted by the raising of the
exception induced by the analysis of 'A'. As expected, the buffer reset action
restores the system in a safe state.

Exercise 18.7. Programming and evaluation of recovery bocks

1. Programming. The two following program extracts illustrate the two
approaches proposed in section 18-4. We assurne that the execution context is
limited to the input/output parameter C. C_Prime is a data structure having the
same type T as C.1t will store the safeguard copy (the duplicate).

Procedure Recovery_Block_V1{C : in out T) is

C_Prime: T;

Error: Boolean;

begin

Save{C, c_Prime);

Error := P{ C);

if Error then Restore (C_Prime, C);

Q{ C);

end if;

end RecoverY_Block_V1;

Answer to the Exercises 603

Where the procedures Save (X, Y) and Restore (X, Y) both makes a copy of X
intoY.

Procedure Recovery_Block_V2(C : in out T) is

C_Prime : T;

Error: Boolean;

begin

Save(C, C_Prime);

Error := P(C_Prime);

if Error then Q(C);

else Restore(C_Prime, Cl;

end if;

end Recovery_Block_V2;

2. Evaluation of the performance. The two previous programs allow the expected
performance of the two proposed approaches to implement the recovery blocks
to be evaluated. In both cases, the context is initially saved. But the rest of the
bodies is different.

• In the first case, a correct execution of P does not require any supplementary
treatment; when an error is detected, arestore operation is performed before
executing procedure Q.

• In the second case, an opposite situation occurs, i.e. a correct execution implies a
restore operation; on the contrary, in case of error detection such restore
operation is not necessary before executing Q.

To conclude, the first approach is more efficient when P is correctly executed, while
the second approach is more efficient when the use of the redundant component Q is
required. This last design approach can for example be chosen if we know that the
execution of the redundant component requires a supplementary duration to which
any further restoring duration must be added, due to real-time constraints.

Exercise 18.8. EDC in a RAM

1. Matrices G and H:

G=

111000000000

100110000000

010101000000

110100100000

110100101000

010000010100

110000010010

000100010001

Coding operation:

[

101010101010]
011001100110

,H= 000111100001.

000000011111

[Yt. Y2, Y3, Y4, Ys, Y6' Y7, Ys, Y9, YIO, Ylt. Y12] = [u], U2, U3, U4, US, U6, U7, Us] . G.
For example, if U = [00 1 1 101 1], then Y = [11 0 101 1 1 101 1].

604 Appendix E

2. Error detection and correction. We suppose that bit w6 is erroneous, and we
perform:

[
101010101010j [0]
011001100110 1 S=H.WT, .[110100111011] T= .
000111100001 1

000000011111 °
The decimal value of this syndrome vector indicates the erroneous bit: bit 6. The
correction is then a simple binary complementation.

3. Implementation ofthis code in the MMU.

l t ControIIIua

I=t:~
4bils 4 bils

1krMry Decodi~ syndrolM

~ 8 hits CorrectIon
..... Error ..

8 bits

f 8 bits
Adress Bus ..

Data Bus ..
Figure E.45. Detection and correction circuit

Figure E.45 shows the structure of the EDC circuitry for this code. The 'check
bit generation' module implements in hardware the XOR expressions to generate
the 4 redundant bits. The 'decoding and correction' module implements the
matrix product S = H. WT . This module uses the result S to correct the erroneous
bit, and it communicates with the external system (e.g. a CPU) for error logging.

4. Scrubbing operation

As said in Chapter 18, the scrubbing is an off-li ne operation which write
corrected erroneous word, and read them again, in order to check if the faults are
hard or soft. If they are soft, the word has been cleaned up. On the contrary, the
fault is hard and cannot be cleaned.
The previous structure is entirely compatible with such useful function.

Glossary

1. ACRONYMS

ABS Antiloek Braking System

ATE Automatie Test Equipment

ATPG Automatie Test Pattern Generation

BCH Bose Chauduri Hoequenghem

BIST Built-In Self-Test

BIT Built-In Test

BITE Built-In Test Equipment

BNF Baekus-Naur Form

C/DC ConditioniDecision Coverage

CAM Computer Aided Maintenanee

CAN Control Area Network

CIRC Cross-Interleaved Reed-Solomon Code

CMOS Complementary MOS

COTS Components Off The Shelf I Commercial Off-The-Shelf

CRC Cyclie Redundaney Cheek

DAT Digital Audio Tape

DFG/PFG/SFG Deterministie I Probabilistie I Statistieal Fault Grading

DFT Design For Testability

DRC Design Rule Cheeking

DUT Deviee Under Test

605

606 Glossary

ECC Elliptic Curve Cryptography

EDC I ECC Error Detecting Codes I Error Correcting Codes

EMC Electro-Magnetic Compatibility

ESF Extended Super Frame

FMEA Failure Modes and Effects Analysis

FMECA Failure Modes and Effects and Criticality Analysis

FPGA Field Programmable Gate Array

FRC Functional Redundancy Checking

FSM Finite State Machine

FTM Fault Tree Method

GSM Global System for Mobile communication

HDB High Density Bipolar (signal coding)

HDL Hardware Description Language

IC Integrated Circuit

JTAG Joint Test Action Group

LFSR Linear Feedback Shift Register

LRC I VRC Longitudinal I Vertical Redundancy Check

LSB/MSB Least/Most Significant Bit

LSSD Level Sensitive Scan Design

MCIDC Modified ConditionlDecision Coverage

MDT Mean Down Time

MOS Metal Oxide Semiconductor

MTBF Mean Time Between Failures

MTTF Mean Time To Failure

MTTFF Mean Time To First Failure

MTTR Mean Time To Repair

MUT Mean UpTime

NMR N-Modular Redundancy

NRZ Non-Return to Zero

PCB Printed Circuit Board

PLA Programmable Logic Array

PLC Programmable Logic Controller

PLD Programmable Logic Device

PSA Parallel Signal Analyzer

RAID Redundant Array of Independent Disks

Glossary 607

RAM Random Access Memory

ROM Read Only Memory

RSA Rivest Shamir Adleman

SCC Self-Checking Checker

SOC System On Chip

STG State Transformation Graph

STIL Standard Tester Interface Language

TAP (Boundary Scan) Test Access Port

TMR Tripie Modular Redundancy

VAN VehicJe Area Network

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VXI VME eXtensions for Instrumentation

2. KEYWORDS

Word
"', Meanmg 0~~ r:I .if.i eH fit 7

acceptability Curve expressing the acceptable risk rate of failures from their 17.1
curve seriousness

acceptable A product whose failures have acceptable risk rates 17.1
product

acceptable risk See risk: acceptable rate
rate

acceptance test See test: acceptance

activation: The OCCUITence of a first eITor provoked by a fault. 4.1
initial This eITor is called primitive error or immediate error 13.2

See also fault activation

active fault Seefault tolerance: active
tolerance

Ad Hoc See DFT: ad hoc approach
approach

adaptive See sequence: adaptive
sequence

adaptive vote See vote: adaptive

aggression Seefault: external

608 Glossary

alias An alias oeeurs when a faulty cireuit test output response gives a 14.5
signature whieh is identieal to the fault-free signature (used in
BIST techniques by LFSR signature analysis)

alpha test See test: alpha

alternate Redundant module (version) having the same specifieation (or a 18.4
degraded form) and, often, a different implementation than the
original funetional module

ambiguity An element whieh leads to several meanings 9.3

analysis: See criticality analysis
eritieality

analysis: See dynamic & static analysis
dynarniclstatie

assertion Funetional redundaney uSed for software verifieation. It tests the 10.5
validity of a property eaeh time a given cireumstanee eould violate 16.3
it. It ean be used: during the ereation stages for fault removal (Ch.
10), or during the operation stage for fault detection by on-line
testing (Ch. 16)

ATE Automatie Test Equipment 12.1

ATPG Automatie Test Pattern Generation: automatie generation of lists 12.3
of test inputs and expeeted outputs to perform produet testing

attributes of Criteria enabling the system dependability to be assessed. The 1.4
dependability most used attributes are: reliability, availability, maintainability, 7

testability, safety and security

attributes of The behavior of a module is eharaeterized by a set of attributes 2.3
module whose values define the states of the module

availability It is the probability that the system is operational at the time t, 7.5
knowing that it funetions eorrectly at time 0

availability: Value ofthe availability at a given time t: A(t) 7.5
instant

availability: In permanent stage, availability value of A(t) when t -+ 00 7.5
permanent

baekward fault Step of struetural fault eoverage method whieh deterrnines the 13.3
analysis faults deteeted by a given test veetor by a baekward proeess (from

the outputs towards the inputs)

baekward See propagation: backward
propagation or
tracing

baekward Fault-tolerance technique whieh eonsists in bringing the system 18.3
recovery baek in astate previously reaehed before the system exeeution

resumption. This teehnique makes often use of eontext saving and
restoring meehanisrns (sueh as the recovery cache). The exeeution
of M is resumed at a recovery point

Glossary 609

bathtub curve Reliability model which represents the evolution with time of 7.2
failure rate of electronic components. Typically, it shows 3 parts:
infant mortality where the failure rate decreases, usefullife where
the failure rate is constant, and wearout where the failure rate
increases.

behavior Reaction of a system mainly described as changes of states in this 2.3
book

behavioral A design step/model of the system specifying its behavior 2.2
level/model 2.3

benign Seefailure: benign

beta test See test: beta

BIST Built-In Self-Test. Group of Design For Testability methods which 14.5
incorporate the test functions into the circuit

BIST: signature Group of BIST techniques using a test sequence generator (usually 14.5
a LFSR), a compactionfunction (usually a PSA), and a signature
analysis function

BIT Built-In Test. Group of Design For Testability methods which 14.4
incorporate test facilities and offer a test interface

bit stuffing Fault detection technique applied to data. After a number of bits 18.7
with the same polarity, an additional bit is introduced with an
opposite polarity. Used for instance in the CAN Bus

BITE Built-In Test Equipment. All maintenance functions of a system 14.4

boundary scan Scan technique belonging to the BIT design for testability. 14.4
Normalized as the IEEE Standard 1149.1

branch test See test: branch

bridging fault A particular case of short electronic fault 5.2

See also fault: short-circuit

BSDL Boundary Scan Description Language 14.4

bug See fault: structural (for software technology) 3.2

bum-in test See test: bum-in

CIDC See test: ConditionlDecision

CAM Computer Aided Maintenance 12.1

CANBus Control Area Network bus. Initially created for automotive 18.7
industry. Normalized under ISO 11898

catastrophic See failure: catastrophic

checker Module used in self-testing systems to detect the occurrence of 16.3
errors from the observation for instance of some EDC code
variables

See also self-checking checker

checkerboard See test: memory

610 Glossary

checksum See code: checksum

clarity The text or the model describing a system is easy to read 9.3

client Entity or person expressing requirements or specifications to ask 2.2
for an expected product

code Set of the codewords in an EDCC 15.1

code preserving See Totally Self-Checking System

code: Unidirectional code such that each codeword has exactIy m bit '1' 15.4
m-out-of-n and (n-m) bits '0'

code: Special case of m-out-of-n code such that the codeword is obtained 15.4
two-rail by adding to the word to be coded its complemented copy

Also caIIed double-rail

code: Category of codes dealing with detection and correction of errors 15.5
arithmetic in arithmetic systems

code: Berger One of the codes dedicated to unidirectional errors. The redundant 15.4
part expresses in binary the number of bits '0' in the word to be
coded

code: Code applied to blocks of words 15.3
bidimensional Also caIIed product code

<> unidimensional

code: capacity Number of codewords that can be made with a given code 15.2

Also caIIed power 0/ expression or cardinality

code: See code: capacity
cardinality

code: Bidimensional arithmetic code based on the sum without 15.5
checksum remainder of the words of a block

code: CIRC Cross-Interleaved Reed-Solomon Code 15.3

code: cost Number of bits (n) of the codewords 15.2

code: coverage Ratio of the number of errors detected andlor corrected by the code 15.2
rate and the number of errors belonging to the considered error model

code: CRC Cyclic Redundancy Check code are cyclic EDCC codes 15.3

code: cyclic Family of linear EDCC codes. Modeled with polynomials 15.3

code: density Ratio of the capacity of a redundant n-bit code and the theoretical 15.2

number of words that can be made (2n)

code: disjoint See self-checking checker

code: ECC EIIiptic Curve Cryptography codes based on eIIiptic curves 15.1

code: EDCC Error Detecting and Correcting Code. Redundant coding of 15.1
information used to detect andlor correct errors

code: error See code: EDCC
corrector

Glossary 611

code: error See code: EDCC
detector

code: fault See totally self-checking system
secure

code: Fire Cyclic code addressing burst multiple errors 15.3

code: linear EDCC using multiple parity. Modeled with matrices 15.3

code: low- High Density Binary. Signal level coding 15.1
level: HDB

code: low- Signal level coding 15.1
level:
Manchester

code: low- Non-Return to Zero. Signal level coding 15.1
level: NRZ

code: modulo 9 An example of arithmetic code 15.5
proof

code: multiple Code using several redundant bits which are obtained by XOR 15.3
parity combinations of some bits of the word to be coded

code: power of See code: capacity
expression

code: product See code: bidimensional

code: Ratio of the number of added bits ('redundant bits') and the 15.2
redundancy number of bits of the word to be coded (calIed 'useful bits')
rate

code: residual Category of codes intended to detect errors in arithmetic circuits 15.5

code: RSA Ri vest Sharnir Adleman codes based on the factorization of large 15.1
numbers

code: self- See self-checking checker
checking

code: separable Properties of redundant codes 15.2
/ non-separable separable code: the information to be coded is explicitly included

in the codeword (the codeword is made by adding redundant bits to
the information data)

code: single Code using one redundant bit which is the XOR of allother bits of 15.3
parity the word to be coded

code: syndrome See syndrome

code: totally See totally self-checking system
self-checking

code: two-rail Particular case of m-out-of-n code 15.3

Also called double-rail

612 Glossary

code: Code applied to individual words 15.3
unidimensional <> bidimensional

code: Category of codes intended to detect unidirectional errors, Le. 15.4
unidirectional multiple errors that modi fies the altered bits in the same way

(all '0' to '1', or all '1' to '0')

codeword Coded element of information 15.2

cold standby See redundancy: cold standby
redundancy

compaction See test: compaction

compaction See BIST: signature
function

compatibility The service delivered by the product is greater than the one 4.2
ofa product expected from the specifications

<> incompatibility

compensation Fault tolerance technique using passive redundancy such as the 6.4
technique TMR. Does not require error detection 18.2

See also error masking

complete See complete distinguishing sequence
diagnosts
sequence

complete Diagnosis sequence which split the fault model into classes of 12.2
distinguishing system equivalent faults 13.4
sequence

completeness All possible cases are handled 9.3

compliance test See test: compliance

component Structural entity of a system 2.3

Also called module or sub-system

composition Relationships composing sub-systems to express the structural 2.2
relationships model of a system

compositional See hierarchy: composition
hierarchy

comprehension The understanding of the semantics of a text or a model describing 9.3
a system or other pieces of information

computer aided CAM. Tools which assist the maintenance team 12.1
maintenance

concision The text or the model describing a system does not contain useless 9.3
verbiage

condition Boolean expression which does not contain any Boolean operator 13.6
(AND, OR, NOT)

See also decision

Glossary 613

conditionl See test: conditionldecision
decision test

conditional See maintenance: preventive
maintenance

confidentiality Non occurrence of unauthorized disclosure of information 7.7

confinement See error confinement

consequences External effects of faults or failures on the product' s mission. 4.2

of These effects are generally classed into groups according to their 17.1
faults/failures seriousness: minor or benign (seefailure: minor), signijicant (see

failure: signijicant), serious (seefailure: serious), catastrophic or
disastrous (seefailure: catastrophic),

consistency No conflicts exist between definitions of the elements of a system 9.3
or ofa text

consistency (or justijication) One of the four basic steps of path sensitizing test 13.2
operation generation method which verifies that the loeal constraints can be

satisfied in the whole circuit

contamination See error propagation

continuity of See reliability
service

continuity test See test: continuity

continuous on- See on-line testing
line testing

contract Document produced during the specification phase, which 2.2
formalizes the mission of the product (funetion and duration), non-
functional constraints on the environment, and the dependability
attributes

control flow Finite State model derived from a program, expressing the 13.6
sequencing of the statement block and taking the input events and
the internal decisions into account

control path Path of a control flow 13.6

controllability Ease of reaching a given state of a system behavior by exercising 6.3
its inputs 14.1

corrective Action taken to eliminate the causes of an existing nonconformity, 2.2
action defect (fault) or other undesirable situation in order to prevent

recurrence

corrective See maintenance: corrective
maintenance

coverage See fault coverage and code: coverage rate

coverage table See fault table

CRC See code: CRC

614 Glossary

creation See development process
process

criticality Methods used to estimate the risks of the failures of a product 17.1
analysis

criticality level Measurement or classification based on acceptable rate risk 17.1
Also see consequences of faultslfailures

curative See maintenance: corrective
maintenance

dangerous See failure: serious

debugging The process of detecting, locating, and correcting faults and errors. 12.1
Belongs to fault removal

decision Combination of conditions or decisions using Boolean operators 13.6
(AND, OR, NOT)

decreasing See reliability: decreasing
reliability

defect See fault: structural (for hardware technology) 3.2

degradation Degradation of the service delivered by a product affected by faults 18.5

delivered See service delivered
service

dependabi lity The dependability of a system is that property of the system such 1.2
that reliance can justifiably be placed on the service it deli vers

dependability Techniques to measure or estimate the dependability, thanks to 7.1
assessment attributes: reliability, availability, maintainability, testability,

safety, security

These attributes are evaluated at three levels in the life cycle:
specification andforecast assessment during the creation stages,
and exploitation assessment during the exploitation stage

There are two groups of techniques: quantitative approach and
qualitative approach

dependability Set of actions justifying the reliance placed in a given product 6.5
assurance

design Step of the life cycle wh ich transforms specifications into a system 2.2

design for SeeDFT
testability

design guide Fault prevention techniques, relative to the design process, 10.3
advising the design process choices

design level Design is traditionally classified into three modeling steps: 2.2
behavioral, structural, and technological

design rule DRC. Example: ensure all geometric features laid out on each 11
checking mask meet size, spacing, and overlap mies 14.4

design test See test: design

Glossary 615

design: Fault removal technique: verification with the specifications, by 10.4
extraction reverse transformation, e.g. identification of the electronic

structure from the layout

design: proof Fault removal: formal verification technique with the 10.6
specifications, by reverse transformation, or demonstration of a
property of the system behavior

designer The entity or person which creates a system or a product from 2.2
requirements or specifications

destructive test See test: destructive

detection test See test: detection

Deterministic See fault grading: deterministic
Fault Grading

development The process that leads from the specification to the product. In this 2.2
process book, it groups together specification, design and production

Also called creation process

device under SeeDUT
test

DFf Design For Testability. Set of design techniques increasing the 14.1
controllability and observability ofthe product. Used for off-li ne
testing. There are four DFf main approaches: Ad Hoc techniques,
specific design for testability, Built-In Test (BIT), and Built-In Self
Test (BIST)

DFf: adhoc Guidelines used during or after the design to facilitate the test 14.2
approach

DFf: specific Group of Design For Testability methods which provide products 14.3
design naturally easy to test

diagnosis Process of identifying the fault, if one exists 6.3

See also test: diagnosis, fault: localization 10.5
12

13.4

diagnosis Definition of modeling tools used to express the pieces of 12.1
algorithm information handled during the diagnosis (such as fault tree), and 13.7

the tasks and steps to be done to diagnose the faults

Also called diagnosis process

diagnosis fault Technique which successively split the set of the fault3 of a fault 12.2
tree technique model into fault classes in order to diagnose the causes of a failure

diagnosis See diagnosis algorithm
process

diagnosis test See test: diagnosis

diagnosis Diagnosis testing using an adaptive sequence 12.2
testing:
adaptive

616 Glossary

diagnosis Diagnosis testing using a fixed sequence 12.2
testing: fixed

diagnosis tree Graphie tool allowing to determine which fault (or faults) is (are) 12.2
present, from the output values produced by a system submitted to l3.3
a test sequence

diagnosis: See diagnosis: model based approach
based on deep
knowledge

diagnosis: See diagnosis: model based approach
based on
structure and
function

diagnosis: See diagnosis: experimental approach
empirical
associations

diagnosis: Diagnosis methods based on knowledge of relationships between 12.1
experimental possible faults or errors and the related failures
approach Also called empirical associations, or surface or shallow

reasoning, or reasoning by associations

diagnosis: Diagnosis methods which do not use fault or error models. The 12-1
model-based failures are diagnosed thanks to the system model
approach Also called diagnosis based on deep knowledge, or diagnosis

based on structure and function

diagnosis: See diagnosis: experimental approach
reasoning by
associations

diagnosis: See diagnosis: experimental approach
shallow
rasoning

diagnosis: See diagnosis: experimental approach
surface
reasoning

disastrous Seefai/ure: catastrophic

discontinuous See on-Une testing
on-line testing

disruption Modification of the correct state which cause an error 15.1

Also called error in error detecting and correcting code theory

See also fai/ure: disruptive

disruption Operator combining a correct state and a disruption to express an 15.1
operator error

distance: Fundamental notion similar to the Hamming distance, used to 15.5
arithmetic study arithmetic codes

Glossary 617

distance: See Hamming distance
Hamming

distinguishing Test sequence able to decide which fault of a given fault model is 12.2
sequence present in a circuit. Used for diagnosis 13.4

disturbance See fault: external

domain: See safety: dangerous domain
dangerous

domain: See functional domain
functional

domain: safe See safety: dangerous domain

domino effect Cascade phenomenon occurring during the restoration of the 18.3
context of a multiple task system, when using a recovery point
fault tolerant technique

double-duplex Fault tolerance technique using active redundancy 18.7

dreaded event Impairments of dependability (faults, errors, failures) studied by 7.1
qualitative dependability assessment techniques. Often limited to
dangerous events

duplex Self-testing technique based on structural redundancy. The main 16.3
module is functionally duplicated, the outputs of the two duplicates
being compared by achecker

duplicate Duplicates redundant modules are Versions having the same 18.2
implementation (used in fault-tolerance techniques)

Also called replica

duration of the Objectives of the product in terms of operationallife 2.1
mission

DUT Device Under Test. Product connected to a tester 12.1

dynamic Group of techniques relevant to fault removal carried out by 6.3
analysis executing products or models

Also called test

ECC See code: ECC

EDC I ECC Error Detecting Codes I Error Correcting Codes 15.1

See code: EDCC

embedded core See IEEE P 1500

emergence Operator determining the behavioral part of a component which 8.2
effectively intervenes in the global behavior of a system

emergent The functional part of the product which is really used in the 4.2
functionality context of the mission

empirical See diagnosis: experimental approach
associations

618 Glossary

environment funetional: see user 2.1

non-funetional: entities external to the eouple Produet-User and
having an influence on the delivered service

equivalence: A mutated program is equivalent to the initial program ifthe 13.8
mutated mutation does not modi fies the behavior
program

equivalent fault See pattern equivalent fault and system equivalent fault

error An error occurs in a module (or component) when its aetual state 4.1
deviates from its desired or intended state

error Methods and techniques used to limit the error propagation to a 6.4
confinement certain subset of the system 18.6

See also fault: eontention

error See error propagation
contamination

error detecting Redundant coding to detect and/or eorreet errors 6.4
and eorrecting 15.1
codes

error detection Group of teehniques of fault tolerance 6.4
and correction

error diffusion See error propagation

error logging See log file

error masking Group of techniques of fault tolerance which does not require error 6.4
detection, as the faults effects are rnasked 18.2
See eompensation teehniques

error model See model: error

error Mechanism which transforms an error oceurring in a product into 4.1
propagation one or several other errors or failures 15.6

The propagation is condueted through one or several error
propagation paths
Also called error diffusion or eontamination

error typology See model: error

error: Asymmetrie error has a different probability to produce a '1' value 5.2
asymmetrie and a '0' value

error: burst l-order multiple error model such as all the errors affect a sequence 15.1
of l consecutive bits

error: dynamic Adynamie error provokes transient undesirable states (e.g. a 4.1
transient oscillation on a line)
Also called transient error

error: generic Error associated with a modeling tool 6.3

<> error: speeijie

error: hard See error: permanent (for electronic eomponents) 5.2

Glossary 619

error: See aetivation: initial
immediate

error: logical Logieal error is characterized by transformations of logical values: 5.2
'0' becomes 'I' and vice versa. 15.1
Non-logical errar provokes alterations of the logic levels outside
the specification domains

error: multiple Multiple errar disturbs the functioning of several elements (e.g. a 5.2
problem in the electrical supplying affects all the components)

error: order Order of multiplicity. The number of elements altered by a 5.2
multiple error 15.1

error: packet Multiple error where all modified bits are grouped within a certain 15.1
distance

error: A permanent errar affect a module for a long duration (e.g. the 4.1
permanent output of a module is stuck-at '0')

<> error: temporary

error: primitive See aetivation: initial

error: single Single error affects one element (for instance a transistor) of the 5.2
structure of the system 15.1

error: soft Temporary error induced by transient faults in electronic 5.2
components

error: specific Error associated with a particular system 6.3

<> error: generie

error: static A static error provokes a stable undesirable state (e.g. a false signal 4.1
'1' instead of the right one '0')

error: Symmetrie errar provokes with the same probability, astate 5.2
symmetric changing (for instance, '0' to '1') and conversely

error: A temporary errar has limited operation duration 4.1
temporary <> error: permanent 5.2

error: transient See error: dynamie

error: Gate level: multiple logical error such as all altered lines are stuck 5.2
unidirectional at the same value

Code theory: multiple error which modifies several bits of a word
15.4 in the same sense: 0 to I, or 1 to 0

event tree Tree connecting correct (states) or incorrect (faults, error, failures) 7.11
events with logical operators (AND, OR). Used for deductive
approach in qualitative dependability assessment

See Fault Tree Methad

evolutive See maintenanee: preventive
maintenance

620 Glossary

exception Software on-line error detectionlhandlinglpropagation mechanism 14.2
mechanism 17.2

execution path A control path which can be run when the program is executed 13.6

exploitation See operation

exploitation See dependability assessment
value

exponentiallaw The simplest reliability model used for electronic components 7.2

extraction Electronic extraction of an JC. Analysis which gives a transistor- 10.4
level description from a mask-Ievellayout description

extremely See risk
improbable

extremely rare See risk

fabrication See production

fail-fast system Afail-fast system is afail-safe system which integrates a maximal 17.2
duration to reach the safe sate in their specifications

fail-safe system System integrating techniques to reduce or avoid the occurrence of 6.4
failures considered as catastrophic or dangerous 17.1

fail-silent Fail-safe technique: when an error or a failure occurs, the system 17.2
system turns itself into a safe 'off or 'passive' mode which does not act

on the environment

Also calledfail passive

failure A failure occurs when the delivered service no longer complies 3.1
with the specifications
Taking the mission notion into account, a failure is the non-
performance or inability of the system or component to perform its
intended function for a specified time under specified
environmental conditions

failure mode Abstract viewpoint about failures, independently of the particular 3.1
system functions and failures. Often defined by three parameters
(value/timing, persistentltemporary, consistentlinconsistent)
completed by the seriousness and risk

failure rate ().) Mathematical estimator of reliability which expresses a failure 7.2
occurrence probability per hour, e.g. 10.6 faultlH (non MKSA
unit)

failure: benign Failure which has no serious consequences on the mission which 4.2
carries on normally. Failure leading to upset of the users, and/or a 17.1
partial reduction of the functionality of the product

Also called minor

failure: Seefai/ure: inconsistent 3.1
Byzantine

Glossary 621

failure: Failure leading to human loss, destruction of the product or the 4.2
catastrophic environment, including the controlled process 17.1

Also called disastrous

failure: Failure perceived similarly by all users 3.1
consistent

failure: crash Persistent omission failure 3.1

failure: See failure: serious
dangerous

failure: Seefailure: catastrophic
disastrous

failure: A failure caused by a technological fault 3.2
disruptive Also called disruption

failure: The temporal characteristics of the product behavior are not in 3.1
dynamic accordance with the specifications: e.g. response time incorrect,

too fast or too slow

Also called timing failure

failure: See risk
extremely
improbable

failure: See risk
extremely rare

failure: See risk: impossible
impossible

failure: The users do not perceive in the same way the failure occurrence. 3.1
inconsistent Also called Byzantine failure

failure: major See failure: significant

failure: minor See failure: benign

failure: A specific stopping failure when no values are delivered 3.1
omission

failure: The provided service is not in accordance with the specification, 3.1
persistent during a long period in regards with the mission duration

failure: See risk
probable

failure: rare See risk

failure: serious Failure whose negative effects on the user or the environment are 4.2
quite important, the security margins being dangerously reduced. 17.1
Leads to a small number of casualties and/or serious injuries of the
users, andlor a serious reduction of the functionality of the product

Also called dangerous

622 Glossary

failure: Set of failures having the same seriousness 17.1
seriousness
class

failure: severity Measurement of the consequences of a failure on the system, user, 4.2
or seriousness and environment 17.1

failure: Seriousness of a failure: the mission is disturbed and the efficiency 4.2
significant ofthe delivered service is reduced. Leads to injuries ofthe users, 17.1

andlor a partial reduction of the functionality of the product

Also called major

failure: static A product has a static failure when, at a given time, its actual 3.1
perception via its inputs, or its actual reaction are not in accordance
with its specifications

Also called value failure

failure: When the product's activity no longer evolves, a constant value 3.1
stopping being delivered to the user.

failure: A failure caused by a functional fault. 3.2
systemic

failure: The provided service is not in accordance with the specifications at 3.1
temporary a given time and for a short duration

failure: timing See failure: dynamic

failure: value See failure: static

false alarm Generally associated with built-in test. It is an indication of a 16.3
failure in a system where no failure exists.

fault Adjudged or hypothesized cause of a failure. Also seefault: 3.2
structural
Also called defect (hardware) or bug (software)

fault activation Raising of an error from a fault 4.1
In particular, it is the first step of path sensitizing test generation 13.2
methods which transforms a fault into a primitive error to be
propagated to the primary outputs of the system under test

fault avoidance Fault prevention + fault removal 6.1

fault collapsing Technique to reduce the ron time of fault simulation by identifying 12.3
equivalent faults and simulating only one fault for each class

fault contention Technique to prevent errors due to faults in a module to reach other 6.4
modules of the system
See also error confinement

fault correction Operation which suppress present faults 6.3

fault coverage Percentage of potential faults of a given fault model that are 12.2
detected during a test 13

fault detection Operation which highlight the presence of faults 6.3

Glossary 623

fault diagnosis Operation which identifies the faults altering a product 6.3

Also called fault localization or fault isolation 12.2
13.4

fault dictionary List of faults, their activation, and their effects (as errors or 12.3
failures), which can aid in the determination of probable causes
during failure analysis of defective devices

fault Estimation of the presence of faults (number and seriousness) 1.3
forecasting Developed in Chapter 7

fault grading Measure of how effective a set of test vectors is at detecting 12.3
potential faults. Finding of the coverage of a given test sequence

Also called test validation

fault grading: The DFG is a simulation method which compares the results of a 12.3
deterministic faulty design (fault injected) with the outputs coming from the

design. It includes various simulation algorithms, such as grouping
of equivalent faults, also known asfault collapsing, and making
use of customized hardware platforms (accelerators)

fault grading: There are three approaches to fault grading, based onfault 12.3
fault simulation simulation techniques: probabilistic (PFG), deterministic (DFG),

and statistical (SFG)

fault grading: The PFG is a simulation method which provides an estimation of 12.3
probabilistic the fault coverage rather than an exact determination. The principle

is based on an analysis ofthe node activity in terms of
controllability and observability

fault grading: The SFG reduces the cost of DFG by applying deterministic fault 12.3
statistical simulation to a sub-sets of the potential faults of the given fault

model. It provides a close approximation ofthe DFG results, while
requiring only a small fraction of the run time

fault grading: Method evaluating the fault coverage of a test sequence by 13.3
structural structural analysis of the producl. It consists in: forward
approach simulation, and backward fault analysis

fault injection Technique consisting in adding faults to a system in order to 7.9
analyze its behavior. Used for fault grading or to assess fault 12.3
tolerance mechanisms

fault logging Recording of errors occurring in a product during operation in 16.3
order to facilitate ulterior maintenance

See also instrumentation and logfile

fault masking Fault belonging to a passive redundant element that cannot be 13.3
detected from the outside of the producl. Use of compensation
mechanisms

fault model See model: fault

fault prevention Aims at reducing the creation or occurrence of faults during the 1.3
system life cycle 6.2
Developed in Chapters 9, 10, and 11

624 Glossary

fault removal Aims at detecting and eliminating existing faults, or to show the l.3
absence of faults 6.3
Developed in Chapters 12, 13, and 14

fault secure See totally self-checking system

fault simulation Technique used for dependability assessment. 7.9

Fault grading technique which provides a list of faults detected by 12.3
a given test sequence (hence, thefault coverage) by means of a
simulation program with fault injection

There are four main approaches: serial, parallel, deductive, and
concurrent

fault table Table showing the faults covered by each vector of a test sequence 12.2

Also called coverage table

fault tolerance Aims at guaranteeing the service provided by the product despite l.3
the presence or appearance of faults 6.4
Developed in Chapters 16, 17, and 18

fault tolerance: Approach that makes use of error detection and handling 18.5
active

fault tolerance: See compensation technique
compensation

fault tolerance: Approach that does not make use of error detection 18.5
passive

fault tree SeeFTM
method

fault tree: See diagnosis fault tree
diagnosis

fault: Fault which is not intentionally created 3.2
accidental <> intentional

fault: acti ve A fault becomes active when it provokes an error during the 4.1
operation of the product

<> passive

fault: bridge See bridging fault

fault: common Fault caused by the same circumstances, and thus provoking the 18.2
mode same errors/failures, of several redundant modules in a fault-

tolerant system

fault: Fault associated with a component. 3.3
component Also called module fault

fault: See fault: functional
conceptual

fault: creation Fault occurring during specification, design and/or production 3.2
phases (excluding the operation phase)

Glossary 625

fault: delay For electronic models. A delay fault, occurs when a signal 5.2
propagating through a circuit is slower than it really should be

fault: dormant See fault: passive

fault: dynamic See fault: temporary

fault: external Failure eause attributed to the user or the environment. 3.2

Also ealled perturbation or aggression or disturbance

fault: Fault due to human activities during the product life phases. The 3.2
functional origin is the designer during the creation steps and the user during

the operational step. Also called conceptual fault or human-made
fault

fault: hard Permanent fault oeeurring in memory circuits 11.3

<> fault: soft

fault: hardware See fault: physical

fault: human- See fault: functional
made

fault: initial See activation: initial
aetivation

fault: Fault created deliberately 3.2
intentional <> fault: accidental

fault: Fault coming from the interactions of several components 3.3
interaction

fault: Temporary fault due to intemal causes 3.2
intermittent

fault: internal Failure cause occurring in the product or system 3.2

fault: isolation See fault: localization

fault: Identifieation of the faults of an erroneous system 6.3
localization Also called fault isolation or fault diagnosis

fault: masked A faultf1 is masked by a fault 12 according to a given input 13.5
sequence, if the oecurrence of f1 does not provoke a failure, due to
the presence of 12

fault: module See fault: component

fault: MOS on Fault model at MOS level: a MOS is always eonducting 5.2

See also fault: short-circuit

fault: MOS Fault model at MOS level: a MOS is always blocked 5.2
open/off

fault: Ability to detect the presence of a fault through a failure 4.1
observation oecurrence

fault: Fault oecurring during the operational stage of the life eycle 3.3
operational

626 Glossary

fault: passive The fault does not raise error; hence, it does not disturb the 4.1
product' s functioning. Also called dormant

<> active

fault: Fault that persists once it has occurred (e.g. design fault) 3.2
permanent Also called static fault

fault: physical Technological fault concerning hardware technology 3.2
Also called hardware fault

fault: short- Fault model at electronic level. Particular case: bridging fault 5.2
circuit which provokes wired logic (OR or AND)

fault: soft Non-permanent faults in RAM: random, non-recurring single-bit 11.3
fault 18.7

fault: static See fault: permanent

fault: structural When the internal functional faults are concerned, a fault consists 4.1
in a non-adequate structure alteration

Also called defect (hardware) or bug (software)

fault: stuck-at See stuck-at fault
011

fault: Fault of the technological means (hardware I software) used to 3.2
technological implement the product

Also called hardware or physical fault for hardware technology

fault: temporal Electronic fault due to incorrect response time of components 3.2

fault: Fault the presence of which is time bounded. The duration range is 3.2
temporary generally assumed as short 5.2

Also called dynamic fault

fault: transient Temporary fault due to external causes 3.2

fault: No input test sequence can reveal the fault at the output of the 8.3
undetectable system. This corresponds to passive redundancy 13.2

fault-secure Fundamental property of a self-testing system which guarantees 16.3
that no failure can occurs which is not immediately detected

feature Element of a modeling tool or language 2.2
6.3

feature Prevention techniques for software which consist in avoiding 11.2
restrictions features which increase the fault risk (shared variables, goto, etc.)

final test See test: final

Fire code See code: Fire

FITPLA BIT technique used to improve the testability of PLA 14.4

fixed sequence See sequence: fixed

Glossary 627

FMEA Failure Modes and Effects Analysis: normalized technique 7.10
dedicated to qualitative analysis of reliability and safety 17.1

FMECA Failure Modes and Effects and Criticality Analysis is a variant of
FMEA that associates a probability with the failure of the
components and with their effects

forecasting See dependability assessment
value

formal See test: identification
identification

formal proof See design: proof

formal proof: Formal proof approach which demonstrates properties, starting 10.6
deductive from the conclusions
approach

formal proof: Formal proof approach which demonstrates properties, starting 10.6
inductive from the hypotheses
approach

formal proof: A technique to implement inductive approach of formal proof by 10.6
symbolic handling symbols instead of values
execution

forward See propagation: forward
propagation

forward Fault tolerance techniques resuming the system execution after an 18.4
recovery error detection in a new state (not previously reached)

forward Structural (e.g. gate level) simulation executing the model in the 13.3
simulation direct way; used for instance in path sensitizing test methods

<> backward propagation

frequent See risk: frequent

FfM Fault Tree Method. Deductive approach for qualitative 7.11
dependability assessment 10.6
See also event tree

FfM: basic Leaves of a Fault tree 7.11
event

full scan See scan: Jull

function The Junetion defines what the product is intended for and justifies 2.1
its existence. An element of the mission

functional See mission
characteristics

functional Set of possible input and/or output sequences of values as defined 8.2
domain: by the product specifications
dynarnic

628 Glossary

functional Static input domain: set of input values which can be applied to the 8.2
domain: static product as defined by the product specifications

Static output domain: set of output values which can be given by
the product as defined by the specifications

functional See user
environment

functional See redundancy: functional
redundancy

functional test See test: functional

fusion Operator combining the behaviors of several modules, taking theirs 8.2
correlations into account

galloping See test: memory

Galois Field Mathematical structure which has fundamental applications to 15.3
Cyclic Error Detecting and Correcting Codes

guidelines Best practices to reach an objective, for example testability 10.3
improvement, fault prevention, etc. 14.2

Hamrning Fundamental property of redundant codes which allows the 15.2
distance detection and/or correction of errors

Number of bits that differ between two binary words

hard fault See fault: hard

HDB See code: low-levelHDB

HDL Hardware Description Language. Language which describes 2.2
circuits in textual code. The two most widely accepted HDLs are
VHDL and Verilog

hierarchy: Expression of a system as the composition of sub-systems or 2.3
composition components which are again broken down into sub-systems

hierarchy: use Defines a system, highlighting the services used (or called) by a 2.3
component and offered by others

hot standby See redundancy: hot standby
redundancy

hot swap Components (CPUlMemory, 1/0 boards, power/cooling modules) 18.5
hardware that can be changed or serviced while the system remains on-line

IDDQ testing Method for enhancing the quality of IC tests by measuring the 12.1
power supply current of a CMOS circuit during quiescent states

Detects the physical defects that creates conduction paths between
the power supply and the ground lines (e.g. stuck-on faults)

IEEE P1450 Standard Tester Interface Language (STIL). Language describing 12.1
test pattern and application protocols in standard neutral form

IEEE P1500 Embedded Core Test. Application of tests to embedded cores: test- 12.1
description language, test-control mechanisms and peripheral
access mechanisms

Glossary 629

IEEE Std. IEEE standard describing the Test Access Port and Boundary Scan 14.4
1149.1.1990 Architecture

IEEE Std. 1155 See VXI

impairment Opposed to dependability (degradation mechanism): fault - error- 1.4
failure. Deve10ped in Chapters 4 and 5

implementation See production (for software technology) 2.2

implementation Fault prevention techniques defining implementation restriction, 11.3
constraints used for software

impossible See risk: impossible

incompatibility The service delivered by the product is different than the one 4.2
(of a product) expected from the specifications

incompleteness The service delivered by the product is less than the one expected 4.2
(of a product) from the specifications

incompleteness Definition or properties of an object having potentially multiple 3.3
(specification) meanings. Fuzziness of its semantics. Absence of pieces of

infiormation

inconsistency Contradictory definitions or properties of one object or of several 3.3
objects

increasing See reliability: increasing
reliability

inertia (of the Mean time between the occurrence of a failure and the beginning 4.2
environment) of its external consequences on the mission

inputsequence See sequence: input

inspection A formal review technique based on ni ne steps 9.4

instrumentation Adding of mechanisms to detect errors and record data during the 14.2
operation of the product. Used to make test detection and diagnosis 16.3
easier

integration test See test: integration

integrity Non occurrence of improper alterations of information 7.7

intrinsic safety See safety: intrinsic

irredundant An element of a system is irredundant if its removal causes the 8.3
element system to be functionally different

JTAG The Joint Test Action Group. This group created the foundation for 14.4
the IEEE 1149.1

language See modeling tool (generally considered as defined formally) 2.3

latency Latency is the mean time between the occurrence of a fault and its 4.1
initial activation as an error at the level of a given module

Byextension: meantime between the occurrence of a fault/error in
a given module and the raising of an error in another given module

630 Glossary

level: See behaviorallevel
behavioral

level: logical See logicallevel

level: physical See physicallevel

level: structural See structurallevel

level: symbolic See symbolic level

level: See technologicallevel
technological

LFSR Linear Feedback Shift Register. Synchronous sequential circuit 14.5
using Flip-Flops and XOR gates, which generates a pseudo-
random pattern of Os and I s. Used for signature analysis in BIST
techniques

life cycle Succession of the stages of a product' s life: specification, design, 2.2
production, operation

likelihood test Verification of a property based on functional redundancy 16.3

link: logical Elements interconnecting modules in a system 2.3

localization test See test: localization

log file A file storing activities maintained to facilitate auditing and 16.3
recovery (in particular fault detection) 18.7

Also called error logging

logicallevel One of the steps of the development process of a product 2.2

logicallinks Define the relationships between the components of a system 2.3

logical test See test: logical

LSSD Level Sensitive Scan Design. Scan design technique proposed by 14.4
IBM in the 60's

maintainability Attribute of dependability with regard to the easiness in 7.4
performing the maintenance actions

In a quantified way, it is the measure of the interruption duration of
the service if a failure appears. A useful estimator associated with
this measure is the MTTR (Mean Time To Repair).

The term serviceability is also used by numerous electronic or
computer manufacturers

maintenance Actions processed on the product structure during its usefullife. 2.2
Contains preventive, corrective maintenance, and adaptive 7.4
maintenance

maintenance See test: maintenance
testing

maintenance: Actions applied to a product after it failed in order to restore its 2.2
corrective service 7.4

Also called curative 12.2

Glossary 631

maintenance: Actions applied to a product in order to improve or modify its 2.2
evolutive functionality 7.4

12.2

maintenance: in Facilities integrated in the product site in order to facilitate the 14.6
situ maintenance operation in situ

maintenance: Actions applied to a product prior to failures in order to detect the 2.2
preventive presence of faults and to correct them: 7.4

• systematic (or scheduled) preventive maintenance (e.g. every 12.2
1000 hours of service)

• conditional preventive maintenance (e.g. the maintenance is
decided if the temperature is excessive)

maintenance: Test facilities to detect and diagnose a product from a remote 14.6
remote specialized center
facilities

maintenance: Set of actions aimed at maintaining or restoring a product in a 7.4
troubleshooting specified state
and repair

major Seefailure: major

Manchester See code: low-level Manchester

manufacturing See production for hardware products

marching See test: memory

Markov model Non deterministic state graph model used for quantitative analysis 7.9
of dependability

MC/DC Modified ConditioniDecision Coverage.

See test: MCIDC

MDT Mean Down Time: mean time during which the product does not 7.5
deli ver a service

means for To provide a product having the required dependability level, that 1.4
dependability is, the ability to deli ver a service and to reach confidence in this

ability

method A detailed approach to the achieving of prescribed goals 10.3

minor See failure: minor

mission The mission specifies the product' s objective in terms of the 2.1
function to perform and its duration. Also calledfunctional
characteristics of a product

model One instantiation of a modeling tool to express a specific system 2.3

model based See diagnosis: model based approach
approach

model: design Classical modeling level used in hardware design: behavioral, 2.2
level structural, technological

632 Glossary

model: error An error model defines a set of faults characterized as errors by a 5.1
property on desired or intended behavior 15.1
Also called error typology

model: fault Afault model defines a set of faults characterized by 5.1
physicaVstructural properties on the desired model structure

modeling tool Generic means (language or notation) to express the system. The 2.3
expression of a specific system is called a model

modified See test: MCIDC
conditionl
decision

module See component

module: A module containing the basic functional elements 8.3
functional <> module: redundant

module: A module containing redundant elements 8.3
redundant <> module: functional

Monte Carlo Quantitative dependability evaluation method based on simulation 7.9
simulation and fault injection

MTBF Mean Time Between Failures. Maintenance indicator. The time 7.2
between two failures on a piece of equipment (calculated)

MTIF Mean Time To Failure 7.2

MTIFF Mean Time To First Failure. It is the same as MTIF 7.2

MTIR Mean Time To Repair 7.4

Mean time between the instant of failure occurrence and the return
of the product to full functional operation

MUT Mean Up Time: mean time during which the product deli vers its 7.5
service

mutant A system, such as a program, modified by a mutation 13.8

mutation Modification of the structure of a system (generally by a fault) 13.8

See test: mutation

need Expectations ofthe product's users, that is to say knowing why 2.2
he/she has to use a product.

netlist Basic structural model of electronic circuits, at gate or MOS level 2.2

NMR N-Modular Redundancy. Fault tolerant technique derived from the 18.5
TMR technique, using active redundancy

non-ambiguity An element which has only one interpretation 9.3

non-destructi ve See test: destructive
test

non-functional Part of the product specifications dealing with constraints on the 2.2
characteristics non-functional environment and with dependability requirements

Glossary 633

non-functional See environment
environment

non-regression See test: non-regression
test

non-repairable Product whose faults cannot be removed 6.3
product

notation See modeling tool (generally considered as having informal 2.3
semantics)

NRZ See code: low-level NRZ

N-self checking Fault tolerant technique derived from the N-versions technique 18.7

N-versions Fault tolerance technique, based on several duplicates of a same 18.2
module, whose outputs are treated by a voter to produce the final
result. TMR is a 3-Versions

observability Ease of determining, from the outputs of a product, the current 6.3
state of its behavior by exercising its inputs 14.1
Complementary of controllability for testability

off-chip test Test resources are external to the device under test 12.1
Apply to off-line classical testing methods 14.5

off-line testing Group of techniques to test a product (or a module), suspending its 6.3
operationallife 12.1

on-chip test Test resources are integrated to the device under test 12.1
Apply to BIST techniques 14.5

on-line testing Group of techniques to test a product (or a module) in its operation 6.3

OLT context 12.1
Discontinuous OLT: test functions are applied at predefined

16.1
instants in the life time of the product

Continuous OLT (or self-testing): faults are detected as soon as 16.3

they produce errors/failures

open Seefault: MOS open/off

operation Step of the life cycle which integrates the product in a given 2.2
environment in order to deli ver a service

Also called exploitation, usefullife, or utilization

operational See duration of the mission
lifetime

optimal test See test: optimal sequence
sequence

output See sequence: output
sequence

parametric test See test: parametric

partial scan See scan: partial

634 Glossary

passi ve fault See fault tolerance: passive
tolerance

path sensitizing See test: path sensitizing

path test See test: path

path: control See control path

pattern See test sequence 12.2

pattern Group of faults of a fault model whose effects on the outputs of the 12.2
equivalent product cannot be distinguished by the input sequence application
faults

perturbation See fault: external

phase Defined segment of work. Also called stage or step. A set of 2.2
phases constitutes a process

physical Technological level/model implementing the features of the 2.2
level/model symbolic model

ping-pong See test: memory

post-condition Functional redundancy used for on-line testing of software. It 10.5
analyzes the correctness of an operation at the end of the treatment 16.3

pre-condition Functional redundancy used for on-line testing of software. It 10.5
verifies that the use context of an operation is correct 16.3

prevention Seefault prevention

preventive See maintenance: preventive
maintenance

prime element An element (e.g. agate) is said to be prime if none of its inputs can 8.3
be removed without causing a functional change of the system
behavior

Probabilistic See fault grading: probabilistic
Fault Grading

probable See risk

process A set of phases. Example: development process 2.2

process control Techniques which apply test to the manufacturing equipment. 11.2
Extended to the evaluation of any productlsystem development
process

process: See development process
creation

process: See development process
development

product Physical entity destined to satisfy needs of one or several users 2.1

product code See code: bidimensional

product: See acceptable product
acceptable

Glossary 635

product: See referent product
referent

product: See referent product
standard

production Stage of the life cycle which transforrns a system into the final 2.2
product by hardware andlor software technological means

Also called manufacturing or implementation

production See test: production
testing

program See test: mutation
mutation

propagation Trace of errors in the structure of the system during an error 4.1
path propagation

propagation: Backward simulation of the functioning of a system from 13.2
backward predefined output or internal values or symbols, to find the input

vectors which provoke them. Used in path sensitizing structural
test methods

Also called backward tracing

propagation: Simulation of the functioning of a system with values or symbols, 13.2
forward to find constraints on the propagation of a predefined error. Used

in path sensitizing structural test methods

property: Expression of an intended property on the behavior of a system, 5.1
behavioral whose violation defines an error

property: Property associated with a modeling tool and not with a particular 5.1
generic modeled system

property: Expression of an intended property on the structure of a system, 5.1
physicaV whose violation defines a fault
structural

prototyping In this book, technique which derives a basic tool from a model, to 9.3
detect faults in the understanding of the model

PSA Parallel Signal Analyzer. Circuit based on LFSR structure used for 14.5
compaction testing in BIST techniques

qualitative Deduction of failures from faults or errors (dreaded events) 7.1
assessment:
deductive
approach

qualitative Deduction of events (faults or errors) from potential failures 7.1
assessment:
inductive
approach

quality (ISO Totality of characteristics of an entity that bear on its ability to 1.1
8402) satisfy stated and implied needs

Entity: item which can be individually described and considered

636 Glossary

quality Procedures, techniques and tools applied by professionals to ensure 11.2
assurance that a product meets or exceeds prescribed standards during a

product's development cycle

quality QA tests for electronic components: Iife, mechanical, thermal, lead 11.2
assurance test fatigue, solderability, etc.

quality control Analysis of sampies of the production in order to deterrnine the 6.2
quality of the produced components 11.2

RAID Redundant Array of Independent Disks. Fault tolerance technique 18.7
for mass storage units using structural redundancy

rare See risk

reasonably See risk: reasonably probable
probable

reasoning by See diagnosis: experimental approach
associations

reconfiguration The process for a product to automatically use alternative 6.4
resources, so as to not interrupt or to resurne its operation 18.5

reconvergent Structural property of a gate circuit allowing one signal to 13.3
fan-out propagate through several paths before converging towards a same

component

recovery Technique used in fault tolerance approaches consisting in 18.3
reaching a correct state after an error detection 18.4

See also backward recovery,forward recovery

recovery block One of the forward recovery techniques of fault -tolerance 18.4

recovery cache Backward recovery requires the implementation of execution 18.3
context saving and restoring mechanisms. One of the most popular
technique is named recovery cache

recovery point State of the system in which the system processing is resumed 18.3
during a backward recovery technique
Also called retry point and rollback point

recovery: See backward recovery andforward recovery
backwardl
forward

redundancy Presence of elements of a system which are not necessary to satisfy 8.1
the normal input/output relationships (in absence of fault)

redundancy Functional redundancy rate = (size (Uni verse) - size (Domain»/ 8.2
rate size (Uni verse)

For a EDC code, see code: redundancy rate

redundancy: The structural redundancy of a system is active if the design is not 8.3
active optimal without any possibility to directIy remove any element

<> redundancy: passive

Glossary 637

redundancy: Separable redundant modules which are in a passive state (off- 8.3,
cold standby line), waiting to be activated 18.5

redundancy: A dynamic functional domain of a product is redundant if it is 8.2
dynarnic strictly included in the dynarnic functional uni verse of this product
functional
domain

redundancy: Certain theoretical input values are not applicable to the product by 8.2
functional the functional environment as defined by the specifications. 16.3

Extended to the outputs and inputs/outputs values

redundancy: Separable redundant modules which are in an active state (on-Une) 8.3
hot standby in parallel with the functional module 18.5

redundancy: See redundancy: cold standby
off-line
separable

redundancy: See redundancy: hot standby
on-line
separable

redundancy: The structural redundancy of a system is passive if some elements 8.3
passive can be removed without changing the produced behavior

<> redundancy: active

redundancy: Presence of elements of sentences in a text whose meaning can be 8.1
semantic deduced from others sentences of the text

redundancy: The structural redundancy of a system is separable if the redundant 8.3
separable elements and the non-redundant elements are located in different

modules. Thus, the system possesses afunctional module and
several redundant modules (versions, replicates, duplicas)

redundancy: A system has a structural redundancy if its structure possesses 8.3
structural some elements not necessary to produce a behavior conform to the 16.3

specifications, assurning that all the structure elements provide a
18.1 correct functioning

redundancy: Presence of lexicographical or syntactical elements which are not 8.1
syntactic necessary to understand the sentence's meaning

redundant A functional static/dynarnic domain of a product is redundant if it 8.2
functional is strictly included in the static/dynarnic functional uni verse of this
dornain product

Reed-Muller Gate structure based on Galois's field to design circuits having 14.3
structure short test sequences

reference list Recorded test sequence 12.2

referent Product considered as faultless, used in a test, in parallel with the 12.2
product tested product. Its outputs are compared with the outputs produced

by the tested product

Also called standard product

638 Glossary

relationship: See composition relationship
composition

relationship: See service relationship
service

reliability Attribute of dependability with regard to the continuity of the 7.2
service

The aptitude of a product to accomplish a required function in
given conditions, and for a given interval of time

In a quantified way, reliability is a function of time which
expresses the conditional probability that the system has survived
in a specified environment till the time t, given that it was
operational at time 0

reliability Techniques used during the manufacturing process to guaranty 11.2
assurance test reliability level of the produced components

reliability block Model used for quantitative analysis of reliability 7.9
diagram

reliability Tests applied to sampies of the produced circuits in order to 7.2
evaluation measure or estimate the reliability parameters of this population 11.2

reliability Mathematical function of time expressing the evolution of the 7.2
model reliability of a population of components

reliability tests Experiments applied to sampies of the manufactured population: 7.2
curtailed, censured, progressive, progressive curtailed, with
progressive constraints

repair Actions of the fault removal which restore the functioning of a 6.3
product. Applied to reparable products

repair rate (~) Mathematical estimator of maintenance which expresses arepair 7.4
probability per hour

repairable Product to which fault removal actions can lead to the restoration 2.2
product of its functionality 6.3

<> non-repairable

replica See duplicate

requirements Expression of the needs which justify the creation and the use of a 2.2
product 9.2

retry mode Fault tolerance technique consisting in executing again an 18.3
erroneous component

See also backward recovery

retry point See recovery point

reuse Use of a component previously developed for another product 4.2

review Technique used to remove faults by human analysis 9.4

Glossary 639

risk Occurrence probability of a failure, assessed by measurements. For 17.1
example, an event is said:

• probable if its occurrence probability is > 10.5

• rare if its occurrence probability E (10-7, 10-5)

• extremely rare if its occurrence probability E (10-9, 10-7)

• extremely improbable if its occurrence probability is < 10-9

risk Part of the safety space (seriousness of failure, occurrence 17.1
acceptability probability) in which a system is said to be acceptable in terms of

safety

risk: acceptable Maximum probability accepted for the occurrence of a failure. 17.1
rate Often defined for all the failures of a seriousness dass

Also called tolerable probability

risk: frequent A subdivision of the risk class probable. Probability > 10-3 17.1

risk: impossible Event having a very small probability of occurrence « 1 0-9) 17.1

Also called extremely improbable

risk: reasonably A subdivision of the risk class probable. Probability E (10-5, 10-3) 17.1
probable

RM structure See Reed-Muller structure

robustness Property of a system which defines its capability to provide a 4.2
function which is acceptable by the user according to given
perturbations. Frequently defined as the characteristic of a system
which guarantees that its functionality is maintained even if
specified operational and utilization requirements are violated

rollback point See recovery point

RSA See code: RSA

safety Attribute of dependability with regard to the non-occurrence of 7.6
failures of given criticality level (generally catastrophic) 17.1
Safety is measured as the probability that the product will not have
failures belonging to unacceptable seriousness classes, between the
initial time and a given time t

safety class Class of safety defined in the space: seriousness of failure x 17.1
acceptable risk rate

safety: Notion associated with fail-safe systems. The behavioral uni verse 17.2
dangerous is split into:
domain • the dangerous domain grouping catastrophic andlor dangerous

failures whose occurrence is unacceptable,

• the safe domain grouping the normal functioning and the failures
whose occurrence is acceptable

safety: intrinsic Group of techniques constraining the development process with 17.2
technological solutions which are known to be safe. These
solutions essentially exploit physical properties

640 Glossary

safety: safe See safety: dangerous domain
domain

safety: Structural redundancy is used in order to reduce the occurrence 17.2
structural probability of failures belonging to dangerous safety c1asses
redundancy

scan design BIT Technique (DFf) which led to LSSD, and the boundary scan 14.4
IEEE 1149.1 standard

scan domain Part of a circuit which implement aseparate scan design 14.4

scan: fuH Scan technique applied to the whole product 14.4

scan: partial Technique which implements scan design in a part of the product 14.4

SCC See self-checking checker

scenario Input/Output sequences which simulates the interactions of a 9.3
system with its environment

scheduled See maintenance: preventive
maintenance

schmoo plots Measure of the influence of parameters (supply voltage, current, 12.1
frequency) on test results. Used to help the IC designer to
characterize the operational regions of a device

scrubbing Technique used to correct soft errors in dynarnic RAMs 18.7

security Attribute of dependability with regard to the prevention of 7.7
unauthorized access andlor handling information
Covers two parameters: confidentiality and integrity

self-checking Achecker is said to be self-checking with respect to a defined fault 16.3
checker model F if it is code-dis joint and self-testing

• Code-dis joint: a module transforrning inputs belonging to an
EDC code to an output EDC code is code-disjoint if any
codeword at the inputs gives an output codeword and conversely
if any non-codeword inputs gives a non-codeword outputs

• Self-testing: expresses that every fault of F is detectable on the
tested output by at least one functional input vector

self-purging Fault tolerance technique derived from the N-Versions with 18.5
adaptive voter

self-testing Continuous on-line testing to detect faults as soon as they produce 6.4
errors

Also for Self-Checking Checker: property of a checker such that
16.3

each fault is detected at its output by application of the normal
input codewords

See self-checking checker

separable See code: separable

sequence Number of vectors of the test sequence 12.3
length

Glossary 641

sequence: Test sequence whose input and output values are dynamically 12.2
adaptive defined, taking the previous results of the test application into

account

<> sequence: fu:ed

sequence: fixed Test sequence whose input and output values are defined prior to 12.2
the test processing

<> sequence: adaptive

sequence: input List of the inputs of a test sequence 12.2

sequence: List of the outputs of a test sequence 12.2
output

serious See failure: serious

seriousness Seefailure: severity or seriousness

service See degradation
degradation

service The delivered service is the product's real behavior when placed in 2.1
delivered its applicative environment

service Relationships between sub-systems expressing that one uses 2.2
relationships services provided by others

serviceability Measure of the ease with which a system functioning is restored to 7.4
a specified state after the system is repaired. Used to express the
maintainability

See maintainability

severity Seefailure: severity or seriousness

shallow See diagnosis: experimental approach
reasoning

short-circuit Seefault: short-circuit

signature See test: signature analysis

signature Technique used in compaction test technique. The signature 12.2
analysis synthesizes the output values as the result of a likelihood property

LFSR signature analysis: used for BIST off-line techniques 14.5

signature See BIST: signature
analysis
function

significant Seefailure: signijicant

simplicity The concepts manipulated by a text (or a model) describing a 9.3
system are simple. In particular, the number of these concepts is
limited and they are loosely coupled

simulation: See fault simulation
fault

simulation: See Monte Carlo simulation
Monte Carlo

642 Glossary

snapshot Image of the system execution context at a given time. It is used 18.3
for example for backward recovery technique implementation

soft fault See fault: soft

software See instrumentation
instrumentation

software: Fault removal techniques based on the program control flow: 13.2
structural • statement test
testing • branch and path test

• condition and decision test (see C/De and MC/DC)

spare module Redundant off-line module 8.3

specification Stage of the life cyde which defines the characteristics of the 2.2
product to be created. The result of this operation is a document 9.3
called specifications or contract (see contract)

specification See dependability assessment
assessment
value

stable See reliability: stable
reliability

stage See phase

standard See referent product
product

standby: hot I See redundancy: hot standby I cold standby
cold

state Set of the values taken by the attributes of a module 2.3

Internal property of a module 4.1

statement test See test: statement

statie analysis Groups of techniques of the fault removal which are made without 6.3
exeeution of the analyzed models or products

Statistical Fault See fault grading: statistical
Grading

step See phase

STIL See IEEE PI450

stoehastie Petri Non-deterrninistie parallel state graph model whose ares are 7.9
net labeled by probabilistie values; used for dependability assessment

strobing Term used for test: number of times a test equipment looks at the 12.2
output data of a DUT during aperiod

structural Fault grading methods which study the faultless system and 12.3
analysis deduce all the faults (of a model) that ean produce failures

structural A design step/model of the system expressing it as a struetured 2.2
level/model system (composed of sub-systems or components or modules)

Glossary 643

structural See redundancy: structural
redundancy

structural See test: structural
testing

structure Oefines a system as linked components 2.3

structured- Oefines a system by its structure and the behavior of its 2.3
functional components
model

stuck-at fault Fault/error model at gate level: fault that keep a circuit node (input 5.2
or output) at a logicallevel one or zero

stuck-OFF Fault/error models at MOS level 5.2

stuck-ON Stuck-On: the transistor is always conducting

Stuck-Open: the transistor is blocked in the OFF state

stuffing See bit stuffing

style guide See guidelines

sub-system See component

surface See diagnosis: experimental approach
reasoning

symbolic The system is executed with symbols instead of values. The results 10.6
execution are symbolic expressions

symbolic TechnologicalleveUmodel taking an abstract view of the execution 2.2
leveUmodel means

syndrome Vector resulting from a mathematical treatment (check relations) 15.3
of a codeword which allows to detect and/or correct an error from
of a given codeword. This vector is equal to zero is no errors
occurred

system Set of linked components that act together as a whole to achieve a 2.3
given mission, that is a function during a certain period oftime

system Group of faults of a fault model whose effects on the outputs of the 12.2
equivalent product cannot be distinguished, whatever input sequence is
faults applied

Also called absolute equivalent faults

systematic See maintenance: preventive
maintenance

TAP The Boundary Scan Test Access Port. It is formed by the TDI, 14.4
TOO, TCK, TMS and the optional TRST pin

T AP controller A sixteen state FSM that controls the Boundary Scan logic on the 14.4
JC

technological A design step/model conceming the implementation of design 2.2
leveUmodel models using hardware/software technologies. Composed of

symbolic leveUmodel and physicalleveUmodel

644 Glossary

termination One of the forward recovery techniques of fault to1erance, which 18.4
mode consists in completing the task started by a module P by using a

redundant module Q, after the detection of an error in P

test Dynamic techniques relevant to fault removal. It is an experiment 6.3
(input sequences) applied to an executable product or model by a
tester which compares the given results with expected values

The process of exercising or evaluating a system or system
component by manual or automated means to verify that it satisfies
specified requirements, or to identify differences between expected
and actual results (IEEE Std 729.1983)

Also called dynamic analysis

test application Test processing performed by the tester which applies the test 12.3
sequence to the product

test equipment See tester

test evaluation See fault grading

test generation See test pattern generation

test pattern See test sequence

test pattern Technique to determine the test sequence for a given product 12.3
generation
(TPG)

test sequence List of test vectors used by a tester to detect andlor diagnose faults 10.4
in a product. This term is often restricted to the sequence of input 12.2
vectors

Also called test pattern

test sequence See BIST: signature
generator

test sequence: Two main parameters are used to evaluate the quality of a test 12.2
quality sequence: the length (number of test vectors) and thefault

coverage (percentage of the faults of a fault model which are
detected)

test vector Element of a test sequence: couple (input vector, output vector) 12.2

test withl Test method based on the detection of faults belonging to a pre- 12.2
without fault defined fault modell without precise hypotheses about the faults
model

test: Test experiment with stress constraints: elevated power supply 7.2
accelerated andlor temperature 11.2

test: acceptance Another name for final test for final checking of the product 14.2
See test: final, test: compliance, test: conformity

Also used to name on-line checking used in fault tolerance 18.3
mechanism to detect errors

test: A specific ATPG handling each fault of a fault model 12.3
algorithmic
approach

Glossary 645

test: alpha & Test performed by selected groups of users 12.1
beta

test: branch Software structural testing technique which takes the control flow 13.6
branches as elements to define the test sequence coverage

test: burn-in Production test carried out with environmental constraints such as 12.1
the temperature or the electric supply. It is a non-destructive
accelerated test used to detect and eliminate any defects which
might appear in a product during its early life

test: eIDe See test: conditionldecision

test: eensured Test used to evaluate the reliability of a population of components 7.2
which stops when a given number offaults is reaehed

test: Test teehnique which reduces the data coming from the DUT by a 12.2
eompaetion mathematical treatment. Used in signature testing 14.5

test: Test to ensure the adequaey of the produet with its specifieations 12.1
eomplianee

test: conditionl Structural testing methods used for software program, which 13.6
decision require that 1) eaeh decision must take the values True and False at

least onee, 2) eaeh eondition must take the value True and False at
least onee, 3) eaeh input and output point of the eomponents
(subprograms, ete.) must be exeeuted at least onee. The coverage
rate is noted eiDe (ConditioniDecision Coverage)

test: eonformity Aeeeptanee test performed by the dient or an external organization 12.1

test: eontinuity Teehniques whieh verifies that the connections between 12.1
eomponents are without defects: printed circuit boards, cables,
eonneetors, ete.

test: curtailed Test used to evaluate the reliability of a population of components 7.2
whose duration is fixed apriori

test: design Fault removal teehniques based on funetional test, used during 6.3
design stage 10.5

test: destrueti ve A test is destrueti ve if the tested product can be destroyed during 11.2
I non- the test proeess. Destruetive test are employed for quality eontrol 12.1
destrueti ve and reliability evaluation

test: deteetion Test teehniques answering the question: 12.1
does the product function correctly? 12.2

test: diagnosis Test teehniques answering the question: whichfaults affect the 12.1
product? 12.2

There are two main categories of diagnosis teehniques: fixed
diagnosis which uses a fixed test sequence, or adaptive diagnosis
for which the next test veetor depends on the responses given by
the product to the preceding test vectors

test: exhausti ve Test teehnique using all input vectors to test a eombinational 12.3
cireuit

646 Glossary

test: final Test applied to a complete system or product before it is delivered 14.2
to the dient

Also called acceptance test

See also test: unit and test: integration

test: functional Functional verification methods based on a functional model of the 10.5
system to test (e.g. Finite State Machines) 12.3
<> test: structural

test: functional Type of diagnosis techniques which aims at locating faults at 10.5
diagnosis functional level, without precise fault model

test: GO- See test: production
NOGO

test: Formal methods for test pattern generation of sequential systems 12.3
identification without fault model

test: in situ Test is applied to the product in its normal environment 14.6

test: integration Test applied to sub-systems integrating elementary modules or 14.2
others sub-systems

test: likelihood See likelihood test

test: See test: diagnosis
localization

test: logical Test applied to a system modeled at logicallevel 12.1

test: Test applied during the maintenance operations 6.3
maintenance 12.1

12.2

test: MC/DC Structural software testing which adds the foIIowing requirement 13.6
to the ConditionlDecision testing method (see test: condition/
decision): each condition in adecision must be shown to
independently affect the result of the decision

test: memory Specific testing techniques taking into account technological faults 12.3
ofRAM circuits: checkerboard, marching, walking, galloping or
ping-pong

test: modified See test: MC/De
conditionl
decision

test: mutation Test validation technique which consists in injecting modifications 13.8
in a system in order to check whether a given test sequence detects
the faults or not

test: mutation: The weak mutation testing requires that the test sequence activates 13.8
weak the fault introduced by the mutation, but it does not require that

this sequence propagates the initial error to the outputs (as failure)

test: non- Test performed after the repair of a faulty product in order to 12.2
regression assure that no fault has been introduced by the repair operation or

other chan ging

Glossary 647

test: off-chip See off-chip test

test: off-line / See off-line testing and on-line testing
on-line

test: on-chip See on-chip test

test: on-line See on-line testing

test: optimal Test sequence having a minimal Iength (in terms of number of test 12.3
sequence vectors)

test: parametric Test performed on the devices to check AC and DC parameters 12.1

test: path Software structural test technique which takes the program control 13.6
flow paths as elements to define the test coverage

test: path Test pattern generation method for structural testing 13.2
sensitizing

test: path See test: path sensitizing
tracing

test: Technique to test each individual copy ofthe manufactured 6.3
productionl product to insure it was produced without defects 11.2
manufacturing 12.1

12.2

test: Test used to evaluate the reliability of a population of components, 7.2
progressive whose decision to stop depends on the resuIts already obtained

test: Test used to evaluate the reliability of a population of components 7.2
progressive which is identical to the progressive test with a maximum duration
curtailed constraint

test: random Logical testing technique based on random generation of the input 12.3
test vectors

test: reference Conventional algorithmic test procedure based on the comparison 12.2
list between the results produced by a tested product and a predefined

list of known values stored in the tester

test: screening Test techniques used to remove weak products according to 11.2
reliability

test: signature Test method using a property on the output values of the tested 12.2
analysis product in order to evaluate its correctness

test: standard/ Test method using a faultless referent product. The outputs given 12.2
referent by the tested product and the referent product are compared

test: statement Software structural testing technique which takes the program 13.6
statements as structural elements to define the test coverage

test: step stress Test used to evaluate the reliability of a population of components 7.2
which provokes a progressi ve acceleration of the degradation
mechanisms, in general by increasing the temperature (permitting
an accelerated test)

648 Glossary

test: structural Structural test methods are based on a structural model (e.g. gate 12.3
structure) and generally use fault model (e.g. 'stuck-at')
See also software: structural testing

<> test: functional

test: toggle See toggle test

test: unit Test applied to elementary modules 14.2

test: validation Validation of a test sequence, frequently by a fault grading 12.3

See also test: evaluation andfault grading

testability Attribute of dependability which measures the easiness with wh ich 7.3
a product can be tested, Le. the easiness to obtain test sequences, 14.1
and the easiness to apply these sequences

Closely linked to the test sequence properties:

• the length, Le. the number of input vectors

• the coverage or test efficiency, Le. the ratio of the tested fault
and the total number of faults according to a given fault model

Testability can be evaluated on the product, by controllability and
observability parameters

Testability measurement: methods that analyze a design and
estimate the difficulty of test pattern generation as a measure of
testability

testability: There are two are groups: 14
techniques • Ad hoc techniques: design rules listing the structures that cause

testing problems and techniques for avoiding these problems

• Design For testability (DF7): design techniques to increase
testability

tester Any means (human or physical) involved in fault detection and 12.1
diagnosis of a product by a test. Also known as test equipment

TMR Tripie Modular Redundancy. Basic N-version fault tolerant 18.2
technique based on passive redundancy. Three copies (duplicate
modules) of the main module are used and a voter elaborates the
final output. A 3-version also called trip lex

toggle test Test sequence which assures that each line of the tested component 12.3
is switched to '0' and '1'

tolerable See risk: acceptable rate
probability

tolerance See fault tolerance

Glossary 649

totally self- Property of continuous on-line testing systems. 16.3
checking A system is said to be totally self-checking, if it is code-preserving,
system self-testing and fault-secure with regard to a given fault model F

• Code-preserving expresses that the fault free module preserves
the output code on the observed output variables

• Self-testing expresses that every fault of F is detectable on the
tested output by at least one functional input vector

• Fault-secure guarantees that no incorrect functional output can
occur which is not immediately detectable

traceability Existing relationships between the elements used in a step and the 9.3
elements produced by this step

triplex See TMR

trouble See maintenance: troubleshooting and repair
shooting

unit test See test: unit

universe: Set of aB theoretically possible sequences of input andlor output 8.2
dynamic values of a product

universe: static Set of all theoretically possible 110 values of a product 8.2

usefullife See operation

user Entities (physical or human) interacting functionally with the 2.1
product

Also calledfunctional environment

utilization See operation

validation Assessment of the method used in a creation phase 6.3
9.1

10.1

VANBus Vehicle Area Network: example of industrial Bus using on-line 18.7
detection

vector: input Value received or acquired by a product 8.2

vector: output Value produced by a product 8.2

verification Evaluation of the result of a creation phase, in order to check that it 6.3
is in accordance with the requirements 9.1

10.1

version Versions are duplicate modules that have the same specification 18.2
than the original functional module. They are called duplicate if
they have the same implementation

VHDL SeeHDL

vote: adaptive Particular N-Versions technique whose erroneous versions are 18.5
eliminated from the decision

voter Module of a N-Version fault-tolerant structure which elaborates 18.2
the final outputs from the outputs provided by the versions

650 Glossary

VXI VME eXtensions for Instrumentation. IEEE Std 1155.1992 12.1

Industry standard for test and measurement market

walking See test: memory

walkthrough An informal review technique based on a presentation by the 9.4
author and discussions between the author and the reviewer

watchdog Mechanism to detect errors associated with deadlines which are 16.3
not reached at run-time

Weibull The Weibull reliability model is an interesting reliability model, 7.2
reliability because of its flexibility in describing a number of failure patterns
model

yield Percentage of good dice (the electrical portion of the wafer that 12.2
contains the electronic functions) compared to the total number of
dice on the wafer. It is a statistical parameter. Yield is refined into
four major yield groups: wafer processing yield, wafer probe yield,
assembly yield, final test yield

References

1. E.A. Amerasekera and D.S. Campbell, Failure Mechanisms in Semiconductor Devices,
John Wiley & Sons, 1987.

2. T. Anderson and P.A. Lee, Fault Tolerance. Principles and Practice, Prentice Hall
International, 1981.

3. John Andrews, Applied Fault Tree Analysis for Reliability and Risk Assessment, Wiley
Series in Quality and Reliability Engineering, Patrick D.T. O'Connor Editor, John Wiley
& Sons, 2000.

4. C. Ausnit.Hood, K.A. Johnson, R.G. Pettit, and S.B. Opdahl, Ada 95 Quality and Style,
Lecture Notes in Computer Science n° 1344, Springer-Verlag, 1997.

5. The Evolution of Fault-Tolerant Computing, A. Avizienis, H. Kopetz, and J.e. Laprie
Editors, Springer-Verlag, 1987.

6. Michel Banatre and Peter A. Lee, Hardware and Software Architectures for Fault
Tolerance, 311 Pages, Springer-Verlag, 1994.

7. P.H. Bardell, W.H. McAnney, and J. Savir, Built.ln Test for VLSI, Pseudo-Random
Techniques, John Willey & Sons, New York, 1987.

8. J. Bames, High Integrity Ada. The Spark Approach, Addison-Wesley, 1997.
9. Embedded Systems Applications, e. Baron, J.C. Geffroy, and G. Motet Editors, Kluwer

Academic Publishers, 1997.
10. 1. Bashir, Testing Object.Oriented Software, Springer-Verlag, 1999.
11. L. Bening and H. Foster, Principles of Verifiable RTL Design, second edition, Kluwer

Academic Publishers, 2001.
12. B. Beizer, Software Testing Techniques, Van Nostrand Reinhold, 1990.
13. B. Beizer, Black.Box Testing. Techniques for Functional Testing of Software and

Systems, John Wiley & Sons, 1995.
14. J. Bergeron, Writing Testbenches. Functional Verification of HDL Models, Kluwer

Academic Publishers, 2000.
15. R. Billington and R.N. Allen, Reliability Evaluation of Engineering Systems, Plenum

Press, 1982.
16. A. Birolini, Reliability Engineering: Theory and Practice, Springer-Verlag, 1999.
17. G. Birtwistle, and P.A. Surahmanyam, VLSI Specification, Verification and Synthesis,

Kluwer Academic Publishers, 1988.

651

652 References

18. M. L. Bushnell, Vishwani and D. Agrawal, Essentials of Electronic Testing for Digital,
Memory, and Mixed-Signal VLSI Circuits, Kluwer Academic Publishers, 2000.

19. S. Chakravarty and P. Thadikaran, Introduction to IDDQ Testing, Kluwer Academic
Publishers, 1997.

20. Kwang-Ting Cheung, Vishwani and D. Agrawal, Unified Methods for VLSI Simulation
and Test Generation, 'Series in Engineering and Computer Science: SECS73', Kluwer
Academic Publishers, 1989.

21. J. M. Crichlow, An Introduction to Distributed and Parallel Computing, Prentice Hall,
1988.

22. R A. DeMillo, W. Michael McCracken, RJ. Martin, and John F. Passafiume, Software
Testing and Evaluation, The Benjamin Cummings Publishing Company, Inc., Menl0
Parc, Ca. USA, 1987.

23. B. Douglass, Real-Time UML: Developing Efficient Objects for Embedded Systems
Reading, Addison-Wesley, 1998

24. B. Douglass, Doing Hard Time: Using Object Oriented Programming and Software
Patterns in Real Time Applications Reading, Addison-Wesley, 1999.

25. R Drechsler, Formal Verification ofCircuits, Kluwer Academic Publishers, 2000.
26. E. Dustin, J. Rashka, J. Paul John, and D. Mc Diarmid, Automated Software Tf'sting:

Introduction, Management, and Performance, Addison-Wesley, 1999.
27. N.E. Fenton, Software Metrics. A Rigorous Approach, Chapman and Hall, 1991.
28. M. Fowler and K. Scott, UML Distilled: Applying the Standard Object Modeling

Language Reading, Addison-Wesley, 1997.
29. M.A. Friedman and J.M. Voas, Software Assessment: Reliability, Safety, Testability,

Wiley, 1995.
30. T. Gilb and D. Graham, Software Inspection, Addison-Wesley, 1994.
31. D. Harel and M. Politi, Modeling Reactive Systems With Statecharts: The Statemate

Approach, McGraw-Hill, 1998.
32. Hardware Description Languages, RW. Hartenstein Editor, Elsevier Science

Publishers, 1987.
33. Logic Design and Simulation, E. Höerbst Editor, Elsevier Science Publishers, 1986.
34. c.P. Hollocker, Software Reviews and Audits Handbook, Wiley, 1990.
35. Shi-Yu Huang, Formal Equivalence Checking and Design Debugging, Kluwer

Academic Publishers, 1998.
36. W. Humphrey, A Discipline For Software Engineering, Addison-Wesley, 1995.
37. W. Humphrey, Introduction To The Personal Software Process, Addison-Wesley, 1997.
38. IEEE Standardfor Software Unit Testing, IEEE Press, 1987.
39. Finn Jensen, Component Reliability. Fundamentals, Modeling, Evaluation & Assurance,

Wiley Series in Quality and Reliability Engineering, Patrick D.T. O'Connor Editor, John
Wiley & Sons, 1995.

40. Niraj K. Jha and Sandip Kundu, Testing and Reliable Design ofCMOS Circuits, Kluwer
Academic Publishers, 1990.

41. B.W. Johnson, Design and Analysis of Fault Tolerant Digital Systems, Addison
Wesley, 1989.

42. D. R. H. Jones, Failure Analysis Case Studies: A Source Book of Case Studies Selected
from the Pages of Engineering Failure Analysis 1994-1996, Pergamon Press, 1998.

43. Cem Kaner and D. Pels, Bad Software, Wiley Interscience, 1998.
44. Cem Kaner, J.D. Falk and Nguyen, Testing Computer Software, Wiley Interscience,

1999.

References 653

45. P.K. Kapur, R.B. Garg, and S. Kumar, Contributions to Hardware and Software
Reliability Modeling, World Scientific Publishing Company, 1999.

46. R. Kehoe A. Jarvis, ISO 9000.3. A Tool for Software Product and Process
Improvement, Springer-Verlag, New York, 1996.

47. Fault Tolerance: Achievement and Assessment, M. Kersken and F. Saglietti, Editors,
Strategies, Research Esprit-Project 300. Request, Voll, Springer-Verlag, 1992.

48. Furnihiko Kimura, Computer-Aided Tolerancing, Chapman & Hall, 1996.
49. Z. Kohavi, Switching and Finite Automata Theory, TATA McGraw Hili Publisher,

1978.
50. T. Koomen and M. Pol, Test Process Improvement, Kluwer Acadernic Publishers, 1998.
51. Way Kuo, Wei-Ting Kary Chien, and Taeho Kim, Reliability, Yield, and Stress Bum

In: A Unified Approach for Microelectronics Systems Manufacturing and Software
Development, Kluwer Acadernic Publishers, 1998.

52. P. K. Lala, Fault.Tolerant & Fault Testable Harware Design, Prentice Hall, 1985.
53. Dependability: basic concepts and terminology, in five languages, J.c. Laprie Editor,

IFIP WG 10.4, Springer-Verlag, 1990.
54. L. Lavagno and A. Sangiovanni-Vincentelli, Algorithms for Synthesis and Testing of

Asynchronous Circuits. Kluwer Acadernic Publishers, 1993.
55. S. C. Lee, Modem Switching Theory and Digital Design, Prentice Hall Inc., 1978.
56. N. G. Leveson, Safeware. System Safety and Computers, Addison-Wesley Publishing

Company, 1995.
57. Advanced Techniques for Embedded Systems: Design and Test, edited by Juan Carlos

Lopez, Roman Herrnida, and Walter Geisselhardt, Kluwer Acadernic Publishers, 1998.
58. D. Luckham, Programming with Specifications. An Introduction to ANNA. A Language

for Specifying Ada Programs, Springer-Verlag, 1990.
59. Software Fault.Tolerance, M.R. Lyn Editor, Wiley, 1995.
60. L. A. Macaulay, Requirements Engineering, Series in 'Applied Computing', Springer

Verlag, 1996.
61. B. Marick, The Craft of Software Testing Subsystem Testing Including Object-based

and Object-Oriented Testing, Prentice Hall, 1994.
62. L. Perry Martin, Electronic Failure Analysis Handbook, McGraw-HilI, 1998.
63. C. Maunder and R. E. Tulloss, The Test Access Port and Boundary Scan Architecture,

collection of several papers on this subject, IEEE Computer Society Press, Los
Alarnitos, Ca, USA, 1990.

64. Pinaki Mazumder and Kanad Chakraborty, Testing and Testable Design of Random
Access Memories, Kluwer Acadernic Publishers, 1996.

65. K. L. McMillan, Symbolic Model Checking, Kluwer Acadernic Publishers, 1993.
66. A. Miczo, Digital Logic Testing and Simulation, Harper & Row Publishers, New York,

1986.
67. C. MitchelI, V. Stavridou, Mathematics of Dependable Systems, Clarendon Press, 1995.
68. J. W. Moore, Software Engineering Standards. A User's Road Map, IEEE Computer

Society, Los Alarnitos, Califomia, 1998.
69. G. Motet, A. Marpinard, and J.c. Geffroy, Design of Dependable Ada software,

Prentice Hall, 1996.
70. G. Myers, The Art of Software Testing, Wiley, 1979.
71. B. Nadeau-Dostie, Design for AT-Speed Test. Diagnosis and Measurement, Kluwer

Acadernic Publishers, 1999.
72. W. Nelson, Accelerated Testing: Statistical Models. Test Plans. and Data Analyses,

Wiley Interscience, 1990.

654 References

73. P. G.Neumann, Computer Related Risks Addison-Wesley 1995.
74. P. D.T. O'Connor, Practical Reliability Engineering, 3rd edition, John Wiley & sons,

1995.
75. Formal Methods Specification and Verification Guidebookfor Software and Computer

Systems, Vol. 1 'Planning and Technology Insertion', Office of Safety and Mission
Assurance, NASA, Washington DC, USA, NASA.GB.002.95, Release 1.0, July 1990.

76. A. Pages and M. Gondran, System reliability Evaluation and Prediction in Engineering,
North Oxford Academic, 1986.

77. K. Parker, The Boundary Scan Handbook, second edition, Kluwer Academic Publishers,
Boston, 1998.

78. L.F. Pau, Failure Diagnostic and Performance Monitoring, Ed. M. Dekker Inc., NY
Basel, 1975.

79. W. Perry, Effective Methodsfor Software Testing, John Wiley & Sons, Inc, 1995.
80. R. M. Poston, Automating Specification-Based Software Testing, IEEE Computer

Society Press, 1996.
81. Fault-Tolerant Computing. Theory and Techniques, D.K. Pradhan Editor, 2 Volumes,

Prentice Hall, Englewood Cliffs, 1986.
82. Fault-Tolerant Computer System Design, D.K. Pradhan Editor, Prentice Hall,

Englewood Cliffs, 1996.
83. P. Pukite and J. Pukite, Modeling for Reliability Analysis: Markov Modeling for

Reliability, Maintainability, Safety, and Supportability. Analysis of Complex Systems,
IEEE,1998.

84. I.c. Pyle, Developing Safety Systems. A Guide Using Ada, Prentice Hall, 1991.
85. P. Rashinkar, P. Paterson, and L. Singh, System-On-a-Chip Verification: Methodology

and Techniques, Kluwer Academic Publishers, 2000.
86. S. Robertson and J. Robertson, Mastering the Requirements Process, Addison-Wesley,

1999.
87. J. Rumbaugh, M. Blaha, W. Premeriani, F. Eddy and W. Lorensen, OMT- Modeling and

Object Oriented Design, Masson & Prentice Hall, 1995.
88. D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Reliable System Design,

Digital Press, Bedford Massachussetts, 1982.
89. D. P. Siewiorek and R. S. Swarz, Reliable Computer Systems: Design and Evaluation,

Third Edition, A K Peters, 1998.
90. W. R. Simpson and J. W. Sheppard, System Test and Diagnosis, Kluwer Academic

Publishing, 1994.
91. Nozer Singpurwalla and Simon Wilson, Statistical Methods in Software Engineering:

Reliability and Risk, Springer-Verlag, 1999.
92. D. D. Smith, Designing Maintainable Software, Springer-Verlag, New York, 1999.
93. I. Sommerville and P. Sawyer, Requirements Engineering. A good practice guide,

Wiley, 1997.
94. J. T. de Sousa and P. Y.K. Cheung, Boundary-Scan lnterconnect Diagnosis, Kluwer

Academic Publishers, 2001.
95. A. M. Stavely, Toward Zero-Defect Programming, Addison-Wesley, 1999.
96. N. Storey, Safety.Critical Computer Systems, Addison-Wesley, 1996.
97. A.J. van de Goor, Testing SemiConductor Memories. Theory & Practice, John Wiley &

Sons, 1991.
98. F. Thoen and F. Catthoor, Modeling, Verification and Exploration of Task-Level

Concurrency in Real-Time Embedded Systems, Kluwer Academic Publishers, 1999.

References 655

99. S. A. Vanstone and P. C. van Oorschot, An Introduction to Error Correcting Codes with
Applications, Kluwer Academic Publishers, 1989.

100. A. Villemeur, Reliability, Availability, Maintainability and Safety Assessment: Methods
& Techniques, 2 Volumes, Wiley, 1991.

101. J. Voas and G. McGraw, Software Fault Injection, Wiley, 1998.
102. Formal Techniques in Real-Time and Fault-Tolerant Systems, Jan Vytopil Editor,

Kluwer Academic Publishers, 1993.
103. E. Wallmüller, Software Quality Assurance: A practical approach, Prentice Hall, 1994.
104. B.A. Wichmann, Software in Safety-Related Systems, Wiley, 1992.
105. R. J. Wieringa, Requirements Engineering. Frameworkfor Understanding, John Wiley

and Sons Ltd., 1996.
106. VLSI Testing, T.W. Williams Editor, 'Advances in CAD for VLSI', Vol. 5, North-

Holland, 1986.
107. V.N. Yarmolik, Fault.Diagnosis of Digital Circuits, Wiley & Sons Ltd., England, 1990.
108. V.N. Yarmolik and I.V. Kachan, Self-Testing VLSI Design, Elsevier, Amsterdam, 1993.
109. M. Yoeli, Formal Verification of Hardware Design, Selection of papers, IEEE

Computer Society Press Tutorial, 1990.
110. S. Zahran, Software Process Improvement, Addison-Wesley, 1998.

Index

A
acceptability curve, 454
acceptable product, 455
acceptance test, 368,478
accident, 43
activation, 71, 326
adaptive vote, 493
aggression, 47
alias, 389
alternate, 482
arithmetic code, 419
Arrhenius law, 148
assertion, 246, 436
assessment

dependability, 141
design, 212
error/fault model, 105
requirements, 204
reliability, 146,479
risk, 452
safety, 453
testability , 363

attribute
dependability, 9, 14, 154
module, 30, 71
quality,2

automata, 27, 270
automatic test pattern generation (A TPG),

304,306
availability,9, 154

instant, 154

657

B

MDT,154
MUT, 155
permanent, 154

backward fault analysis, 333
backward propagation, 327
backward tracing, 327
backward recovery, 476

acceptance test, 478
context restoration, 481
domino effect, 481
recovery point, 477, 479
recovery cache, 478
retry point, 477
rollback point, 477
snapshot, 479

behaviorallevel, 25, 27
behavioral model, 30
behavioral property, 91
benign event, 452
Berger code, 418
bidimensional code, 409, 415
binary code, 404
bit stuffing, 506
black-box testing, 237
boundary scan, 385
branch test, 343
breakdown, 6
BSDL,387

658

bug, 44
BuHt-In Self-Test (BIST), 290, 366, 388

compaction function, 290, 389
signature, 290, 389
signature analysis function, 290, 389

BuHt-In Test (BIT), 366, 380, 387
boundary scan (IEEE 1149-1), 385

test bus, 385
FITPLA,380
JTAG,385
LSSD,383
scan design, 383

fuH scan, 386
partial scan, 386
scan domain, 387

BuHt-In Test Equipment (BITE), 380

C
CAN Bus, 496, 505
catastrophic event, 452
checker, 441, 444

code disjoint, 445
self-chaching checker, 445

checksum code, 420
dient, 22
code,402
code-preserving,441
code disjoint, 445
codeword, 405
cold standby, 491
compaction. 290, 389
compatible, 81
compensation, 473, 486
complete diagnosis sequence, 336
complete distinguishing sequence, 300,

336
completeness, 80, 212
compliance test, 283
component, 30
composition relationships, 27
compositional hierarchy, 31
computer aided maintenance (CAM), 287
condition, 345
ConditionlDecision Coverage, 346
C/DC test, 345
confidentiality, 10, 157
confinement, 137,494
conforrnity test, 211, 283
consistency, 329
constraints

reusabiIity,54
technical, 54
technological, 54

contarnination, 73, 494
context of the test, 432
context of execution, 479
contract, 23, 40
control flow, 346
control path, 344
controHabiIity, 132,332,364
COTS, 54, 125
coverage

code, 344 408
fault, 291
table, 294
test, 149,294,333,363

coverage analysis
backward fault analysis, 333
forward simulation, 333
structural method, 333

CRC, 412, 501, 503
creation process, 22
criticality analysis, 456
cyclic code 412

Index

Cross-InterIeaved Reed-Solomon

D

(CIRC),416,502
Reed-Solomon, 416,502
BCH,415
coding procedure, 414
ESF,415
Fire, 415, 501, 508

dangerous event, 452
dead-man, 435
debugging, 281
defect,44
degradation, 486
delivered service, 19
dependabiIity,9

attribute, 9, 14
impairments, 7,14,39
means,13

dependability assessment, 141
attribute, 141
avaHabiIity, 154
forecasting value, 142
maintainabiIity, 152
maintenance, 150
exploitation value, 142

Index

qualitative approach, 141
deductive, 143

Fault tree Method, 168,287
inductive, 143, 164

FMEA, 164,287
FMECA, 167,456

quantitative approach, 141, 159
fault injection, 159
fault simulation, 159
Markov graph, 162
Monte Carlo simulation, 160
reliability block diagram, 160,

475
stochastic Petri net, 162
test, 144

reliability, 145
safety, 155
security, 10, 157

confidentiality, 10, 157
integrity, 10, 157

specification value, 142
standards, 143
testability, 149

dependabilityassurance, 138
dependability impairments, 7, 14,39
dependability means, 13

fault avoidance, 122
fault forecasting, 13, 142
fault prevention, 13, 123
fault removal, 13, 122, 127
fault tolerance, 13, 135, 138

design, 5, 21, 24, 124, 129
behaviorallevel, 25, 27
electronic level, 26
layout, 25
logic level, 25
structurallevel, 25, 27
system, 25
technologicallevel, 26, 27

Design For Testability (OFT), 362, 365
Ad hoc approach, 367

guidelines, 367
boundary scan, 385
Built-In Self-Test, 290, 366, 388
Built-In Test, 366, 380, 387
specific design method, 377
Built-In Test Equipment (BITE), 380
combinational circuit, 377
Galois form, 377
IEEE-1149-1, JTAG, 385

LSSD,383
Reed-Muller structure, 377
scan design, 383
software

exception mechanism, 374
instrumentation, 373

design level, 25,27
behavioral, 25, 27
electronic, 26
HDL,25
logical,25
mask,26
structural, 25, 27
symbolic, 26, 27
system, 25
technological, 26, 27

physical, 28
symbolic, 26, 27

design proof, 231
design rule, 263
design testing, 133
designer, 22
detection testing, 149,280,297
development, 22
development process, 22, 221
device under test (OUT), 281
diagnosis, 298, 336, 346, 489

adaptive sequence, 298

659

complete diagnosis sequence, 336
complete distinguishing sequence,

300,336
diagnosis tree, 298, 336
distinguishing sequence, 299, 336
fault tree, 299
fixedsequence, 298
functional. 245

assertion, 246
post-condition, 246
pre-condition, 246

partition, 299
diagnosis tree, 298, 338
disastrous event, 452
disruption, 50, 400
distance

arithmetic, 420
Hamming, 406

distinguishing sequence, 299, 336
disturbance, 6, 47
domain

dangerous, 459

660

dynamic, 182
functional, 180, 402
safe, 459
scan, 387
static, 180, 402

domino effect, 481
Double-Duplex, 497
double-rail code, 418, 443
dreaded event, 143
duplex, 194, 442
duplicate,472
DUT,281
dynamic analysis, 127, 131,237,279
dynamic functional domain, 182, 243

E
easily testable system, 135

instrumentation, 135
monitoring, 135

ECC code, 404
EDC/ECC, 402
Electro-Magnetic Compatibility (EMC),

273
electronic level, 26
emergent functionality, 82
environment, 17

functional, 4, 17
non-functional,4, 17

equivalent faults
pattern, 297, 300
system, 297, 300, 338

error, 7, 72
asymmetrie, 95
burst, 401
confinement, 137,494
contamination, 73, 494
diffusion, 73
dynamic, 73,95
generic, 130
hard,95
immediate, 75, 326
initial activation, 75
logical,95
multiple, 95, 102,401

order, 95, 401
non-logical,95
overwritten,74
packet, 401
permanent, 73, 95
primitive, 75, 326

propagation, 73, 495
propagation path, 73
single, 95, 401
soft,95
specific, 130
static, 73, 95, 102
symmetrie, 95
temporary, 73, 95, 102
transient, 73
unidirectional, 96

error confinement, 137,494
error contamination, 73, 494

Index

Error Detecting and Correcting Code
(EDCC), 137,399,402

anti-intrusion, 404
ECC, 404
RSA,404

arithmetic code, 419
arithmetic distance, 420
arithmetic treatment, 422
checksum code, 420
data storage, 422
logical treatment, 422
residual code, 420

module 9 proof, 421
transmission, 422

bidimensional code, 409, 415
Longitudinal Redundancy Check,

415
Vertical Redundancy Check, 415

binary,404
capacity, 408
cardinality, 408
codeword, 405
cost, 408
coverage rate, 408
cyclic code, 412
Cyclic Redundancy Check (CRC),

412,501
density, 408
double-raH, 418, 443
disruption, 50, 400
disruption operator, 400
disruption set, 401
errorcorrection, 402
error detection, 402
error model, 400, 408
Hamming distance, 406
Hamming theorem, 407
linear code, 410

Index

control relations, 410
Galois field, 411
generator matrix, 411
Hamming code, 411
modified Hamming code, 410
parity check bit, 412
syndrome, 410
systematic code, 414

low-level coding, 404
HDB,405
Manchester, 405, 508
NRZ, 404, 506, 508

multiple parity code, 409
m-out-of-n, 417, 443
non-separable code, 406
parity, 409
power of expression, 408
preserving, 410
productcode, 415
redundancy, 405
redundancy rate, 408
separable code, 405
single parity code, 409
transmission

moment, 401
two-rail,418
unidimensional code, 409
unidirectional code, 399

Berger code, 418
m-out-of-n, 417, 443
two-rail code, 418, 443

unidirectional error, 416
error detection and correction

mechanisms, 136, 485
error logging, 500, 504
error masking, 136,473
error model, 91, 400, 408

assessment, 105
asymmetric, 95
burst error, 401
disruption, 400
disruption operator, 400
dynamic, 73,95
error in packet, 401
executable code level, 104
logical,95
multiple, 95, 102, 401

order, 401
non-logical, 95
permanent, 95

single error, 95, 401
source code level, 102
static, 73, 95, 101
symmetric, 95
temporary, 73, 95, 101
unidirectional, 96

error recovery, 472, 485
error typology, 91
event tree, 169
exception mechanism, 374, 440
execution path, 344
exploitation, 22
expression means, 221
expression tool, 221
extraction, 231

F
fail-fast system, 464
fail-passive system, 464
fail-safe system, 137,451,456

intrinsic safety, 457
structural redundancy, 459

fail-silent system, 464
failure, 3, 41

Byzantine, 43
benign,43
consequence

external, 44
seriousness classes, 452

consistent, 42
crash,43
disruptive, 50
dynamic,42
external consequence, 77
inconsistent, 42
omission, 43
persistent, 42
rate, 146
risk,453
seriousness, 43, 77, 452
static,42
stopping, 43
systemic, 49
temporary,42
timing,42
value,42

failure mode, 42
Failure Modes and Effect Analysis

(FMEA), 164, 287
worksheet, 164

661

662

Failure Mode and Effects and Criticality
Analysis (FMECA), 167, 456

failure rate, 146
false alarm, 433
fault, 4, 44

accidental, 50
active,71
classification, 63
common mode, 474, 488
component, 53
conceptual, 49
creation, 6, 48, 129
design, 49
disturbance, 6
dormant,71
dynamic,51
equivalent

pattern, 297, 300
system, 297,300,338

external, 6, 47
functional, 6, 49
hard, 95, 273,499
hardware, 49
human-made, 49
intentional, 51
interaction, 53
intermittent, 51
internal, 6, 46
masking, 136, 192,339,473
module, 53
operational, 49, 58
passive, 71
permanent, 51
physical, 49
production, 49, 56
soft,95,273,499
specification, 49
static,51
structural, 69
systemic, 49
table, 294
technological, 6, 49
temporary,51
transient, 51, 95
undetectable, 192, 326, 339

fault activation, 71, 326
initial,75

fault avoidance, 122,201
design, 219

validation, 221

Index

verification, 221
expression of specifications, 209
requirement expression, 204

expression aid, 205
specification, 201, 209
validation of the method, 203
verification of the solution, 203

fault class, 63
fault collapsing, 310
fault contention, 137
fault correction, 127
fault coverage, 292
fault design, 53
fault detection, 127
fault diagnosis, 127
fault dictionary, 310
fault forecasting, 13, 142
fault grading, 306, 307, 333

deterrninistic, 309
probabilistic, 309
simulation, 308
statistical, 310
structural analysis, 308, 333

fault injection, 159,308
fault isolation, 127
fault localization, 127, 297
fault logging, 441
fault masking, 339
fault model, 91

assessment, 105
bridging, 97
delay,100
open,97
short,97
short -circuit, 98
software, 101
source code level, 102
stuck-off, 97, 99
stuck-on, 97, 99
stuck-open, 99
stuck-at, 96
temporal, 100
timing, 100

fault prevention, 13, 123
design, 124
design model choice, 222
design process choice, 223

design guide, 224
expression guide, 225

choice of words, 227

Index

lexicography,226
self-documenting, 227

expression improvement, 228
operation, 125
production, 124
specification, 123,209

modeling process, 210
modeling tool, 209

technological faults, 257
action on the environment, 272
action on the product, 261

design rule, 263
hardware technology, 258
software, 265

action on the run-time
environment, 274

feature restriction, 267
hazardous feature, 274
implementation constraints,

275
language choice, 266
programrning process

improvement, 269
programrning style, 269

software technology, 258
fault removal, 13, 127

design, 129, 229
formal proof, 248
functional diagnosis, 245

assertion, 246
post-condition, 246
pre-condition, 246

functional test, 240
property satisfaction, 238
property analysis, 239, 244

dynarnic analysis, 127
operation, 134
production, 133
specification, 129,211

verification, 211
conforrnity, 211
qualitative, 211

static analysis, 127
technological faults

off-line testing, 279
test, 127, 149,280,297
validation, 128,203,221
verification, 128,203,221

fault secure, 442
fault simulation, 159,308

accelerator, 310
concurrent, 313
deductive,312
fault collapsing, 310
parallel, 312
serial,311

fault specification, 52
fault tolerance, 13, 135, 138,469

active tolerance, 485
adaptive vote, 493
backward recovery, 476
CANBus,505
cold standby, 492
compensation technique, 473
confinement, 137, 494
Double-Duplex, 497
error contarnination, 73, 494
error correction, 136
error detection, 136
error logging, 500
error masking, 136,473
fault contention, 137
forward recovery, 482, 499
graceful degradation, 486
hot standby, 492
hot swap, 492
memory scrubbing, 500
NMR,490
N-self checking, 497
N-Version technique, 472, 497
passive tolerance, 485
reconfiguration, 137,486
recovery cache, 478
redundancy

ofdata,470
offunction,470
offunction & data, 470

retry mode, 477, 496
self-purging, 493
temporal redundancy, 471
TMR,473
VANBus,507

fault tree, 299

663

Fault Tree Method (FTM), 168,252,287
basic event, 168

feature, 29
final test, 368
finite state machine, 26,92, 233, 346
Fire code, 415, 501, 508
FITPLA,380

664

FMEA, 164,287
FMECA, 167,456
formal identification, 317
formal proof, 127,248

deductive approach, 252
Fault Tree Method, 252
inductive approach, 248
symbolic execution, 251

forward propagation, 327
forward simulation, 333
forward recovery, 482, 499

recovery block, 482
alternate, 482
version, 482

termination mode, 483
fiequentevent, 454
functional diagnosis, 245

assertion, 246
post-condition, 246
pre-condition, 246

functional environment, 4, 17
functional redundancy checking (FRC),

442,.536
functional test, 237, 240, 284, 303

likelihood,243

G-K
generic property, 91
guidelines, 367
Hamming code, 411
Hamming distance, 406
hard faults, 95, 273,499
HDB(n),405
HDL,25
hierarchy, 31

compositional, 31
use, 31

high reliability, 126, 145,261,451,469
hot standby, 492
hot swap, 492
identification, 317, 346
impairments, 7, 14, 39
implementation, 21
impossible event, 454
improbable event, 453
in-situ maintenance, 392
incompatibility,81
incompleteness, 52, 81, 123
inconsistency,53
inertia,80

input vector, 180,288
inspection, 215
instrumentation, 135, 373, 440
integration test, 368
integrity, 10, 157
JTAG,385
justification, 329
kernei, 446

L
language, 29, 209
latency,75
layout level, 25
life cycle, 5, 21

design, 5, 21, 24
exploitation, 22
implementation,21
manufacturing, 5, 21
need,21
operation, 5, 22, 29
phase, 21
production, 5, 21, 28
realization, 5, 24
requirement, 5, 21
specification, 5, 21, 22
stage, 21
step,21
usefullife, 5, 22
utilization, 22

likelihood,243,436
linear code, 410

control relations, 410
generator matrix, 411
Hamming code, 411
modified Hamming code, 411
syndrome, 410
systematic code, 414

Index

Linear Feedback Shift Register (LFSR),
389

link,30
localization, 127, 132, 150,485
log file, 441
logic level, 25
logical test, 288, 302

functional, 304
structural, 304, 323

LSSD,383

M
maintainability,9, 152

Index

Mean Time To Repair, 153
repair rate, 153

maintenance, 29, 150,296,392
CAM,287
corrective, 29, 152,296
curative, 152
evolutive, 29, 152,296
in-situ, 392
Mean Down Time (MDT), 154
Mean Up Time (MUT), 155
non-reparable product, 29, 127, 134,

151
preventive, 29, 152

conditional, 152,296
scheduled, 152
systematic, 152, 296

remote facility, 392
reparable product, 29, 127, 134, 151
troubleshooting and repair, 150

maintenance test, 134,286,296
computer aided maintenance, 287
deep knowledge, 288
empirical associations, 287
experimental approaches, 287

deductive method, 287
inductive method, 287

expert system, 287
Fault Tree Method (FTM), 287
FMEA,287
knowledge database, 287
model-based approach

diagnosis algorithm, 288
diagnosis process, 288

model-based approaches, 287
reasoning by associations, 287
shallow reasoning, 287
structure and function, 288
surface reasoning, 287

major event, 452
Manchester code, 405, 508
manufacturing, 5, 21
Markov graph, 162
mask design level, 26
masking, 136, 199,339,473
Mean Down Time (MDT), 154
Mean Time Between Failures (MTBF),

147
Mean Time To Failure (MTTF), 147
Mean Time To First Failure (MTTFF),

147

Mean Time To Repair (MTTR), 153
Mean Up Time (MUT), 155
method,221
minor event, 452
mission, 18

duration, 19
function, 18
operationallifetime, 19

model, 29, 209
behavioral, 30
continuous, 34
discrete, 34
structural, 30
structured-functional, 31

modeling tool, 29, 209, 221
feature, 29

665

Modified ConditioniDecision Coverage
(MCIDC), 346

modified Hamming code, 411
module, 30

attribute, 30
behavioral model, 30
composition, 186

fusion operator, 186
emergence operator, 187

hierarchy, 31
spare, 194, 491
state,30

moduln 9 proof, 421
monitoring, 135,434
Monte Carlo simulation, 160
m-out-of-n code, 417, 443
mutant, 351
mutation, 351

weak mutation testing, 354

N
need,21
netlist,25
NMR,490
non-functional environment, 4, 17
non-regression testing, 297
non-repairable product, 29, 127, 134
notation, 29
NRZ code, 404, 506, 508
N-Self Checking, 497
N-Versions technique, 472, 497

voter, 473

666

o
observability, 76, 132, 150,332,364
off-line testing, 134,279, 362, 366

maintenance testing, 280
production testing, 280

on-line testing (OLT), 134, 137,281,392,
427,485

continuous, 428
discontinuous, 427

context ofthe test, 432
context savinglrestoring, 432

self-testing, 428
operation, 5, 22, 29,125, 134
output vector, 180,288

p
parallel signal analyzer (PSA), 390
parity check, 412
parity code, 409
partition, 300
pattern equivalent faults, 297, 300
perturbation, 47
Petri net, 25, 27

stochastic, 162
phase, 21
physical property, 90
post-condition, 246,436
pre-condition, 246, 436
prime gate, 189
probable event, 453
process characterization & control, 264,

283
product, 17, 29
product structure, 30

component, 30
logicallink, 30
module, 30
sub-system, 30

production, 5, 21, 28, 124, 133
production testing, 133,264,283
program mutation, 352
proof, 127, 248
propagation, 73

backward, 327
forward, 327
path,73

property
analysis, 239, 244
behavioral, 91
generic,91

physical, 90
structural, 90

property satisfaction, 238
prototyping, 214
pseudo-random testing, 290

Q
qualitative

criticality analysis, 456
dependabilityassessment, 143
risk assessment, 452
safety assessment, 456
specification assessment, 212
tolerance assessment, 476

quality, 1
attribute, 2

quality assurance test, 264
quality control, 125,264,283

destructive test, 283
non-destructive test, 283

quality metrics, 365
quality of the test sequence, 363

coverage, 363
length,363

quantitative

Index

criticality assessment, 456
dependabilityassessment, 141, 159
risk assessment, 452
safety assessment, 453

R
random testing, 290, 303
rare event, 453
realization, 5, 24
reconfiguration, 137,486
reconvergent fan-out structure, 328, 334
recovery, 472, 485

backward, 476
block, 482, 497
cache, 478
forward, 482, 499
point, 477, 479

redundancy, 11, 135, 176,402
active, 13, 188,493
code,405
data, 470
function, 470
functional, 179,436

domain, 402
composition of modules

Index

emergence operator, 187
fusion operator, 186

dynarnic domain, 182, 243
dynarnicredundancy, 183
dynarnic uni verse, 182
static domain, 180, 459
static functional redundancy, 180
static functional redundancy rate,

181
static universe, 180,460

irredundant element, 188
passive, 136, 188,372
rate, 408
redundant functional domain, 402
reusability,55
semantic, 176
separable, 193

cold standby redundancy, 194
functional module, 193
hot standby redundancy, 194
non-separable, 193
off-line redundancy, 194

spare, 194
on-line redundancy, 194
redundant module, 193

software, 191
structural, 187,441,471

active, 188
gate level

prime gate, 189
hardware, 187
irredundant element, 188
passive, 188
software, 187
time, 187

syntactic, 176
temporal, 471

Reed-Muller structure, 377
Reed-Solomon, 416,502
refinement process, 33
reliability,9, 126, 145,261,451,469

bathtub curve, 148
infant mortality, 149
usefullife, 149
wearout, 149

estimator, 146
evaluation, 264, 283
failure rate, 146
failure rate estimation, 148

accelerated test, 148

Arrhenius law, 148
Mean Time Between Failures

(MTBF),147

667

Mean Time To Failure (MTTF), 147
Mean time To First Failure (MTFF),

147
process control, 264
production testing, 264
quality control, 264
statistical description, 145
statistical mathematical tool, 145

reliability assurance test, 264
reliability block diagram, 160,475
reliabilityevaluation, 146, 283
reliability mastering, 262
reliability model, 146

exponentiallaw, 146
Weibulllaw, 147

reliability test, 146
accelerated, 148,264
censured, 146
curtailed, 146
destructivel non-destructive, 264, 283
progressive, 146
progressive curtailed, 146
step stress, 146

remote maintenance facility, 392
repair, 127
repair rate, 153
repairable product, 29, 127, 134
replica, 193, 472
requirement, 5, 21
requirement expression, 204

evaluation of a method, 207
expression aid

horizontal structuration, 206
vertical structuration, 206

retry mode, 477, 496
retry point, 475
reusability,55
reuse, 82, 125
review, 127,213,214
risk,452

acceptability, 454
acceptability curve, 454
acceptable product, 455
acceptable risk rate, 454
tolerable probability, 454

robustness, 83
rollback point, 477

668

RSA code, 404
run-time executive, 259

S
safe state, 458
safety,9, 156,433,451,523

active, 458
criticality analysis, 456

qualitative, 456
FMECA, 167,456

quantitative, 456
dangerous domain, 459
intrinsic, 457
passive, 458
safe domain, 459
safety classes, 453
seriousness classes, 452

benign, 452
catastrophic, 452
dangerous, 452
disastrous, 452
major, 452
minor, 452
serious, 452
significant, 452
without effects, 452

safety classes, 453
extremely improbable event, 453
extremely rare event, 453
frequent event, 454
impossible event, 454
probable event, 453
rare event, 453
reasonably probable event, 454

scan design, 383
full scan, 386
partial scan, 386

scan domains, 387
scenario, 213
scrubbing, 500
security, 10, 157

confidentiality, 10, 157
integrity, 10, 157

self-checking checker, 445
self-checking system, 441
self-purging, 493
self-testing, 433, 442, 465

condition monitoring, 434
functional redundancy, 436

assertion, 436
exception mechanism, 440
instrumentation, 440
likelihood test, 436
post-condition, 436
pre-condition, 436
watchdog, 438

Index

observation of product operation, 434
observation of user behavior, 435

dead-man technique, 435
structural redundancy, 441

checker, 441
code-preserving,441
duplex, 442
fault-secure, 442
self-testing, 442
totally self-checking, 442

self-testing system, 137,465
semantics, 123
serious event, 452
seriousness, 77,452

benign,43,77,452
catastrophic, 43, 78, 452
dangerous, 78,452
disastrous, 78, 452
major, 78, 452
minor, 77,452
serious, 43, 78, 452
significant, 78, 452

seriousness class, 452
service delivered, 19,39
service relationships, 27
serviceability, 153
severity, 77
signature, 290
signature analysis, 290, 389
significant event, 452
simulation sequence, 237
snapshot, 479
soft fault, 95, 499
spare module, 194, 491
specification, 5, 21, 22, 124, 129,209

contract, 23
functional characteristics, 23
non-functional characteristics, 23

fault prevention, 209
fault removal, 211
verification, 211, 229

stage, 21
state, 30, 72

Index

static analysis, 127, 129
step, 21
STIL,285,387
stochastic Petri net, 162
strobing, 289
structural domain, 187
structural fault, 69
structurallevel, 25, 27
structural property, 90
structural software test, 340

branch & path test, 343
branch test, 343
condition, 345
condition and decision test, 345
ConditionlDecision Coverage

(C/DC),346
control flow, 346
control path, 344
coverage rate, 341
decision, 345
execution path, 344
Modified ConditionlDecision test,

345
mutation, 351
weak mutation testing, 354
path test, 344
statement test, 342

structural test, 305, 323
structure, 30
structured-functional model, 31
stuck-at fault, 96
stuck-onloff fault, 97, 99
sub-system, 30
symbolic level, 26, 27
syndrome, 410
system, 24, 30
system equivalent faults, 297, 300, 338
system level, 25

T
technical constraints, 54
technological constraint, 54
technological fault, 257
technologicallevel, 26, 27
termination mode, 483
test, 127, 280

accelerated, 148,264,310
acceptance test, 368,478
algorithmic, 303
alphalbeta, 283

black box testing, 237
branch,343
Built-In Self-Test, 290, 366, 388

LFSR,389

669

Built-In Test (BIT), 366, 380, 387
boundary scan, 385

test bus, 385
FITPLA,380
IEEE 1149-1,385
JTAG,385
LSSD,383
scan design, 383

bum-in, 126,284
BSDL,387
censured, 146
compliance, 283
condition andlor decision, 345, 346
conformity, 283
context, 432
continuity, 284
continuous, 428
coverage, 149,294,333,363
coverage table, 294
curtailed, 146
design, 133
design for testability, 365

ad hoc technique, 365, 367
guidelines, 367

built-in self-test (BIST), 290, 366,
388

built-in test (BIT), 366, 380
specific design, 366

destructive, 264, 283
detection, 149,280,297

fault masking, 339
device under test (DUT), 281
diagnosis, 149,281,297,336,346

adaptive sequence, 299
diagnosis tree, 299, 336
fault tree, 299
fixed sequence, 298
pattern equivalent faults, 297
system equivalent faults, 297

discontinuous, 427
distributed, 430
easily testable system, 135, 362
Embedded Core Test (IEEE PI500),

285
exhaustive, 303
fault coverage, 291

670

fault grading, 307
fault injection, 308
fault simulation, 308

deterministie, 309
probabilistic, 309
statistieal, 310

structural analysis, 307, 333
fault localization, 127, 297
fault table, 294
final test, 368
fixed diagnosis, 297
functional, 237, 240, 284 303
functional test sequence, 304
generation

path sensitizing, 325
program mutation, 351

gray box testing, 237
IDDQ,284
in situ test, 392
inputsequence, 288
integration test, 368
likelihood,243,436
localization, 149,281
logieal, 284, 288
maintenance, 296
maintenance testing, 286
Modified ConditioniDecision

(MC/D),346
non-destructive test, 264, 283
non-regression testing, 297
off-chip, 282, 388
off-line, 134,279,362,366

in situ maintenance, 392
on-chip, 282, 388
on-line, 134, 137,281,392,427,485
output sequence, 288
parametric, 283
path,343
production, 133,264,283,292

continuity, 284
GO-NOGO, 293
IDDQ,284
logieal, 284, 288
parametrie, 283
yield,293

progressive, 146
pseudo-random, 303
RAM,319

checkerboard, 319
galloping, 320

marching, 319
ping-pong, 320
walking, 319

random, 290, 303
reliability test, 148, 264

accelerated, 148,264
destructive, 264
non-destructive,264

schmoo plot, 284
screening, 265
sequential circuit, 316

Index

formal identification, 316
functional test sequence, 317
RAM,319

signature analysis, 290, 389
compaction, 290, 389
parallel signal analyzer (PSA),

390
statement, 342
step stress, 146
STIL standard, 285, 387
structural, 237, 304

algorithmic, 304
Automatie Test Pattern

Generation, 304
software, 340
test generation, 325

self-testing, 433
structural test sequence, 305

path tracing approach, 307
task,431
test point, 371
toggle test, 303
unit test, 368
VXI standard, 286
white box testing, 237

test application, 306
test equipment, 281, 285, 344

internal, 282
external, 282

test evaluation, 291, 306, 333
test generation, 291, 302, 306, 325

backward propagation, 326
backward tracing, 326
consistency, 329
D-algorithm, 307
fault activation, 326
forward propagation, 327
justification, 329
path sensitizing, 307, 325

Index

primitive error, 326
reconvergent fan-out structure, 328
structured circuit, 332
tracing approach, 307
with fault model, 291
without fault model, 291

test pattern generation, 306, 314, 325
automatie, 304
heuristic, 315
optimal test sequence, 314

test sequence, 237, 279, 288
adaptive, 293
fixed,292
input, 288
output, 288

test sequence quality, 149,291,363
coverage, 291, 363
length, 149,291,363
generation ease, 149,291,363
cost, 291

test validation, 306
test vector, 289
testability, 9, 149,362

controllability, 132,332, 364
coverage, 149,291,363
generation ease, 149,291,363
length, 149,291,363
measurement, 363
observability, 132, 150, 332, 364
qualitative estimator, 365
software quality metrics, 365
test application, 363
test generation, 363

tester, 281, 285, 288
signature analysis, 290
strobing, 289
with reference list, 290
with referent product, 290

pseudo-random, 290
random, 290

with standard product, 290
toggle test, 303
totally self-checking system, 441, 442

checker, 441
code-preserving, 441
fault-secure, 442
self-testing, 442

troubleshooting and repair, 150
Tripie Modular Redundancy (TMR),

136,473

Triplex, 473
two-rail code, 418, 443

u-z
unidirectional code, 416
unit test, 368
use hierarchy, 31
usefullife, 5, 22, 149
user, 17,22
utilization, 22
validation, 128,203,221
VAN Bus, 507
verification, 128,203,221

conformity,211
design, 229

with specifications, 229

671

double transformation, 235
reverse transformation, 230

extraction, 231
top-down transformation, 236

property satisfaction, 238

simulation, 237
without specifications, 238

generic property, 238
dynaInic analysis, 237
property,238
property satisfaction, 238
qualitative

clarity,212
completeness,212
comprehension, 212
concision, 212
consistency, 212
non-ambiguity,212
prototyping,214
review, 213, 214

inspection, 215
walkthrough,215

scenario, 213
simplicity, 212
traceability, 212

simulation, 237
version, 193,472,482
VHDL,25
voter, 473, 493
walkthrough, 215
watchdog, 438, 496
wearout, 149
Weibull reliability law, 147

672 Index

yield,29

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	First Part Destructive Mechanisms
	1 Introductory Elements: Dependability Issues
	2 General Context
	3 Failures and Faults
	4 Faults and their Effects
	Second Part Protective Mechanisms
	5 Fault and Error Models
	6 Towards the Mastering of Faults and their Effects
	7 Dependability Assessment
	8 Redundancy
	Third Part Fault Avoidance Means
	9 Avoidance of Functional Faults During Specification
	10 Avoidance of Functional Faults During Design
	11 Prevention of Technological Faults
	12 Removal of Technological Faults
	13 Structural Testing Methods
	14 Design For Testability
	Fourth Part Fault Tolerance Means
	15 Error Detecting and Correcting Codes
	16 On-Line Testing
	17 Fail-Safe Systems
	18 FauIt-Tolerant Systems
	19 Conclusions
	Appendix A Error Detecting and Correcting Codes
	Appendix B Reliability Block Diagrams
	Appendix C Testing Features of a Microprocessor
	Appendix D Study of a Software Product
	Appendix E Answer to the Exercises
	Glossary
	References
	Index

