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Preface 

This book analyzes the causes of failures in computing systems, their 
consequences, as weIl as the existing solutions to manage them. The domain 
is tackled in a progressive and educational manner with two objectives: 

1. The mastering of the basics of dependability domain at system level, that 
is to say independently ofthe technology used (hardware or software) and 
of the domain of application. 

2. The understanding of the fundamental techniques available to prevent, to 
remove, to tolerate, and to forecast faults in hardware and software 
technologies. 

The first objective leads to the presentation of the general problem, the 
fault models and degradation mechanisms wh ich are at the origin of the 
failures, and finally the methods and techniques which permit the faults to be 
prevented, removed or tolerated. This study concerns logical systems in 
general, independently of the hardware and software technologies put in 
place. This knowledge is indispensable for two reasons: 

• A large part of a product' s development is independent of the 
technological means (expression of requirements, specification and most 
of the design stage). Very often, the development team does not possess 
this basic knowledge; hence, the dependability requirements are 
considered uniquely during the technological implementation. Such an 
approach is expensive and inefficient. Indeed, the removal of a 
preliminary design fault can be very difficult (if possible) if this fault is 
detected during the product's final testing. 

xv 



XVI Preface 

• The specific dependability techniques applied at technological level 
(hardware, software) are often issued from general common principles. It 
is useful to understand these principles in order to better understand and 
apply the techniques. 

To achieve the second objective, we approach the main techniques 
associated with the two technologies involved in the creation of a computing 
system: the hardware and the software. The joint study of these two 
technologies is indispensable. As a matter of fact, what is the interest of 
having sophisticated methods dedicated to software if the microprocessor or 
the memory fails? What is the use of having sophisticated methods dedicated 
to hardware if the control or supervision program does not function 
properly? The originality of our approach resides in this dual vision of 
systems. 

Different, complementary and sometimes even antagonistic, these two 
facets are both necessary to manage real industrial projects. The knowledge 
of their particularities is indispensable: for example, the characteristics of 
certain faults are specific to one of these technologies. Thus, specific 
techniques have been developed. In addition, it is necessary to master jointly 
these two technologies. For example, the technique of the replication of the 
hardware/software control system of the first flight of Ariane V launcher was 
weIl adapted to the tolerance of a hardware fault occurring in one module. 
When such event occurs, the replicate module takes control of the faulty 
module. Unfortunately, the presence of a fault in the software could not be 
tolerated with this technique, as the resumption of execution by the second 
module affected by the same fault provoked the same failure! 

Of course, knowledge on dependability is absolutely necessary to 
develop critical systems, as their failures can have dramatic consequences. 
This knowledge is, according to us, necessary today for all engineers 
involved in computerized system development projects, whether destined for 
control, supervision, human - machine interaction, communication, or data 
processing in general. Indeed, in our technological world, failures are less 
and less accepted by the users, even in the case of simple applications such 
as a text processing. Consequently, dependability science is rapidly 
developing, proposing new methods, techniques and tools in both hardware 
and software domains. Our objective is to provide the reader with a basic 
knowledge of dependability notions and techniques. This will naturally be 
useful to students, but it mayaiso interest specialists of specific methods, in 
order to place their knowledge in the general context of the means offered by 
the domain of dependability. 

Therefore, this book addresses a large public, inc1uding undergraduate 
and post-graduate students, researchers, as weIl as technicians, engineers or 
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managers involved in the development or maintenance of computing 
systems. Providing the basics of dependability principles, models, methods 
and applications, this book should allow the reader to then approach 
successfully, in specialized books, the more technical aspects on particular 
means of preventing, removing and tolerating faults. Many examples and 
exercises (with their correction) illustrate the principles and methods 
presented. 

Organization of the Book 

This book is organized into 19 chapters structured into four parts: the 
Destructive Mechanisms, the Protective Mechanisms, the Fault Avoidance 
Means, and the Fault Tolerance Means. A fifth part, not detailed hereafter, 
contains several technical appendices, the detailed solutions of the exercises 
proposed in the chapters, a glossary of all technical keywords, and a list of 
bibliographical references. 

First Part. Destructive Mechanisms 
A good understanding of mechanisms which we qualify as destructive, 

that is to say at the origin of failures, is fundamental in order to choose the 
appropriate antagonistic mechanisms, which we qualify as protective. This 
first part therefore introduces the main issues of dependability and explains 
the basic notions and definitions of destructive mechanisms: faults, errors, 
faHures, and external consequences. This part is organized into four 
chapters: 

Chap 2. 
Chap 3. 
Chap 4. 

General Context 
Failures and Faults 
Faults and their Effects 

Chap 5. Fault and Error Models 

Second Part. Protective Mechanisms 
The second part tackles protective mechanisms, that is to say 

mechanisms aiming at preventing faHure occurrences. In a first chapter, the 
three approaches to fault prevention, fault removal, and fault tolerance are 
analyzed, and the principal methods and techniques are organized into 
several groups according to the level of redundancy they imply. Then, the 
dependability assessment methods are introduced. First, the quantitative 
approaches are presented; they aim at defining measurements of the reliance 
which can be placed in the services provided by the system. Several 
evaluation criteria of dependability are explained: reliability, testability, 
maintainability, availability, and safety. Secondly, qualitative approaches are 
presented; they handle specific failures to assess their cause and effects. 
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Redundancy plays a large role in dependability. This notion is necessary in 
order to master protection techniques and is therefore analyzed, introducing 
various functional and structural forms. This second part is organized into 
three chapters: 

Chap 6. Towards the Mastering of Faults and their Effects 
Chap 7. Dependability Assessment 
Chap 8. Redundancy 

Third Part. Fault Avoidance Means 

In this part, the principal groups of techniques and methods to prevent 
and remove faults are studied and compared. These means concern the 
specification and design steps as weIl as the technological implementation. 
Their aim is to avoid the presence of faults in the delivered product. These 
techniques make use of the principles defined in the second part. 

This part is organized into 6 chapters: 

Chap 9. A voidance of Functional Faults During Specification 
Chap 10. Avoidance of Functional Faults During Design 
Chap 11. Prevention of Technological Faults 
Chap 12, Removal of Technological Faults 
Chap 13. Structural Testing Methods 
Chap 14. Design For Testability 

Fourth Part. Fault Tolerance Means 

In this part, we consider techniques and methods useful to develop fault
tolerant systems. This subject is introduced progressively. Firstly, we 
ex amine specific techniques used to detect and to correct errors on data. 
Then, we present the general techniques to detect errors 'on-line', that is to 
say, at run-time. Afterwards, we study error handling techniques, to avoid 
catastrophic failures (Fail-Safe systems), and finally to avoid all failures 
(Fault-Tolerant systems). 

This part is organized into 5 chapters: 

Chap 15. Error Detecting and Correcting Codes 
Chap 16. On-Line Testing 
Chap 17. Fail-Safe Systems 
Chap 18. Fault-Tolerant Systems 

FinaIly, Chapter 19 conc1udes the book, providing an overview of its 
contents and correlating the various aspects of dependability. 

Note. The keywords or fundamental expressions are marked in bold and 
italic characters the first time they are defined, or when they are developed. 
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All these keywords are then collected in the Glossary, in the fifth part of the 
book. 
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FIRST PART 

DESTRUCTIVE MECHANISMS 

This part aims at dismantling the destructive mechanisms which 
hamper the correct functioning of a product in the context of its 
application. Frequently named impairments, these mechanisms involve a 
succession of events: faults - errors - failures and their extemal 
consequences on the application. 

First of all, in Chapter 2 we consider the general context of the life 
cyc1e of an electronic manufactured product implemented by hardware 
and/or software technologies. Then, in Chapter 3 we observe that the 
behavior of a product can be altered by failures; we identify the different 
possible causes of these problems, called faults, inside the product or in its 
environment. In Chapter 4, we analyze and formalize the effects of these 
faults inside the product (errors) and then outside the product (extemal 
consequences). Finally, in Chapter 5, we present the principal fault and 
error models, focusing on hardware and software technologies. 

The principles and concepts associated with destructive mechanisms 
rely on the definitions and standards of the international scientific 
community. The terms and their definitions introduced in this part come 
from studies unifying the basic notions from hardware and software 
domains. The vocabulary results mainly from the following references: 
the ISO 8402 standard "Quality Management and Quality Assurance -
Vocabulary", and the two books "Dependability. Basic Concepts and 
Terminology" by J-c. Laprie et Al editors (Springer-Verlag, 1992) and 
"Safeware. System Safety and Computers" by N. Leveson (Addison
Wesley, 1995). 

All the problems raised in this part will be answered in the second part 
of this book which examine protective mechanisms, called dependability 
means. The most significant practical techniques associated with these 
protective mechanisms will be detailed in the third part (fault avoidance 
means) and the fourth part (fault tolerance means). 

15 



Chapter 1 

Introductory Elements: Dependability Issues 

1.1 QUALITY 

1.1.1 Quality Needs of Computer Systems 

The growth of the technical and scientific knowledge in our society 
stimulates the growth of new manufactured products, reducing the costs and 
delays of design and production, and improving the global quality of our life. 
Moreover, the consumers who demand more and more services encourage 
this innovation. The sophistication of automobiles is a good example of this 
evolution: assisted braking and grip, reduced gas consumption by a better 
optimization of engine performance, road navigation and choice of optimal 
routes, etc. What is more, the knowledge and behavior of consumers is 
becoming increasingly demanding about prices, of course, but equally 
regarding the quality of services provided by the chosen products. This 
notion of quality associated with manufacturing goods is progressively 
becoming more refined and standardized. It is now imposed on all designers 
and manufacturers as an essential factor in the success of their products. 
Therefore, the ISO 8402 standard defines quality as: 

The totality of characteristics of an entity that bear 
on its ability to satisfy stated and implied needs. 

These needs to be satisfied inc1ude new services which are offered to the 
users, but also a better guarantee of the correctness of existing services. In 
particular, the demand for quality is justified by the rapid and continuous 
growth of the responsibilities wh ich man entrusts to manufactured products, 
and more particularly to computing systems. Für example, the piloting of 

1 
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2 Chapter 1 

aircrafts is progressively transferred from a human pilot to an assistance 
system, and then to an automatie piloting system. The quality of such 
systems, in terms of correctness guarantee, is obviously as vital to the air 
companies buying the aircrafts as to the passengers using them. The use of 
computing systems for control and supervision is overflowing the specifie 
areas for whieh its use was traditionally reserved, such as the manufacturing, 
rail and air transportation, aerospace, nudear and military industries. It is 
now progressively being used in all sectors of our society. Here we quote a 
few examples in order to show the wide variety of these domains. 

• Agrieulture and rearing: irrigation, treatment, conditioning, cattle feeding 
and incubating apparatuses, etc. 

• Towns and cities: automatic management, control and signaling used by 
cash dispensers, public transportations such as buses and the subway, 
automobile traffic, car parks, etc. 

• Communications: telephones, radio, television, local and global 
computing networks such as the Internet, GPS (Global Positioning 
System), etc. 

• Medieal domain: measuring and analysis equipment, ambulatory and 
prosthesis apparatuses, cardiac stimulators and 'on-line' following of 
illnesses, etc. 

• Automotive electronics industry: ABS (Antilock Braking System), 
suspension systems, computerized ignition, fuel injection, route guiding, 
dash board computers, etc. 

• And even in Our hornes: lifts, electrical household equipment, hi-fis, 
computer games, domestic alarm systems, etc. 

1.1.2 Quality Attributes 

The growth of responsibilities entrusted in such electronic products 
requires an increasing of their correctness, because of the consequences that 
can result from anomalies occurring during their functioning. The general 
meaning of 'quality of a manufactured product' covers many other aspects, 
both internal and external to the product. Widely varied features such as the 
price, performance, manufacturing time, weight, consumption, ergonomics, 
reliability, safety, are considered as criteria external to the system. They 
come both from the dient' s point of view (for example, an airline company 
which buys and uses an airplane) and the user's point of view (for example, 
the pilot or the passengers). 
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Other features such as modularity, readability and changeability (the 
facility with which a product' s design can be modified) are considered as 
criteria internal to the product. They concern the features relative to the 
development of a product and not to the services it provides. If the internal 
quality of a product is an important need for the manufacturer, this will only 
indirect1y affect the users. For example, a badly structured design (poor 
internal quality) can still result in a product which operates perfectly well. 
However, this could make ultimate modifications of functionality difficult, 
and therefore increase the costs and delays of these modifications, or even 
increase the risks of obtaining a failing system (poor external quality). 

In this book, we are mainly interested in external quality. More 
precisely, our presentation focuses on functional quality, that is to say the 
adequacy of the function actually provided by a product with the function 
expected by its user. The function characterizes the behavior of a product 
placed in interaction with other systems (industrial processes, human 
operators, etc.). This notion is to be disassociated from the other non
functional features of a product. For example, the color and shape of a 
telephone do not affect the telephone function which is to establish 
communication between users. 

1.2 DEPENDABILITY 

1.2.1 Product Failures and their Consequences 

Experience reveals that non-desired behaviors of products can occur 
whilst being used. These products show a temporary or permanent alteration 
of the function they are meant to carry out. This divergence is calledfailure. 
The occurrence of failures seems to be an unavoidable situation. Each one is 
confronted daily, sometimes harshly, with the relentless law of 'growing 
entropy', a law of physical sciences which seems to govern the universe. 
This law, which tends to disorganize what one already finds difficult to 
organize, has been formulated several times: the law of maximum trouble, 
also called the law of 'buttered toast' (which always lands on the buttered 
side down!), and alternatively known as Murphy's Law, which essentially 
says that when several possibilities exist it is always the worst which 
happens! All structured systems, such as natural biological systems and 
manufactured artificial products, have a tendency to rnalfunction, because 
they have been badly structured or because their condition is deteriorating. 
Being structured systems, computing systems are also subjected to this law. 

Due to the fact that responsibilities are delegated to computing systems, 
their failure can have regrettable and even tragic consequences. The media 
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regularly reports on catastrophes affecting industrial, aerospace, avionics and 
rail transport systems. Firstly, we can take as example, the opening of 
Denver airport which was delayed for several months due to a failure in the 
luggage management system. A second example is the delay of the Ariane V 
project due to a control problem which had resulted in the failure of the 
rocket' s first flight. Other examples inc1ude the recall of numerous cars by 
many of the major constructors due to potential anomalies of electronic 
systems. We also have in rnind the failure of aspace probe sent to Mars due 
to problems of non-homogeneity of measuring units (inch and cm). Finally, 
several patients were killed by failures of medical systems used for 
cancer treatments. 

The transfer of responsibilities to computers and the fatalities due to their 
malfunctioning are two antagonistic facts. If econornic reasons urge for the 
development of computing systems, their malfunctioning has to be avoided. 
In order to achieve this, we must first of all possess a good understanding of 
failure causes. 

1.2.2 Failure Causes 

1.2.2.1 Fault Notion 

An electronic product is generally used in interaction with other products 
and human beings, which constitute itsJunctional environment. For example, 
an electronic regulator controls the rotation speed of an engine used by a 
human operator to manufacture parts. The whole set of these partners 
(product and functional environment) is placed in a non-functional 
environment characterized, for example, by temperature and hurnidity. 

The user generally notices the failure of a product during its operation, in 
the context of the application. All causes of failures are known asJaults. 

When a failure occurs, one first needs to find the origin of the 
malfunctioning. For instance, a failure of an engine's control system can be 
due to a breakdown affecting the electronic regulator (the product). The 
functional environment of the product can also cause failures. For example, 
the engine controlled by the previously mentioned regulator can itself have 
broken down or have been badly used by the human operator. Finally, the 
non-functional environment can provoke an application failure as well. For 
example, the use of an electronic system in an environment with a 
temperature which is too high or subject to radiation can provoke a 
deterioration in the technological means used to manufacture the product, 
and therefore can cause a failure. 

The distinction between the notion of Jai/ure which qualifies an effect 
(the product does not provide the expected service) and the notion ofJault is 
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important. First of all, if the failure is attached to the operation of the 
product, the fault could have been introduced at different stages of its life 
cycle. Moreover, whereas the failure is associated with the product, the fault 
can be attributed to the product itself, to the human operator, or to other 
externalobjects. 

Several fault classifications are possible, according to the stage at which 
the fault occurs (when), the actual object affected (where) or the agent who 
is at the origin of this fault (who). We note lastly that it is often very difficult 
to identify precisely the exact cause of the failure: the precise nature of the 
problem, the moment it occurred, the object affected. This fault notion is 
therefore relative to the means of investigation used. 

1.2.2.2 When 

All products come from a more or less complex process which 
transforms a need into a usable product. The succession of the various stages 
of the life of a product is known as a life cycle, starting from expressing a 
need which is effectively the birth of the product, to the end of the mission. 
The most significant stages of this cycle are: 

• the requirement expression which describes the expectations of potential 
clients: for example, the creation of a landing system without visibility is 
motivated by the need to ensure the continuity of the air transport service; 

• the specification which defines the functionality of the product to be 
created: for example, the specification of a landing system without 
visibility expresses the relationships between the data elements provided 
by the environment via the sensors (radar, altimeter, gyroscope, etc.), and 
the orders transmitted to the actuators (engines,jacks, etc.); 

• the design and the realization which lead to a solution proposed to handle 
a problem stated at the preceding stage, and to refine it until an 
expression using hardware and software technology is obtained: for 
example, an automatic landing system will be created as a software 
executed on a hardware platform using one or more electronic boards; 

• the production, or manufacturing, which consists in reproducing the first 
product in several copies before they are put on the market; 

• and finally the useful life, or operation, providing services to the user of 
the product. 

Unfortunately, during each stage, faults can be introduced by the diverse 
intervening human beings or by the tools or technologies they use. In 
addition, these various and diverse faults have a tendency to accumulate, 
making their handling even more difficult, and hence the failure risk higher. 
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1.2.2.3 Where 

In this book, faults are c1assified according to the product which is at the 
center of our investigations. We define three fault categories: 

• the interna I faults, attached to the product, which are divided into two 
sub-groups: 

~ the functional faults, or creation faults, cOInmitted by humans or by 
their tools during the stages of specification, design/realization and 
production; for example, a software designer has badly translated the 
design model features by means of programming language statements; 

~ the technological faults, also called breakdowns, affecting the 
execution means: for example, an internal connection in an agemg 
electronic circuit has been cut off; 

• the external faults, or disturbanees, ansmg from the product's 
environment; for example, a heavy ion modifies a value '0' into a value 
'1' in a memory of a control system embedded in a satellite. 

1.2.2.4 Who 

Humans constitute a fundamental source of faults. First of all , as a 
product user (for example a pilot of a vehic1e), the human operator is reputed 
for committing faults. Numerous catastrophes have been or are still caused 
by human faults. The media reports cases affecting air, rail and automobile 
control, and energy distribution systems. Secondly, as product designer or 
manufacturer, humans introduce faults into systems. 

In order to remedy these faults, it is necessary to introduce methods and 
tools intended to assist (to guide and check) or simply substitute the humans. 
For instance, a compiler automatically translates the statements of a source 
program into a set of instructions of an executable pro gram. In the same 
way, CAD (Computer Aided Design) tools make the electronic circuit design 
easier, and consequently more dependable. However, let us note that these 
means are themselves issued from a human activity of creation. Thus, used 
methods and tools can also be affected by faults. Moreover, the product 
designer, again a human, can also commit faults by badly handling correct 
methods and design tools which he/she disposes of. 

Finally, even if all these preceding factors of human faults have been 
mastered, the hardware equipment which processes the software application 
is still subjected to degradation phenomena: natural component ageing or 
external aggression due to high temperature, electromagnetic fields or space 
radiation. These perturbations affect the hardware platform, producing faults 
during the operation of the product. 
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1.2.2.5 Fault Analysis 

Whatever its origin, a fault is often difficult to predict and identify. It can 
be studied in probabilistic terms, using experimental data issued from 
already manufactured products and statistical laws, such as the probability 
that an electrical component is affected by a single breakdown (a stuck-at, a 
short-circuit, etc.). Faults can also be analyzed by examining their effects. A 
fault leads to a failure damaging the service delivered by a product according 
to a transformation mechanism which creates internal errors and propagates 
these errors to the outputs (by contamination) through the internal structure 
of the product. It is not always easy to analyze this mechanism. When 
someone uses a product in a particular environment, it is difficult to precise 
if the failure results from unacceptable characteristics of the environment 
(excessive temperature or high radiation, etc.) or because the product is 
incapable of supporting such an environment. Finally, the cumulative 
character of faults again complicates the analysis: several quite different 
faults produced at different stages of the life cycle can lead to a same failure. 

Faults, errors and failures constitute dependability impairments which 
must be weIl understood. The previous comments do not imply that the fight 
against faults and their effects is lost from the start. Of course, it is a difficult 
challenge, and several parameters can cancel out the efforts made to handle 
faults. Numerous protection methods and techniques exist, but they have to 
be employed together with competence and in the appropriate manner. These 
means are regrouped in the scientific discipline known as dependability. 

1.2.3 Taking Faults into Account 

The destructive phenomena due to faults and their effects cannot be 
ignored. System designers, manufacturers and users should be totally aware 
of this reality and take on their responsibilities. This implies integrating the 
fault notion at the very first stages of specification and design, then all 
throughout the product's lifetime. 

For a long time, the approach considered in industrial projects consisted 
first of all in designing and creating a product from essentially functional 
specifications, then integrating dependability criteria at the end of the 
project. This approach is undesirable for two fundamental reasons: it is 
expensive and inefficient. 

First, this approach is expensive because faults are not considered as soon 
as they are introduced. Their handling becomes more and more expensive 
during the following stages. In particular, if they are not corrected 
accordingly, they can lead to failures long after the product' s 
commercialization. This impedes the product' s appeal. The strongly 
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increasing character of this financial phenomenon is often quoted. Millions 
of euros and dollars are wasted by the loss of expensive systems (such as the 
probes sent to Mars), the cost of testing and repair, and the consecutive loss 
of the market and of c1ients trust (for example, due to vehic1es being called 
back by car manufacturers). 

This approach, which consists in considering aposteriori the 
dependability requirements, is inefficient because the good functional, 
methodological, and structural choices avoiding or reducing the appearance 
of failures, should be made right from the very beginning of the life cyc1e. In 
addition, all late fault elimination is more difficult. We estimate that in the 
electronic industry, the cost of fault correction increases by a factor of 10 at 
each stage of production: for example, component manufacturing, insertion 
of components on printed boards, assembling boards on racks, etc. 

The only suitable approach consists in taking all the product' s parameters 
into account from the very first specification stages: the functional 
parameters (product behavior) as weIl as the non-functional parameters 
wh ich are relevant to the dependability. In particular, this implies being 
familiar with the environment in which the product is immerged: the 
functional environment with which it communicates (this could be a process 
or a human interlocutor), and with the non-functional environment 
(temperature, humidity, vibrations, etc.). 

The principal handicap of such an approach is, of course, the additional 
constraints wh ich are made obvious early on. These constraints increase the 
cost in the short term and are difficult to express in many projects. We 
should note that often the economic excuse results from a false ca1culation: 
as we have already emphasized, on a medium or long term basis, the cost of 
a badly studied product from a dependability point of view could turn out to 
be exorbitant. 

A primary reason that incites engineers to postpone the treatment of 
faults until the end of their project is due to the fact that they badly manage 
this aspect. The traditional training schemes mainly lead students to propose 
solutions to problems, asking the trainer to respond to the question: 

ls the solution 1 am proposing correct? 

Furthermore, designers, like their employers, often measure the results of 
their work according to the quantity of the product provided and not to its 
quality. For example, during software programrning step, it is easy to 
measure the engineer' s productivity by the number of lines of code 
produced. In this case, the time taken to avoid the introduction of faults into 
the pro gram whether immediately or in the future (by its readability feature 
for example) is not taken into consideration. And as long as this activity is 
considered as lost time, no progress will be made. 
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Finally, the designer has a tendency to hide the existence of faults and the 
time he/she spent to avoid and to correct them, as this is considered as 
embarrassing (notion of professional negligence). 

1.2.4 Definitions of Dependability 

Two points of view are concerned by the definition of the dependability 
notion: 

• dependability as attributes of systems, 

• dependability as a science. 

Due to the role and responsibilities attached to them, computing systems 
have to be characterized by their capacity to deliver the services for which 
they have been designed. They should not fail. This ability is expressed by 
attributes defining dependability of these systems. 

To obtain this result, that is the actual ability not to fail, engineers 
developing these products have to use protective means throughout the 
whole development cycle. These methods, techniques and tools will be 
regrouped in a scientific domain also known as dependability. 

1.2.4.1 Product Dependability 

The dependability of a product has to be considered as one of its 
specification attributes, as weH as the purely functional or economic 
requirements. The now classic definition given by J-c. Laprie describes the 
large scope of this term but also its precise objectives: 

Dependability is that property of a computer system such that 
reliance can justifiably be placed on the service it delivers. 

The service delivered by the product corresponds to the function which it 
perforrns during its operation. 

Several scientific criteria allow the trust placed in a product to be 
justified, such as the reliability, the availability, the maintainability, the 
testability, the safety and the security. These criteria are caHed dependability 
attributes. 

Reliability is attached to the study and the evaluation of the aptitude of a 
product to ensure its mission in a specified environment. This criterion is 
therefore concerned by the durability of the service delivered over time. 
Maintainability and testability attributes concern products on which it is 
possible to act in order: i) to avoid the introduction of faults, ii) when faults 
occurs, to detect, to localize and to correct them. Safety is specific to 
dangerous effects of failing products. A vailability measures the aptitude of a 
product to function correctly, by integrating protection mechanisms 
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(maintenance or tolerance). This criterion only differs from the reliability 
criterion when these protective mechanisms are used. Finally, security 
groups together confidentiality (non-occurrence of unauthorized disclosure 
of information) and integrity (non-occurrence of improper alterations of 
information). This last security criterion is not considered in this book. 

The obtaining of dependable products implies capabilities, means and 
tools which act on certain ofthe product's attributes. This has given birth to 
a relatively new discipline which involves the analysis and the prevention of 
product failures. This discipline has led to new design· and production 
methods, which, when joined to the improvement of the technology used for 
the realization, allow the creation of new products which have better 
dependability. 

1.2.4.2 Dependability Science 

As a science, dependability proposes a global approach to study and 
design products which provide a 'justified trust' in the service they deliver. 
This approach attempts to unify the two processes which, on one hand 
guarantees the achievement of a product which functions correctly and, on 
the other hand, guarantees that the product will function correctly during its 
whole active life in the environment in which it is being used. 

Implied in several activities, such as the design, the production, and the 
operation, dependability is a very active discipline which gives place to 
scientific studies in many research laboratories and which leads to numerous 
industrial applications. This theme can be qualified as orthogonal, as it is 
used in many different domains: 

• hardware and software systems considered in this book, but also the 
mechanical systems, for example, redundancy techniques such as the 
spare wheel of a car or the duplication of abraking system, 

• biological systems, as nature offers an impressive range of efficient 
redundancy techniques, like for example the duplication of numerous 
organs (lungs, kidneys, etc.), which improve human dependability, 

• or else socio-economic systems. 

1.3 MEANS OF DEPENDABILITY 

1.3.1 Evolution 

Needs for dependability are not new. As soon as humans began to 
manufacture weapons and tools with stone, wood and bone, they quickly 
understood the need to produce solid and durable objects. The financial and 
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commercial needs appeared later on. This notion of reliability was structured 
into a scientific discipline even later according to the historic scale. The 
current explosion of digital electronics and its applications to computing 
have extended and amplified studies on reliability. Today, techniques allow 
the products to survive Ion ger (high reliability) in isolated andlor aggressive 
environments. The aerospace and nuclear domains have greatly contributed 
to this development. To simplify, historic evolution reveals three main steps: 

• technological improvement, 

• mastering the development process, 

• managing extern al relationships. 

1.3.1.1 Technological Improvement 

This is the first step towards the improvement of dependability. This 
concerns the implementation means and aims at mastering the technological 
faults. In the 1950s, at the beginning of computer systems, the first logical 
electronic components used (relays, then vacuum tubes, and then elementary 
transistors) had a very short average lifetime: the famous computer ENIAC 
(Electronic Numerical Integrator And Computer) of the 40's had 18800 
vacuum tubes, 6000 switches, 10 thousands of passive components and 
offered an average life time of half an hour! Throughout successive 
technological generations, SSI, LSI, VLSI, etc., the MOS integrated circuits 
(pMOS, then nMOS, and finally CMOS) became more and more complex, 
and economical. At the same time, their performance and their reliability 
increased in a spectacular manner. 

1.3.1.2 Mastering the Development Process 

The continuous improvement of the reliability of physical components 
has allowed developing products more and more complex in quantitative 
terms (number of elementary components and of offered services) and also 
qualitative terms (sophistication of the provided services). However, the 
mastering of their specification, design and production stages is becoming 
increasingly difficult, implying the possible occurrence of numerous faults. 
Since the development of the very first computing systems, a lot of time has 
been spent trying to find out how to master the effects of creation faults. In 
order to mask or detect and correct errors coming from the product' s 
operation, redundancy techniques were proposed, implying more hardware 
andlor more software. This approach was first used in the transmissions 
domain with error detecting and correcting codes, to stamp out the effects of 
the parasitic aggressions that disrupt the media of transmission. 
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Afterwards, certain error detecting and correcting codes defined for 
transmissions were adapted and implemented into computer units such as 
storage units. The new needs for logical and/or arithmetic treatment circuits 
in aerospace projects, industrial command-controls, and communications, 
have led to specific new redundant hardware and software techniques. 

Following this, other complementary techniques have been introduced to 
limit the creation of faults. Their first objective is to master the product 
during its creation by using verification methods of intermediate models. 
Thus, a formal product specification allows the immediate detection (without 
waiting until the final stage of implementing the product) of cases of 
inconsistency or incompleteness which unavoidably result in product 
failures. Then, noticing that the creation faults are issued from the creation 
activity, the mastering of the development process itself was investigated. 
For example, in the software domain, the use of a programrning style 
constrains the manner of programrning and aims at avoiding certain types of 
faults induced by the difficulty in creating and modifying the program under 
development. 

1.3.1.3 Managing External Relationships 

Finally, interest has been extended to the externat faults associated with 
the interactions between the product and its environment. Nowadays, these 
faults are in greater and greater, as digital systems have more and more 
external (with their environment: processes, users, etc.) and internal (other 
digital systems) relationships. For example, the task of regulating airplane 
engines is included in the flight control software, which itself is integrated 
into an avionics system. The relationships between systems have become 
more complex than just an inclusion. Systems interact between themselves 
and have to cooperate in order to fulfill a more global mission. For example, 
by placing intelligence in the form of software and electronics in a sensor, 
this device is transformed into a system which dialogues with the control 
system to inform it of certain events, whereas before it was purely a slave. 
Numerous faults can also result now from the interaction of the product with 
the human user, due to the complexity of these interactions. 

The environment mayaiso disturb the system operation, due to non
functional aggressions: temperature, heavy ion, electromagnetic fields, etc. 
moreover, the products are often themselves the source of disruptions of 
other systems. Far example, a mobile phone produces electromagnetic waves 
which can disrupt avionics systems. For this reason the use of these 
telephones is banned during flights. 
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1.3.2 Means 

The means offered by dependability science are numerous and varied. 
The related methods and their associated tools are traditionally organized 
into four groups: fault prevention, fault removal, fault tolerance and fault 
forecasting. 

• Fault Prevention aims at reducing the creation or appearance of faults 
during the life cyc1e of a product. 

• Fault Removal aims at detecting and eliminating existing faults. 

• Fault Tolerance aims at guaranteeing the service provided by the product 
despite the presence or appearance of faults. 

• Fault Forecasting aims at estimating the presence of faults (number and 
seriousness). 

These four c1asses of means are complemeritary and should be considered 
jointly during the development of a product. For example, the 
implementation of tolerance techniques to handle faults in operation is not 
efficient if fault prevention and removal techniques have not been applied 
during the development process. Indeed, the tolerance mechanisms assume 
certain hypotheses on the faults tolerated. For instance, replicated modules 
tolerate hardware faults due to ageing, as such faults are supposed to concern 
one module only at the same time. On the contrary, a design fault can infect 
all the modules, making this technique inefficient. Consequently, this design 
fault has to be prevented or removed before operation. In the same manner, 
the means of fault removal suppose the prior use of fault prevention 
techniques. Effectively, fault elimination requires their detection and then 
their localization. These operations are expensive in technological means 
and in time. They become impractical if the number of faults treated is high. 

In addition, prevention, removal, and tolerance techniques have to be 
applied efficiently and pertinently, as they are very expensive. Let us take 
for example the techniques of fault removal. Certain electronics industries 
estimate that 50% of the manufacturing cost is due to the development and 
the application of test sequences aimed at detecting faults. In the software 
domain, specialists say that 30% of the development cost is implied by the 
checking means of the developed applications. 

1.4 SUMMARY 

Introduced in the preceding sections, the main characteristics of the 
dependability of computing systems are surnmarized in Figure 1.1. They are 
structured into three groups: 
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• Jmpairments which involve faults and their progressive transformation 
and propagation through the product structure as errors and faHures, and 
finally their external consequences on the mission. 

• Attributes which provide designers and users with criteria (reliability, 
availability, maintainability/testability, safety, security) allowing to 
specify the expected dependability and to estimate the actual 
dependability of a product thanks to fault forecasting tools. 

• Means used by the developers in order to provide the final product with 
the required dependability level; these techniques are organized into four 
sub-groups: fault prevention, fault removal, fault tolerance, and fault 
forecasting. 

• Faults 

Impairments • Errors 
• Failures 
• External consequences 

• Reliability 

• Availabillty 
Attributes • MaintainabiJityl 

Testability 

• Safety 
• Security 

• Fault Prevention 

Means • Fault Removal 

• Fault Tolerance 

• Fault Forecasting 

Figure 1.1. Dependability characteristics 

The organization of the book is based on these groups. A first part deals 
with the impairments and analyzes all basic notions of destructive 
mechanisms. A second part provides the reader with aglobai overview of the 
protective means that can be used to increase the dependability of a product, 
and the attributes used to measure this dependability. A technical chapter is 
dedicated to redundancy which plays a major role in all protective 
techniques. Parts three and fourth aim at mastering the most important 
techniques of fault avoidance and fault tolerance means. 
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General Context 

In this chapter, we define a general context in which the dependability 
concepts can easily be introduced. We consider hardware and software 
products, created and designed for applications embedded in a given 
environment. This general scheme corresponds to a wide and significant 
range of real situations. In section 2.1, we firstly present the product in the 
final context of its application. Then, in section 2.2, we note the principal 
stages which led from the initial requirements to an operational application, 
according to a simple linear life cyc1e. We follow this life cyc1e in section 
2.3 by tackling the modeling of a product as a system. To finish, in section 
2.4, a simple example of a drinks distributor illustrates the notions presented. 

2.1 APPLICATION CONTEXT 

The c1ass of applications considered is represented by Figure 2.1. We 
distinguish three parts: 

• The product is a physical entity destined to satisfy a need of one or 
several users. The products considered in this book are implemented by 
hardware and software technologies. 

• The user is the grouping of entities interacting functionally with the 
product via its inputs/outputs. The user is also called the functional 
environment. A user mayaiso be another product such as an industrial 
process (e.g. an engine) or a human operator using the product. 

• The product-user couple is immersed in the non-functional environment 
often simply called environment. This notion refers to external entities 
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which have an impact on the product's behavior without direct action on 
its inputs. It is defined by a set of non-functional parameters such as 
temperature, humidity, vibrations etc. 

Figure 2.1. Application dass 

An application domain typical of this model concerns the process control, 
which associates a regulator (the product) with a user constituted of a 
process (the system controlled by the regulator) and a human operator. We 
remark that the process, functional partner of the product, is very often itself 
a manufactured system (e.g., an engine or an electric heating system). 

Only the product is the object of our interest in this book, relatively to the 
dependability. However, the product dependability also depends on the user 
and the non-functional environment. Take for example an automobile ABS 
system. The product is an electronic regulator destined to satisfy a need: to 
avoid the blocking of the wheels when the braking is too strong. This 
regulator interacts with the user composed of two elements: the driver and a 
physical device constituted by the hydraulic braking system. The process 
sends the speed of the wheel' s rotation to the regulator which then computes 
the control signals to be sent to the braking system. The non-functional 
environment is defined by a large number of parameters characterizing the 
vehicle, the road, etc. For instance, the non-functional environment may take 
into account electromagnetic radiation coming from diverse external sources 
(radar, mobile telephone, engine, electrical atmospherics parasite, etc.) as 
they may act on the electronic product. 

Integrated into its environment, the product must ensure a mission which 
specifies the product' s objective, Le. the function to be performed and its 
duration. 

• The function defines what the product is intended for and justifies its 
existence; it expresses the interaction with the user to whom the product 
is connected, that is to say the relation between the inputs and outputs of 
the product. 
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• The duration or operational lifetime of the mission varies according to 
the application: this can be a few seconds (missile flight), hours (airplane 
flight), months (space mission) or years (industrial regulation system). 

For example, an ABS system can be defined as a function which reduces 
the pressure of the hydraulic braking system by a given amount via actuators 
when the speed of the wheel' s rotation is inferior to a certain value 
depending on the vehicle's speed. 

We call delivered service the product's real behavior when placed in its 
applicative environment Thus, the function is the desired service when the 
delivered service corresponds to the one effectively obtained. 

Product Examples 
The following examples and their variants described afterwards will 

illustrate the notions and techniques introduced in the following chapters. 

Temperature Regulator. The first product is a boiler controller. For 
example, it is constituted of a micro-controller which executes a regulation 
program. The controller receives sampled information about the temperature 
of the heated recipient. It then elaborates the reactions on the heating system 
by using an algorithm which takes into account a behavioral model of the 
recipient. These reactions act on an electro-valve controlling the combustible 
flow. The significant elements are: 

Product: Regulator + temperature sensor + electro-valve. 

User: Heated recipient + heating combustible + the human operator who 
fixes the regulation instructions (desired temperature). 

Non-functional environment: external temperature, corrosive gases, 
pressure, etc. 

Drinks distributor. The drinks distributor has electromechanical and 
electronic parts. For example, the distributor is made up of an automaton for 
the choice of drinks, another one managing the money, and a third one for 
the drink' s distribution. The functional environment includes the user as well 
as the service for supplying water, coffee cups, etc. We note that one can 
have a different point of view about this application by considering that the 
product is the purely logical part of the distributor (a set of interconnected 
automata) and that the functional environment includes the user, the 
electromechanical parts and the management of the fluids, ingredients, and 
so on. In this case, the objects are defined in the following way: 

Product: the logical electronic part of the control system (Programmable 
Logic Controller - PLC -, micro-controller running a program, Field 
Programmable Gate Array - FPGA -, etc.). 
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- User: the process which inc1udes the electromechanical parts and the 
constituents of the drinks (cups, water, drink doses), and the human who 
uses the machine. 

We can note that such a system makes a second human intervene: the 
operator responsible for recuperating the money and supplying the machine 
with drink doses. The product also has to interact with this user. 

Arithmetic and Logic Unit. An Arithmetic and Logic Unit is a product 
interacting with a human operator (such as a pocket ca1culator) and/or an 
electronic process (circuit embedded in a computer). Both constitute the 
functional environment of the product. The non-functional environment can 
be characterized by the temperature which has important effects on 
electronic components. In particular, if this temperature is too high, the 
service delivered can be different from the expected function. 

Stack. A stack is a product which stores data. It can write words in 
sequential order and read them in the reverse order of their writing. This 
memory unit is very useful in computing; it can be implemented either as a 
hardware component (specific electronic circuit) or a software product 
(offering the functions to write and read). We will consider two significant 
applications: 

• the management of subprograms calls using a software stack to back-up 
the local variables and the calling subprogram return address, 

• an interrupt management system to back-up the current application 
context (the values of some internal registers) when an interrupt occurs, 
to restore this context when the interrupt handler execution is completed. 

In the first case, the functional environment is the executable pro gram 
which calls the write (PUSH) and read (POP) functions. 

In the second case, the environment is an electronic circuit which 
provokes the back-up (respectively recovery) of the context by PUSH orders 
(respectively POP orders) at the initialization of an interrupt treatment 
(respectively during its conc1usion). 

Industrial robot. As illustrated by Figure 2.2, an industrial robot is made up 
of several objects belonging to two parts: 

• the product called the controller, which can be a control pro gram running 
on a hardware platform, 

• the user inc1uding the robot, the tools it uses (machine tool), the pieces it 
treats (manufacturing and assembly) and the human operator. 

Other humans can also interact with this product: the maintenance agent 
and the instructor responsible for the training of the robot. 
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Figure 2.2. Industrial robot 

2.2 LIFECYCLE 

2.2.1 Principles 

As already pointed out in the introductory chapter, the failures which 
affect a product' s mission arise from the faults which appear all throughout 
the life of this product. It is therefore necessary to first identify clearly the 
stages of the life cycle of a product in order to analyze the type of faults 
associated with them and then to apply the appropriate protective 
mechanisms. 

Life cycle starts with the expression of a need, which defines the 
expectations of the future product' s users. It gives an answer to the following 
question: why do they have a need for a product? This need is formalized by 
the requirements which justify the creation of a product. They are 
determined from future users by means of requirement capture techniques. 
This stage is not considered in our book. We start therefore the development 
of a product from its given requirements. 

In order to facilitate our study, we consider a simplified cycle which has 
four phases (also called stages or steps here), as illustrated by Figure 2.3: 

• the specijication (or establishing of an initial contract) which defines the 
product to be created by the expression of specijications, 

• the design which transforms the specifications into a system which is a 
priori an abstraction without physical reality, 

• the production (also called manufacturing or implementation) which 
finally transforms the system into areal product using hardware andlor 
software technologies, 
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• the operation (or useful life or utilization or exploitation) which 
integrates the product into a given environment to execute a mission. 

Requirements D~igned System Product 

Figure 2.3. Simplified Life Cycle 

The development process (or development or creation process) of a 
product groups together all the operations necessary to obtain the final 
product. So, in the general framework of our linear life cycle, this process 
regroups the three phases: specification, design and production. 

Other development process models break up or combine these phases. 
For example, the spiral cycle iterates the preceding phases by progressively 
taking into consideration diverse aspects of the requirements. However, 
these models do not question our explanations regarding to destructive and 
repair mechanisms that will be studied for each phase. 

2.2.2 Specification 

Written and signed by the dient (the person who has proposed the 
project), the designer (the person who creates the product based on the needs 
expressed by the client), and sometimes the user (this word implies here the 
human who represents the functional environment of the future product), the 
specijication formalizes the characteristics of the product to be created. 
Figure 2.4 symbolizes this relationship between the three partners. 

SpecJflcst10ns 
. mission 
. dependability attributes 

Figure 2.4. Initial Contract 
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From an expression of the requirements, generally written in natural 
language, this initial phase of the project establishes the formal or non
formal specifications constituting a contract. This contract defines two 
points: 

• the mission, also calledjunctional characteristics, of the product, that is 
to say the function or service to be delivered by the product and the 
duration of its operation, 

• non-functional characteristics, dealing with product dependability 
requirements (according to attributes such as reliability, availability or 
safety) and constraints (such as temperature or radiation) of the non
functional environment of the future product. 

The specifications indude the formal definition of the relationships 
between the product and its environment (functional and non-functional). In 
particular, the role assigned to the product and the constraints of the 
environment for wh ich this role is desired must be defined. For example, the 
contract defining a program can have to specify the constraints on its 
executive environment in order to guarantee a good functioning. If a user 
acquires a workstation which integrates this software, other constraints are 
expressed (the temperature of the room, etc.) to guarantee a good functioning 
of the hardware. Too often, non-functional environment parameters are 
missing or incomplete, leading to numerous ulterior problems. 

In addition, the expected trust in the service delivered by a product, that 
is its dependability requirements, has to be quantified in terms of a set of 
attributes the values of which have to be specified. The effective values will 
then be established at the end of the development process. For example, we 
will specify the reliability of a certain circuit with a probability lower than 
10-5 that the product will have a failure during a mission defined for 1000 
hours. Then, this requirement will have to be compared with the estimated 
reliability of the final produced circuit. 

Let us note that the two aspects of the non-functional characteristics are 
correlated. For instance, the mean time to first failure (reliability metrics) of 
an electronic component is strongly correlated with the environmental 
temperature. A required value for the mean time to first failure will not be 
guaranteed if the temperature is too high! 

In numerous cases, the dient and the user are the same physical person. 
Sometimes, the dient is also the designer. However, these three partners 
(dient, designer and user) will be voluntarily distinguished here because 
they correspond to different and sometimes antagonistic points of view. This 
is the case conceming the notion of service delivered which corresponds to a 
user vision of the functioning of a product. This vision has however to be 
accepted and understood in the same way by the three partners. 
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Unfortunately, very often the contract is not a formal notion implying the 
three partners: for most industrial products, the user who buys a product has 
not participated in the contract which has been established by the client (who 
imagined the product) and the designer (who created the product). 

2.2.3 Design 

2.2.3.1 Introduction 

Design is a process transforming the specifications into a system which 
constitutes an abstraction of the future product. What distinguishes the 
modeling from the product itself is either its incapacity to execute itself 
(being a simple description), or the fact that it does not take into account the 
available execution means involved during the operational phase. For 
example, it is possible to represent and to simulate an application carrying 
out several tasks on a mono-processor without taking into account the 
distributed aspect of the execution means (the final product has to operate on 
a multi-processor network). 

The product is rarely obtained directly from the specifications at one go. 
lt results most often from a succession of linked stages, the number and the 
nature of which depend on the type of product considered and on the chosen 
design process. Each stage leads to the description of the system by a model. 
Thus, the more complex is the behavior described by the specifications, the 
more numerous are the stages to be carrled out. Actually, each stage refines 
the results of the analysis of the previous stage (from a general design 
towards a detailed design). In addition, this refinement process depends on 
the implantation technologies chosen according to performance criteria 
(which may favors electronics) or maintainability (which may lead to the 
development of a software model) or others. 

Sometimes, a step of realization pro vi ding a model of the product 
concludes the design phase. This step produces a model which takes the 
features of the execution technology into account. This could provide, for 
example, an executable program when software technology is employed, or 
a CMOS technology circuit for a hardware implantation. This step is 
integrated into the design phase in order to facilitate our study. lt should be 
noted that this inclusion is justified, as the last phases of design using 
technological means are often automated. For example, a pro gram written in 
a programming language is a model for which the implementation, that is to 
say the executable code, is obtained thanks to a compiler. 

We are now going to succinctly present the processes of design used for 
hardware (section 2.2.3.2) and then software (section 2.2.3.3) systems, and 
to finally conclude on their similarities (section 2.2.3.4). 
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2.2.3.2 Hardware Design 

The design process of an electronic circuit can be organized into three 
successive levels implying different models and methods (Figure 2.5). 

- --- -- --

I Behavioral I 

Structural 
· FunctionaJ HDL 
• Logic 
• Electronic 

." 

Technological 
. Symbolic layout 
. Masks 

Figure 2.5. Creation steps of an integrated circuit 

• The behaviorallevel (or system level) expresses the global functioning of 
a product without any knowledge of its structure. For example, the used 
model can be a finite state machine or a set of input/output sequences. If 
no formal specification has already been provided, this level generally 
involves a first stage of formalization of the system. 

• The structurallevel, on the contrary, is supported by a structural model: 
the system is structured into interconnected entities called modules. Here 
we can distinguish three intermediary levels: 

~ The functional hardware oriented level HDL (Hardware Description 
Level), such as VHDL (VHSIC Hardware Description Language, a 
IEEE 1076.1 industry-standard) and Verilog, which are the principal 
languages used nowadays in the industry); this level uses reference 
hardware modules (Arithmetic & Logic Unit, registers, counters, 
memories etc.); 

~ The logic level, which reveals the system as a structure of 
intereonneeted elementary logical modules: gates (AND, OR, NAND, 
NOR, XOR, ete.), flip-flops and various logic networks; the resulting 
strueture appears as a netlist of intereonneeted eomponents; 
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~ The electronic level, which employs transistors (switching elements) 
organized into networks (static and dynamic logical networks, etc.). 

• The technological level (also called layout level) expresses the physical 
reality of the integrated circuit in the form of a layout, that is to say a 
topology of severallayers. For example, the MOS technology uses P & N 
diffusion weHs, poly silicon gates, metall, metal 2, etc. This level breaks 
itself down into two sub-levels: 

~ The symbolic level where the different technological layers are 
represented by color lines, such as William's c1assical N-MOS stick 
diagram pop~arized by the Mead & Conway' s book: green = 
diffusion, yellow = ionic implantation, red = polysilicon, blue = metal. 

~ The mask design level which expresses the real topology of the 
different masks necessary to the production of the integrated circuit. 

In the case of an electronic system with supply circuits and other 
components associated with the electronics (sensors, actuators, magnetic or 
optical disks, signal couplers, etc.), the design involves the preceding levels 
(behavioral, functional, structural, technological) for each electronic part, but 
also carries out integration and assembly stages, leading to several PCBs 
(Printed Circuit Boards) interconnected by various connection devices. 

2.2.3.3 Software Design 

As for hardware systems, the behavioral model of a software system is 
formalized if this has not already been carried out during the specification 
stage. Following this, a structuring of the system by breaking it down into 
sub-systems is established (preliminary design), then refined (detailed 
design). According to the type of product, the control relationships between 
the sub-systems are: 

• Sequential relationships: sub-systems offering services called for in 
sequence, eventually in a repetitive (loop) or conditioned (if 
then ... else ... ) manner, 

• Parallel relationships: sub-systems are cooperative and/or competitive in 
an independent way (parallelism) or being constrained by precedence 
relationships (synchronization). 

The design process is reiterated on each sub-system. The different 
expression models, resulting from each design stage, are expressed by 
notations (for example HOOD, UML or programming languages). 

This work finishes by a programming stage which transforms the last 
design model into a prograrn. This operation is made easier due to the 
automatic generation of a part of the source code by development tools. 
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Finally, the executable program is obtained using a compiler and a linker. 
It makes use of the services offered by the execution means: a 
microprocessor interprets the basic processing services and an operating 
system offers more abstract management services (management of 
inputs/outputs, tasks, etc.). 

2.2.3.4 Similarities 

The presentations, carrying out separately the two implementation 
technologies in the two preceding sections, show a sirnilarity in the process 
and the means used. Three design levels are implied: behavioral level, 
structurallevel and technologicallevel. 

• First of all, a behaviorallevel of the description of the product formalizes 
the specification in both cases). The models used are the same: automata, 
Petri Nets, StateCharts, etc. This modeling allows the designer to 
understand what the product needs to do, and to detect information lacks 
and inconsistencies. For example, in the case of a Petri Nets model, the 
designer can detect certain undesirable deadlock situations. It should be 
noted that this work needs to be carried out during the specification stage. 
This is sometimes impossible when the contract is written in natural 
language. 

• The structural level is also present in both cases. The module (or 
component) notion represents the break down of a system into 
interconnected sub-systems according to links of type 'is composed of 
(composition relationships) and 'calls to' (service relationships). At the 
beginning, these modules are abstract elements, and then they are 
materialized at a logical level (HDL modules or subprograms) to 
progressively reach the technological level (transistor networks or 
programrning language statements). 

• The technological level concerns the 'materialization' of the design 
modeling to obtain an executable system. In the case of software, this 
involves the translation of the features of the programming language 
used. Two sub-levels exist jointly for the two technologies: 

~ The symbolic level which gives an abstract view of the execution 
means. We have already quoted the example of the stick diagram in 
electronics. We can also quote the abstract machine associated with 
the software programrning language. For example, the use of 
subprograms implies the use of a stack which allows the storage of 
return addresses by the caller (stack machine). 
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~ The physical level which implements the concepts of the previous 
abstract view. For example, according to the hardware used, the 
abstract notion of stack necessary for the management of subprograms 
will be directly offered by the microprocessor (PUSH and POP 
instructions) or should be simulated by software features (stack 
implemented as an array and a 'top of the stack' pointer). In electronic 
technology, the integration means from the layout level to an 
integrated circuit implies numerous phases which depend greatly on 
the technological processes used. 

To conc1ude, it should be noted that in numerous cases the first design 
process phases are independent of the final implementation means (software 
or hardware). Several phases of the c1assicalfunctional approaches (SA-RT) 
or, more recent object approaches (UML), can be applied both to hardware 
and software products. 

2.2.4 Production 

The production stage ensures the physical realization of a manufactured 
product having already been designed. Industrial constraints such as 
standardization, productivity and quality influence this phase. The actual 
means are very varied according to whether we are creating electronic, 
mechanical, electromechanical or even software equipment. 

In the case of electronic systems, it would involve buying and/or 
manufacturing passive or active components (Standard components, ASIC, 
or Full Custom Integrated Circuits) or even circuits integrating severallevels 
of functionality and power (like the System-On-Silicon - SOS), placing them 
on printed circuits, interconnecting the cards by diverse connection means, 
mounting these cards in racks, conditioning and packaging the final product. 
The system obtained at the end of the design phase will probably be a little 
bit modified in order to satisfy these production constraints. For example, if 
a system model is too complex to be economically designed by a unique 
integrated circuit, it is necessary to break it down into interconnected sub
modules, wh ich adds a supplementary stage. The reuse of available 
components can also modify the result. 

In the case of software, the implementation and adaptation of the product 
(a program) in its final context must take into account the executive 
environment: hardware platform (microprocessor, input/output unit, etc.) and 
operating system (real-time kerneI, drivers, etc.). Frequently, this activity has 
been handled at the last stage of the design. The production of the software is 
essentially the copying of files onto varied media supports (ROM memory, 
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CD ROM, etc.) or even the transmission of data onto a distribution network 
(specialized lines, local network, Internet, etc.). 

2.2.5 Operation 

U seful stage in the life cyc1e of a manufactured product, the operation of 
the product is the outcome of the creation stages. The product is placed in 
interaction with the user in order to execute the defined mission in its final 
environment. The use duration is generally longer than the creation stages. It 
implies relationships with humans (users, and maintenance agents). 

The repairable products integrate another stage linked to the operational 
phase. Actions processed on the product structure during its useful life are 
named by the generic term of maintenance. The first goal of this stage is to 
proceed to the operations of fault detection and removal necessary to reach 
the satisfaction of dependability requirements (preventive and corrective 
maintenance). ISO 8204 defines corrective actions as actions taken to 
eliminate the causes of an existing non-conformity, defect or other 
undesirable situation in order to prevent recurrence. In addition, economic 
competition leads to the adding of supplementary functionalities or to the 
improvement of the product's qualitative execution performances, 
ergonomic properties, etc. of existing functionality. Hence, the specification 
may be modified, leading to the design of a new version of the initial system 
and an adaptation of the production process (evolutive maintenance). 

From the product's designer's point of view, the maintenance phase is 
very important although often underestimated. In effect, numerous products 
have a creation wh ich lasts 3 to 5 years and a life duration of 20 to 50 years 
(it is the case of avionics products). This means that the maintenance costs 
charged to the designer can often be as expensive as development costs of 
the first version of the product. 

2.3 PRODUCT MODEL 

During the specification and design stages, the product is represented as a 
system by using different modeling tools also often called languages (when 
their semantics is formally defined) or notations (when their semantics is not 
formal). For instance, Petri nets, FSM (Finite State Machines), Ada and C 
languages are modeling tools. Elements of a modeling tool are called 
features. 

A model is one instantiation (one use) of a modeling tool to express a 
specific system. 
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A system is a set of components or sub-systems that act together as a 
wh oIe to achieve a given mission, that is to say a givenfunction for a 
given duration. 

The system reveals structural aspects and functional aspects introduced in 
the following seetion. 

2.3.1 Product Structure and Functioning 

As introduced in section 2.2, most designs of complex products lead to 
models structured into sub-systems called components interconnected by 
logicallinks. We come back to this notion in order to precise its meaning at 
a system level, independently from hardware and software aspects. 

IA component, also known as a module or as a sub-system, is an entity 
of a system which carries out a precise function. 

The abstraction level of this notion is relative: a component is for 
example apart of an integrated circuit, a complete integrated circuit, a board, 
a subprogram, a task or package, but also a computer or a network server. In 
fact, a cQmponent is a system considered as apart of another system. 

The logical links between the modules are of a very variable nature: 
electrical wires carrying logical signals (levels or pulses), media transporting 
messages, call mechanisms for subprograms with parameters passing or 
synchronization protocols for tasks in software, etc. 

The modeling which defines a system as a set of connected components 
is the structure of the system. 

As a module is a sub-system, the function which is associated with it is 
specified with a classic behavioral model such as a 'logical expression' or a 
'finite-state machine'. As for a system, the module's external interface has to 
be defined by input and output variables. Its behavior also has to be clarified 
as the module is reactive: it reacts to the application of new input values by 
provoking an internal evolution, leading perhaps to new output values. 

A module's behavior is defined by attributes which characterize it at the 
considered level of abstraction. If we take the example of an elevator, the 
position of the cage is one of the attributes wh ich can be useful when 
identifying its behavior. The values taken by these attributes define the state 
wh ich is a characteristic property of a module at a given moment. For 
example, the states of the attribute cage position could be 'ground floor', 
'first floor', . . . , 'twelfth floor'. Another attribute could be the movement 
having three states: 'up', 'down' and ' stop'. 

The behavioral model is therefore expressed by the changes of state of 
these attributes. For example, a pro gram' s internal variable can be assigned 
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by values defined by a type. The actual value evolves during the running of 
the program, which illustrates the notion of state evolution. A circuit using 
several flip-flops circuits provides another example. The state of this circuit 
is therefore characterized by the binary configuration of these flip-flops 
(each one switched 'on' or 'off') which evolves with time. 

The global model of a system structured into interconnected modules is 
called structured-functional model because it defines a system by its 
structure (the modules and their links) and the behavior of its components. 
This is illustrated by Figure 2.6 and is found as much in hardware systems as 
in software systems. 
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Figure 2.6. Product structuring 

2.3.2 Hierarchy 

In a hierarchical structure, a 'father' module breaks down into 
interconnected 'children' modules, wh ich can themselves be broken down in 
a recursive manner until reaching 'leaf' modules which do not have children. 
As shown by Figure 2.6, the product breaks down into two children: Ml2 
and M3 coupled by two links. Ml2 breaks down into two interconnected 
children: MI and M2. Hence, the system is organized according to a tree 
structure, the leaves of wh ich are non-structured modules. This hierarchy 
makes three levels appear: the global system, the modules Ml2 and M3, then 
finally the modules MI and M2. Looking at this hierarchy therefore reveals 
three interconnected modules: MI, M2 and M3. 

This is a compositional hierarchy because the system can be uniquely 
represented by the leaves of the tree. The intermediate model M 12 is only 
present in order to give an abstract view of apart of the product. A second 
hierarchy, called use hierarchy, can be defined. It reveals the service 
relationships linking the components. For example, MI uses M2 in order to 
provide a result sent to M3. 
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Let us consider two software examples illustrating these two hierarchy 
types. An Ada procedure may declare local procedures defining a 
compositional hierarchy. An Ada program may use external functions (such 
as input/output services), defining a use hierarchy. 

The hierarchy notion leads us to express the relativity of what has been 
defined as 'product', 'users' at the beginning of this chapter. Let us consider 
the system shown in Figure 2.7: a controller is coupled to a process in a 
given non-functional environment. The controller product is structured as a 
regulation program (RP) running on a hardware platform (micro-controller 
and interfaces). According to the design level, we will consider as product 
the complete controller or the regulation software only. 

I rg.1 .... ~ --.! 
Non-Functional , 

Figure 2.7. Insertion of a product into a control system 

2.3.3 Examples 

Example 2.1. Regulator 

A temperature regulation system has been designed by means of three 
modules interconnected by logical Buses: an arithmetic and logic unit 
(ALU), a control unit, and a memory. The control unit takes its instructions 
and data from the memory and uses the ALU in order to calculate the control 
signals sent to the process. This product is an illustration of the structure of 
Figure 2.6: Mi2 is constituted of the control unit (Mi) and the ALU (M2), 
and M3 is the memory. This is a compositional hierarchy. 

Example 2.2. Software 

The structuring notion applies also to software: a pro gram calls 
subprograms which call other subprograms, etc. The calls are correlated by 
relationships: 

• sequential (we execute Athen B), 

• conditional (if .. then . . else .. ), 
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• repetitive (for and while) . 

Hence, these modules are linked and they exchange data (variables). 
As for hardware systems, software programs reveal structure and 

hierarchy. Figure 2.8 illustrates a compositional hierarchy corresponding to 
the following program: 

begin 

Ai 

B(X) i 

while C(X) loop 
D(X) i 

end loop i 
E(X) i 

endi 

The link (1) represents the stream of control (B starts its execution after A 
has signaled its completion). The link (2) adds a stream of data representing 
the variable X. We should note that the component C' corresponds to a 
modeling of the statement 'while' in the programming language. This 
integrates the component C and the selection of the relationship (3 or 5) 
activated according to the Boolean result of the evaluation of C' . 

Begin 
System 

End 

x 

Figure 2.8 Structural model of a program 

2.3.4 Refinement Process and Primitive Components 

As mentioned in the previous seetion, the function of each module 
constituting the system is generally translated by a structure of sub-systems. 
The functioning of each of these sub-systems is therefore specified. This 
process is reiterated going down until reaching its 'primitive' components 
(that is to say which are not broken down). The transformation of a product 
behavior into a structure is obtained by successive stages leading to a 
hierarchy of modules. The intermediate modules have a specific behavior 
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which is put into work by the child modules. The modules at the lowest 
levels also have a behavior which is meant to be available. 

We only consider systems whose behavior can be represented by discrete 
models which are the most used in computing. We put them into opposition 
to continuous models which are often those of the controlled processes. For 
example, the temperature or the speed of an engine may vary continuously. 

Example 2.3. A software behavioral model 

In section 2.3.3, we showed that a program constitutes a system's 
structured model. The bodies of primitive sub-systems (not broken down) 
express a behavioral model. This model has attributes such as the parameters 
and local or global variables of a subprogram. For example, 

procedure Push(X in Element} is 
begin 

Top : = Top + 1 i 
Stack (Top) := Xi 

end PUShi 

where Top and Stack are two variables external to this procedure 
(global variables). 

These two variables can take different values which define the states of 
the behavior of Push. Thus, if Top is inc1uded in the range [0 ... 100], this 
variable then introduces 101 states. The behavior of the statement Top : = 
Top + 1 i is then described as astate change associated with the states of 
the variable Top. Thus, the execution of the procedure can be modeled as 
state changing. 

2.4 LOGICAL PART OF A DRINKS DISTRIBUTOR 

To conc1ude this chapter, we consider a simplified version of a drinks 
distributor. It has the following objects: 

- User: the person who uses the distributor and the maintenance agent, 

- Client: the person who launches the project of the distributor (who is 
probably the distributor dealer), 

- Designer: the person who creates the distributor. 

In this section, we provide an overview of the different stages of the life 
cyc1e of this product. Beforehand, let us examine the c1ient' sexpression 0/ 
requirements. It could be to eam money by selling drinks or to allow users to 
quench their thirst. The choice between these two needs is not insignificant, 
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since in the first case, a method of paying has to be specified and designed. 
In addition, the possibility of obtaining a drink without paying is therefore a 
failure of the product, which is not the case if the second need is considered. 

2.4.1 Specifications 

The specification defines the inputs and outputs of the system (interface) 
and their relationships (behavior). This last behavioral model must contain 
the checking that the chosen drink is available, and that the means for drink 
distribution (cup, liquid, sugar, spoon, etc.) functions correct1y. The chosen 
drink should only be delivered if the user pays the asked amount. A cancel 
button allows the distribution process to be stopped (if the drink has not 
already been released) and the money to be given back. 

We assume here that only one type of drink is delivered (Drink-Delivery) 
and that only one type of coins is accepted (Coin). The drink is served as 
soon as one presses on the Selection button and the change money is given 
back (Change-Return) . If aselection is cancelled (Cancel), the money is then 
given back (Change-Return). The maintenance agent collects the money (by 
the cornmand Collect-Coins which leads to the distribution of the money 
Money-Lejt) and fill up the doses of drinks (Add-Doses). 
This global definition has to be formalized by expressing: the product's 
interface with the user (see Figure 2.9), and its expected behavior, here 
described by an automaton (see Figure 2.10). 

Coin -+ 
Selection -+ Drinks 

Cancel -+ Distributor 

Drink-Delivery 

Change-return 

Money-Ieft Add-doses -+ 
Collect-Coins -+ 
~----------~~~~----

Figure 2.9. The Interface of a drinks distributor 

This is obviously a specification model and not a design model, as it does 
not describe the means of putting the automaton into action and other 
necessary operations such as the addition of entered coins, the ca1culation of 
the money to give back, as weIl as the ways of detecting the introduction of 
coins, cancellation, the distribution of the chosen drink, the adding of doses, 
or even the money collecting by the maintenance agent. On the automaton in 
Figure 2.10, Sum stores the money introduced by the user, Total is the 
accumulation of money entered in the machine, Amount is the price of the 
drink and Stock is the number of available doses of drinks. 
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The behavioral specification expresses that the selection of a drink for a 
sum inferior to the amount required does not have an effect on its behavior. 
The user can then add more money or cancel. On the contrary, this situation 
could have been interpreted as having an effect equivalent to a cancellation. 
This example therefore illustrates the importance of the specification stage 
wh ich implies choices which then influence the way of using the machine 
and which therefore necessitate a discussion with the c1ient. In defining 
'correct functioning', the specification will also be the fundamental way to 
state whether the product is failing or not when being used . 

2.4.2 

• Selection AND 
(Sum ~ Amount) 

Design 

Figure 2.10. Behavior of a drinks distributor 

The formal behavioral description has been provided in the previous 
stage. The structural modeling has to reveal interconnected modules. 
Numerous refining choices are possible. Figure 2.11 proposes a structure 
which makes two modules appear: a money device which manages the 
money, and a drink delivery module which manages the supplies. 

The 'Money Manager' module accumulates the change provided, gives 
back this money when a valid cancellation is carried out and finally renders 
all the money contained when a demand is made by the maintenance agent in 
charge of the exploitation of the machine. 
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The 'Drink Delivery' module makes the drink available when the drink 
has been selected and when the drink is 'selectable', i.e. when a sufficient 
sum of money has been received. This last point justifies the link Selectable
Drink between the modules 'Money Manager' and 'Drink Delivery'. 

Coin- f-to Change-return (M) 
Money 

Cancel - f+ Manager Money-Left (A) 

Collecl-Co;ns - f+ Seledllble 

Deüvereh 

-Drink .. 
Selection Drink 

Add-Doses (N) 
Dellvery -+ Drink-Delivuy 

Figure 2.11. Structure of the distributor 

In addition, when the drink has been served, the signal Delivered-Drink 
is se nt to the module 'Money Manager' before it gives the change back. 
Then, each of these modules has to be studied separately and first of all its 
behavior specified, for example, by using an automaton or an algorithm. 

We reach therefore the technological level concerning the execution 
means: hardware and software. The software will indeed be supported by 
electronic devices (rnicro-controUer for example) and will have to 
communicate with mechanical devices (detection of the introduction of a 
coin for example) thanks to other electronic components (an interrupt se nt to 
the rnicro-controller for example). 

We will not refine this design here. However, we should note that the 
software part of the design requires two types of studies: 

• At the symbolic level, giving an abstract view of the means: for instance, 
the two modules 'Money Manager' and 'Drink Delivery' will be 
implemented by associating a task with each module and by expressing 
their sequencing in relation to external events (Coin introduced, pressing 
on the Cancel button) and their synchronization (for example by 
Delivered-Drink signal). 

• At the physicallevel, implementing the concepts of the preceding abstract 
view: for example, the occurrence of the Cancel event could be 
implemented by means of an interrupt se nt to the rnicro-controller which 
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supports the execution of the software associated with the part which 
manages the money. 

In the case of a uniquely hardware design, each module will be 
transformed into a specific integrated circuit. The communication between 
these two physical modules is ensured by a protocol based on the signals 
Selectable-Drink and Delivered-Drink. 

This example shows again the number of choices that the engineer has to 
do, when designing a product. 

2.4.3 Production 

Inevitable adaptations of the product obtained at the end of the design 
stage will be necessary to comply with production constraints and standards. 
The production introduces specific notions such as the cost of the used 
materials (in particular the electronic components, but also the royalties on 
executive software or the graphical environments if such tools are used), the 
assembly duration, time to deliver the product, and finally the yield of the 
production line. It is dear that these constraints have to be considered a 
priori as criteria intervening in the design choices. The production concems 
nonetheless specific capabilities. Thus, just as the engineer has dialogued 
with the dient during the establishing of specifications, he/she has to do it 
with the people in charge of production during the design stages. The dient 
intervenes again at this stage to establish the standard documents of 
assembly and use. 

2.4.4 Operation 

The final use requires certain complementary means and actions, such as 
the product' s physical installation on the site of operation and the 
information and the training of the users when the product is more complex 
than a drinks distributor. It is necessary to resolve certain specific problems 
such as the connection to an electric power network and the distribution of 
water necessary to make the drinks. 

Finally, it is necessary to define a maintenance policy in order to get the 
money, add drink doses, and to detect and repair all eventual functional 
anomalies, and also to improve the product performance and functionality. 
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Failures and Faults 

In this chapter, we begin the study of impairments to the dependability of 
a product with the analysis of failures and faults. From the observation of 
anomalies in the behavior of a product during its use, we define in section 
3.1 the notion of failure relative to changes in the delivered service. In 
section 3.2, we identify and c1assify the various causes of failures, known as 
faults, according to several criteria. In section 3.3 we then explore the life 
cyc1e of hardware and software products, looking for the diverse faults 
which can appear. Some faults will be analyzed using the example of a 
drinks distributor in section 3.4. We conc1ude in section 3.5, providing a 
c1assification of faults, and assessing its interests and its limitations. 

3.1 FAlLURES 

3.1.1 Definition 

As stated in the introduction, experience shows that a certain number of 
issues can appear during the useful life of any product, just as weH an 
automobile, as a television or a drink distributor. Functioning anomalies of a 
product are observed during its use in its application context. Figure 3.1 
shows some examples of incorrect behavior of drink distributors. 

Firstly, we reckon a product presents a failure during its use if the 
delivered service does not conform to its requirements. This notion of failure 
is however ambiguous, as an expression of needs can lead to diverse 
interpretations, that is to say to diverse expectations of the service to be 
provided by the product. The expectations of people intervening (c1ient, user, 
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designer or manufacturer) can vary somewhat. A dient' s or user' s point of 
view in terms of requirements is not necessarily the same as that of the 
designer or the manufacturer! 

User 
Point of Vlew 

• No spoon/cup is delivered with the coffee 
• Tbe delivered drink does not 

correspond to the selection 
• Change is no longer retumed 

• Coffee is too sweet or too bitter 
• It is too much expensive 
• 2Sc coins are no longer accepted 

Figure 3.1. The distributor does not function correctly 

A user of a drinks distributor, can effectively reckon the service he/she 
expects is not given because the spoon or the cup does not fall into place, or 
the machine takes the money and does not give back change, or else the 
coffee does not have enough sugar or is too bitter or even that it is too 
expensive. The manufacturer of the machine can have a different opinion, 
refusing as failures the last three cases (Figure 3.1). Moreover, the 
requirements interpreted by one of the partners of the initial contract can 
evolve as time goes on: the user tastes evolve. 

What could be said about a distributor which only accepts t.4$ coins, 
whilst still providing a p leasant drink? From the dient' s point of view, the 
system responds to a need: to gain money honestly. Moreover, it does not 
satisfy the user who only has a Y2$ coin; this distributor does not respond to 
hislher needs at this time. This point of view may be acceptable if the three 
partners participated effectively in the initial contract. We often meet 
different situations for which the designer-dient couple defines a product 
responding to a need, the user adhering to the contract latter on. This is the 
case with the majority of consumer goods: the user of a television did not 
participate in the contract wh ich led to the design of the appliance! 

We therefore understand that such adefinition of failure is often subject 
to conflicts between the partners: this is a usual problem of user-seIler 
relationships in everyday life, and all of us have had this experience. 

This source of conflict is elirninated as soon as the service that has to be 
delivered is expressed in a complete and dear way, and if all the partners 
accept its definition. The needs are then translated in the form of contractual 
service delivery, established during the specification stage. The needs to be 
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considered integrate at the same time those of the dient ("earn money from 
its product", "low maintenance costs", "reduced appliance costs", etc.), those 
of the future users ("be able to use all types of coins", etc.), and those of the 
designer and the manufacturer ("fairly high price in order to cover the costs 
implied by the product study", etc.). The specification makes appear not only 
functional aspects interesting to the user (use of the distributor), the dient 
and the designer (large stocks of coffee in the machine in order to reduce the 
refilling operations), but also non-functional aspects demanded by the user 
(for example the aesthetic appearance) or by the dient (price of the 
distributor). 

The first definition of a failure wh ich will be retained afterwards in this 
book is the one proposed by J-c. Laprie in, "Dependability. Basic Concepts 
and Terminology", Springer Verlag, 1992: 

I Afailure occurs when the delivered service no longer 
complies with the specifications. 

We should note that the notion of mission, which is the first aspect of the 
specification, integrates both functional aspects (what the product is intended 
for) and the length of its mission. In addition, the specifications define 
constraints on the non-functional environment. 

These points appear in the definition provided by N. Leveson in 
"Safeware" , Addison-Wesley, 1995: 

A failure is the non-peljormance or inability of the system or 
component to peljorm its intended function for a specified time 
under specified environmental conditions. 

Requirements .... _. Specifications 
(junction / constraints) 

Figure 3.2. Failure definition 

Thus, the failure sterns from a comparison between the delivered service 
and the product' s functional specifications as represented in Figure 3.2, 
assuming the respects for non-functional constraints on the environment 
during the specified operationallifetime. 
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3.1.2 Characterization of Failures 

The failures which can affect a product are various, and present multiple 
aspects. In this section, we introduce characteristics which are independent 
from the functionality of the product or the technology used. We could thus 
seek to develop general ways to treat the causes of failure in each class. 
These classes are often called failure modes. They represent abstract 
viewpoints on failures, independently of the particular system function. 

We qualify the failures by three parameters apriori independent; each 
one can take two exclusive values: 

• static opposed to dynamic, 

• persistent opposed to temporary, 

• consistent opposed to inconsistent. 

Most ofthe system's behaviors reveal two aspects: a function elaborating 
the outputs from the inputs, and temporal constraints associated with the 
occurrence of outputs. This corresponds to the classic notion of static and 
dynamic response of a system. A statie failure, also called a value failure, 
provokes a false result. The provided data are erroneous. Adynamie failure, 
also called here a timing failure, provokes a transient response which is 
incorrect, either too fast or too slow. 

Consider a screen displaying information in a car. The displaying of 
wrong data illustrates a static failure. If the displaying task produces data 
whose values are correct but delayed, a dynamic failure occurs. For instance, 
data on the screen must be refreshed every 1150 second whereas some of 
them are displayed after 1/10 second. 

A product' s mission takes place during a certain period. The second 
parameter corresponds thus to an observation of the product' s behavior 
during time. A persistent failure alters the product' s functioning for an 
important duration in comparison to the duration of the mission or definitely 
after a certain time. For example, let us consider a product regulating the 
temperature of a balloon. A systematic bad regulation due to a blockage of 
the electro-valve acting on the heating device is an example of persistent 
failure. On the contrary, a temporary failure presents a bad behavior at a 
certain moment during a short time. An erroneous control error of the 
electro-valve which appears at a given moment of the mission and will never 
happen again is an example of temporary failure. 

The notion of consistency or inconsistency 0 a failure is relative to its 
extern al perception by several users. A eonsistentfailure is perceived in the 
same way by all users. The failure is said to be an ineonsistentfailure in the 
opposite case. For example, several users of an office network complain 
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about not being able to access a printer from their workstation, whilst other 
users have no problem whatsoever. Inconsistent failures are also called 
Byzantine failures. 

Figure 3.3 shows some examples of failures of the drinks distributor. 
Note that a failure can be static, temporary and consistent at the same time! 

Static The selection of coffee is 
no longer possible 

Dynamic The machine is too slow 

Persistent The machine has not been 
working since yesterday 

Temporary The machine sometimes refuses 
to function, in a random way 

Consistent All the users have the same opinion 
about the bad functioning of the 
machine (e.g. it does not give 
sugar to anyone) 

Inconsistent So me users only are unsatisfied 

Static + Temporary + Consistent: 

The distribution of coffee is not possible for any user 
each moming between 08.00 to 09.00 

Figure 3.3. Examples of failures of the distributor 

Other items can also be used to qualify some failures : 

• stopping failure when the product's activity is perceived as no longer 
evolving, a constant value being delivered to the user, 

• omission failure which is a particular case of the preceding definition 
when no values are delivered, 

• crash failure which is a persistent omission failure (the system is 
definitely blocked). 

Another way of classifying failures consists in considering the 
seriousness of their consequences on the application (user or environment). 
Actually, these consequences on the mission can greatly vary according to 
the application domains. We distinguish three main categories of failures: 

• benign failures wh ich can be ignored, 

• serious failures which lead to a change in the mission with a certain cost, 

• catastrophic failures (also referred to as accidents) wh ich are not 
acceptable and stop the mission. 
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In the ease of a temperature regulation system, the regulation ean be 
badly assured (deerease of the produetion, the mission therefore not being 
stopped) or not assured (the mission is endangered with a loss of produetion, 
even a risk of aecident). These consequenees are known as external; they 
will be analyzed in Chapter 4. 

3.2 FAULTS 

Failures arise from a large number of eauses whieh are informally named 
as faults. We find also in technical literature the terms defect for hardware 
teehnology and bug for software teehnology. 

I Afault is an adjudged or hypothesized eause of a failure. 

Even if fault seems to be a fuzzy notion, some important eharaeteristies 
can be brought out. 

3.2.1 Difficulties in Identifying the Causes of a Failure 

The identification of a failure' s eause (or eauses as there eould be 
several) is a diffieult operation whieh requires important investigation 
means. Its eomplexity depends on the level of knowledge and observation 
that the analyzer has on the produet, its funetional and non-funetional 
environment, but also on the proeess which has transformed a speeifieation 
into a produet. 

Aeeording to the degree of aceuraey of the observation, one ean, by 
refining the analysis, come back to very long ehain of eausalities, sometimes 
without significanee. For example, the eause of a failure of a hardware 
produet could be found at the level of an integrated eireuit or in a eertain 
logical network of this integrated eireuit or again a eertain MOS transistor in 
the logical network and so on. Moreover, this refinement analysis ean reveal 
potential multiple sourees that are sometimes eontradietory and the diagnosis 
of whieh is impossible or without interest. For example, if the previous MOS 
transistor is the cause of the failure, this is perhaps because it was abruptly 
bloeked (this is then a hardware fault) or because the designer ineorreetly 
dimensioned this transistor (this is then a different fault: a human fault). The 
initial eause ean be due to the entropie hazard (e.g. eomponent ageing), or a 
bad design which leads to a loeal overheating reducing the reliability, or else 
an exeessive temperature in the final applieation. 

In the same manner, the identifieation of the software fault which has 
provoked a failure of an exeeutable program leads to the investigation of 
relationships whieh link the different subprograms making up the software. 
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This analysis will be more or less refined according to the degree of 
precision required for the fault' s localization and the investigation means 
used (e.g. the observation of the variables). Furthermore, the software 
necessarily has relationships with an operating system and other software 
tools which manage the resources; this will complicate the analysis even 
more. Finally, the support of the software's execution is an electronic 
component, also susceptible to being affected by a fault! 

As a result, the pertinence of the cause's designation is linked to the 
means which are mobilized in order to remedy it. Consequently, faults are 
often called adjudged or hypothesized causes. 

In Appendix D we provide a study relative to the diagnosis of the flight 
control system fault of the first flight of Ariane 5 rocket. This study 
highlights the difficulty to specify the causes of a failure. This case is also 
interesting, as it shows a situation where the two technologies (hardware and 
software) intervened in the failure occurrence. 

3.2.2 Fault Characterization 

Faced with the difficulties evoked in the previous section in identifying 
faults, we are now going to highlight some significant criteria to characterize 
the faults. As for failures, it is useful to define a set of criteria which permits 
the classification of faults. Such a classification allows the proposal of 
generic means of fault handling adapted to each class, instead of researching 
specific means for each particular fault. 

We will analyze faults according to two main viewpoints: their origin and 
their nature. Each of them is defined by several criteria. 

The origin of faults characterizes: 

• where is located this fault, that is which is the affected object (the 
product, the user, their environment)? 

• when was the fault introduced into the life cycle (during the product 
creation or during the operation)? 

• who is the author of the fault? 

The nature of faults identifies: 

• its type: functionall conceptual faults opposed to technological faults, 

• its intention: accidental faults opposed to intentional faults, 

• its duration: temporary faults opposed to persistent I permanent faults. 
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These fault characteristics are illustrated in Figure 3.4. We thus define a 
space with two viewpoints and several criteria that will be analyzed in the 
following seetions. 

Orij!in 
Where: When: Who: 

~ 
• Internat: • Creatlon: • Hwnan 

Product S pecification 
• Tools 

• Extemal: Design 
• TecbnoJogy _.-

User Producrion 
Fault 

Characteristics 
Environment • Operation 

Nature 

~ Type: _ Intention: Duration: 
• .Fnnctlonal • Accldental • Temporary 

• TecbnoJogical • Intentional • Persistent 

Figure 3.4. Fault characterization 

3.2.3 Fault Origin 

The origin of a fault is characterized by three criteria studied 10 the 
following sub-sections: 

• The object at the origin of the fault, by asking where? 

• The step of the life cycle at which it appears, by asking when? 

• The entity responsible of its occurrence, by asking who? 

3.2.3.1 The Infected Object: Where 

Relatively to the product's point of view, we consider two classes of 
faults (see Figure 3.5): internal and externaifaults. 

Internaifaults affect the product and are introduced during its life cycle: 
specification, design, production and use. For example, a software design 
error in an airfighter control system provoked the turn over of the plane 
during its first flight to the equator. 

An internal fault is for instance an erroneous statement in a pro gram or a 
short-circuit in an electronic component. If their effects in the form of 
failures always occur during the operation phase, their causes could originate 
from any stage of the life cycle. This concerns the design step in the first 
quoted example (an erroneous statement), whereas the short-circuit in the 
second example could have been introduced by the manufacturing. 
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IDteraal Faults _.I!tlfie~ .... 

Figure 3.5. Internal and external faults 

Exteraal Faults 
or Perturbations 

Externalfaults affect the user or the non-functional environment: 
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• the user: e.g. a system controlling a flexible manufacturing workshop is 
blocked whilst waiting for a drilling machine (belonging to the process) 
which will never fulfill its task because of a rupture of a drill, an input 
value out of range, or a sequence of events not in accordance with the 
expected scenario; 

• the non-functional environment: e.g. the coffee distributor provides cups 
filled only with powder because the water supply has been cut off, an 
integrated circuit does not work due to an excessive temperature. 

The external faults affect the expectations defined by the specifications. 
They are often called perturbations or aggressions or else disturbances . 

We should ins ist on the fact that in all failure cases, the product does not 
deli ver the expected service, but the object at the origin of this failure is the 
product itself (internal fault) or not (extern al fault) . Consider as a last 
example a 'heavy ion' bombarding a satellite whose functioning is altered. 
The origin belongs to the environment whereas it is clearly the satellite 
wh ich is affected. 

3.2.3.2 Occurrence Phase: When 

Even if failures only occur during the operational phase, faults which 
provoke these failures arise during the diverse phases of the product' s life 
cycle: specification, design, production and operation. 

Ouring the specification. It might seem strange to talk of faults arising 
during this stage as the specifications constitute the reference document 
which defines the expected services (cf. Figure 3.2). However, some 
problems are actually possible. For example, an incomplete definition of the 
service, which has to be delivered by the product, leads to different 
interpretations by the client, the designer and the user. The user notices 
failures in the service provided (the service understood by the designer) as it 
is different to the one expected (the service understood by the user). 
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During the design. All designers have encountered these faults. They 
can arise during each one of the design steps, from the architectural 
definition until the final implementation: at behavioral, structural and 
technologicallevels. 

During the production. An example of fault affecting software 
technology is about a change in the characteristics of an execution 
environment (a new hardware processor or operating system) whose 
performances are no longer sufficient to respect the deadlines of tasks of a 
real-time application. When hardware technology is concemed, a failure can 
be due to a short-circuit or to a rupture of a wire during the production phase 
of a PCB (bad insertion, bad soldering). 

During the operation. Such faults can come from an elevation of the 
environment's temperature which provokes modifications of the electronic 
equipment' s capability. 

Note. Faults appearing during the first three stages are also known as 
creation faults. 

3.2.3.3 Entity Responsible: Who 

Faults result from: 

• the human activity which intervenes in the transformational process 
(specification, design, production) used to create the product: erroneous 
choice of methods and technologies, bad interpretation of specifications, 
wrong application of chosen methods, etc.; 

• the automated tools used during this process: automatic design of a 
logical circuit, compilation of a program, insertion of electronic 
components by a production machine, etc.; 

• the product's technology: a weak resistance to aggressions of a 
component (this resistance depends on the hardware technology used), 
the use of a programming language which has an imprecise semantic may 
lead to different interpretations by the user and the compiler' s creator; 

• the user of the product (a human user, an industrial process), associated 
with environmental constraints. 

3.2.4 Nature ofthe Fault 

We will successively consider the type (junctional, technologieal) , the 
intention (accidental, intentional), and the duration (permanent, temporary). 
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3.2.4.1 Type: Functional and Technological Faults 

A second parameter permits the classification to be refined. Whatever 
their origin is, the faults can be separated into two categories: 

• The functional, or conceptual faults (also called human-made faults), 
which affect the way a product is specified, designed, produced or used. 
An incorrect design implied by an omission of one piece of specification 
is an example of functional fault. 

• The technological faults (also called physical faults, or hardware faults 
in the case of electronic components), which affect the implementation 
means during the production and/or utilization. A cut in a wire linking 
two components is an example of technological fault. 

Functional faults 
Functional faults concern the intrinsic functionality of a product. They 

can be present when the product is supplied (for example a design fault) or 
could be due to incorrect use of this product (an operational fault). 
Functional faults have a precise cause, upon which one could have acted at a 
given moment in order to avoid them. This group contains faults coming 
from bad interpretation and/or transformation made during the life cycle: 

• specijication and design faults due to humans (the partners of the initial 
contract and the persons in charge of the design) and to the means used to 
model or to transform the models, 

• production faults due to humans and technical means involved 
(essentially the manufacturing equipment), 

• operational faults due to the functional environment of the product 
(human users, process, etc.). 

Failures due to functional faults are named systemic failures. 

Technological faults 

Technological faults affect the implementation means. They can result 
from random or temporal problems, such as a transient problem of the 
machine manufacturing a component, or a physical defect occurring in this 
component due to an ageing problem or an external aggression. 

This group concerns the physical components (electronic or mechanical) 
employed in the manufacturing of the product. This could imply hardware 
breakdowns occurring at any moment during the production and/or operation 
by affecting a product wh ich functions correctly: for example, a transistor 
which is suddenly blocked in a 'non-conducting' state, or an electrical line 
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which is influenced by an electromagnetic perturbation. The probability of 
occurrence of such events depends on the chosen technology, the production 
techniques, as weIl as the non-functional environment of the product 
(temperature, mechanical shocks and vibrations, etc.). These faults are 
assessed by statistical studies on reliability. We should note however that the 
design and production have an influence on the final product' s reliability due 
to the choice of technology, the electronic structure of transistors and final 
mounting and assembly techniques. 

We often speak of hardware faults and physical faults where 
technological faults are concerned, as they essentially affect the hardware 
technology (electronics in our case). In effect, there is no real software 
ageing phenomenon, and the potential problems due to the manufacturing 
are negligible. However, phenomena sirnilar to those of hardware technology 
nowadays affect more and more software applications. Such a situation is 
illustrated by a pro gram whose production necessitates the use of non
adapted components, or whose behavior varies during the course of time. 
This is the case of applications supported by an operating system whose 
version changes as the producer modifies slightly the characteristics (e.g. 
temporal), leading finally to modification of the delivered service. 

Failures due to technological faults are named disruptive failures or 
disruptions. 

The perturbations due to the user (a human or a machine) induce mainly 
functional faults (bad use), whereas the perturbations due to the non
functional environment induce mainly technological faults (such as in the 
case of a raised temperature wh ich could lead to a breakdown of an 
electronic component). Once more, the ultimate reason for a failure is often 
very difficult to establish: normal ageing of the component or excessive 
temperature aggression? 

3.2.4.2 Intention 

Faults can also be c1assified according to their accidental or on the 
contrary intentional character. 

Accidental faults are the most frequent and the ones which will be 
considered in this book. For example, they can stern from a bad 
understanding of a document' s information during the development phase, 
or from a bad analysis by the designer wh ich led to an erroneous solution or 
incorrect use of the technology means at his/her disposal. For example, an 
engineer has incorrectly used the programrning language statements because 
he/she has not understood the semantic properly. This c1ass of faults also 
inc1udes keypressing faults. 
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The intentional faults are due to voluntary human aggressions, such as 
intrusion, sabotage or piracy. They lead to the modification of a system' s 
structure or of a product's behavior. Today, there are numerous examples 
regarding computing networks. 

The border between these two c1asses can be vague. For example, some 
technologies are reputed to be dangerous and their use increases the number 
of faults. This is the case, for example, with a programming language such 
as C which: 

• does not favor a programming style which renders the program readable, 

• disposes of few fault detection means during compilation, 

• proposes features, such as the goto statement, which makes checks 
difficult. 

As these features are known, designers should not use such technology 
which leads to an increase in the number of faults produced. Therefore, it is 
difficult to say whether such faults are accidental or intentional! 

3.2.4.3 Duration 

Like failures, faults have temporal attributes leading to two c1asses: 

• permanent faults, also called static faults, for example, apower supply 
breakdown which makes an equipment unusable, 

• temporary faults, also called dynamic faults for example, a bad electric 
contact which depends on the product' s position, or a temporary 
saturation of a computing network. 

Temporary faults are divided into two sub-groups, according to their 
origin. 

• Transient faults have external causes. For instance, a too numerous 
number of pieces of data are sent to the system during a short period. 

• Intermittent faults are due to internal causes. For instance, a parasitic 
signal emitted by a part of an electronic system disturbs another part 
during the operation. 

3.3 FAULTS OCCURRING IN THE LIFE CYCLE 

In this section, we consider the faults occurring during the various stages 
of the product life cyc1e: specification and design faults, production faults, 
and operational faults. This presentation shows the diversity of the types and 
origins of faults. 
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3.3.1 Specification and Design Faults 

Faults introduced during the specification and design stages are various, 
and the reason for their existence is diverse and often difficult to identify. 
One cornmits faults by ignorance, by negligence or omission, by 
incompetence, by misfortune, and even voluntarily in some cases (an aspect 
which is not considered here). Nonetheless, the origins of these functional 
faults can be dassified into three groups: 

• initial faults arising from incomplete or incorrect specifications, 

• faults arising from the top-down design process, 

• faults arising from non-functional constraints. 

These three groups are not totally independent. Faults can therefore 
belong to several groups corresponding to complex situations. This 
decomposition, refined in the following paragraphs, simplifies our study. 

3.3.1.1 Specifications 

Sternming from the contract generally written in natural language and 
established between the dient, the designer and the user, the specifications 
are therefore rarely formal. A lot of incompleteness and inconsistency cases 
remain. They are at the origin of numerous faults. After their detection, it is 
necessary to precise missing information or to modify bad elements, in order 
to improve the specification. 

Incompleteness characterizes a product's definition that can lead to 
several interpretations. The 'non specification' of a system's behavior for an 
input data or a sequence of input values is an example of incompleteness. 
Incompleteness is therefore associated with the semantic of specification 
elements. An incompleteness situation leads to a fault if the missing piece of 
information is useful and generates a bad interpretation. Otherwise, 
incompleteness avoids the expression of non-useful information or gives 
some degrees of freedom to the designer. For instance, the output value 
associated with a given input value can be absent if the user never applies 
this input value. When a piece of information is missing, the designer is free 
to interpret this 'non specification' in the best interests of the product (cost 
optimization, execution speed, etc.). On the other hand, if the missing 
element comes from amistake, the final product can behave incorrecdy. 

Due to a lack in the specifications, the system obtained at the end of 
design can have a functioning greater or equal to that of its specifications. 
For example, an electronics circuit accepts all input data (as long as the input 
sequence stays in a functioning mode which guarantees sufficient time 
between two successive input values to produce an output), even if these 



3. Failures and Faults 53 

values have not been defined in the specifications; hence, it provides an 
output value for each input value 

These incomplete specifications can, on the contrary, lead to a 
dysfunction if the actual operation does not support use outside of the 
planned domains. For example, in the case of software, the supplying of an 
input value non-planned by the designer, due to a restrictive interpretation of 
too vague specifications, can lead to the following situation: 

• a persistent failure if the pro gram execution stops, 

• adynamie and temporary failure due to a random transient behavior if the 
pro gram is re-initialized after the failure. 

The inconsistency characteristic corresponds to another variety of 
problems. An inconsistency expresses a contradiction between several 
definitions or properties of one or several elements of the specifications. An 
example is the definition of two different behaviors for the same input 
applied to a system being in the same state. The technology implementation 
will perhaps solve this conflict: 

• Whether by giving advantage to one of these contradictory behaviors; for 
example, if we simultaneously act on the 'Set' and the 'Clear' (or Reset) 
inputs of a flip-flop, it is the 'Clear' which is dominant. 

• Or by creating a third behavior (by combination of the values which lead 
to a new value); for example, if we simultaneously switch on the red light 
and the green light of a traffic light system, therefore the two lights 
switch on simultaneously by OR combination of the two light control 
vectors (Red, Orange, Green): (100) OR (001) = (101). 

3.3.1.2 Functional Design 

At design time, a system is modeled by expressing a structural 
composition of components also called modules or sub-systems. Faults 
introduced in the design phase belong to two c1asses: component faults or 
interaction faults. 

Component faults (or module faults). A component fault occurs if a 
functional component does not fulfill the mission which has been defined 
during its specification; for instance, a floating point multiplier or a 
calculating subprogram gives an erroneous result for a particular input 
configuration or on the contrary in a systematic way. 

Interaction faults. The components are correct1y designed, but their 
interactions can cause problems: 

• the interface specifications are erroneously taken into account: e.g. there 
is an incompatibility between data formats, or the constraints on the order 
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of the subprogram calls have not been considered (for instance, the 
subprogram ini t of a package must be called before other subprograms 
offered by this package), 

• the inter-relations are erroneously implemented: for example, the design 
specifies an exchange protocol between two tasks which is not correctly 
realized. 

The interaction faults become increasingly preponderant due to the fact 
that a large part of design today consists in assembling acquired components 
(COTS: Components On The Shelf). The faults are due to an erroneous 
assembling or to a correct assembling of the components whose effective 
functionality has been badly understood by the designer. During a 
development, the complexity of the designed system and the diversity of 
technologies used often necessitate the separation of the work into teams 
distributed into several companies. Numerous integration faults, that is 
interaction faults, therefore occur. 

3.3.1.3 Technological Constraints 

Often unknown or badly formalized, the technological constraints 
imposed on a product's development are sources of numerous faults. We 
introduce in the following sub-sections two types of constraints: technical 
constraints and reusability constraints. 

General technical constraints 

General technical constraints are often inc1uded in the design 
requirements. They precise: 

• certain technological choices of components: for example CMOS 
components for the electronics implementation, or Ada language for the 
software programming, 

• design means, e.g. the use of UML design model, 

• constraints on the size of a product (volume of software code, surface of 
the integrated circuit), 

• constraints on the electrical consumption (important constraint for 
isolated or embedded systems), 

• assembly constraints, cost constraints, etc. 

Moreover, other constraints, non-necessarily expressed during the 
specifications, appear during the design phase. They are constraints on the 
available resources. For instance, the program task number is limited by the 
executive software, the number of units which can be addressed on a Bus 
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depends on the Bus characteristics, the size of available main memory, the 
number of authorized interrupts are constrained by the hardware platform, 
and so on. 

If these constraints are not well known, or if they are not correctly taken 
into account at design time, then a faulty system is produced. For instance, a 
memory overflow is raised at pro gram run-time when the memory top is 
reached. This example shows again how fault loeation is difficult: is the 
failure due to a too small memory size or a too large program memory 
allocation? 

Reusability 
Whether in hardware or software domain, the designs are lengthy and 

expensive. It is therefore tempting and interesting to reuse the components 
already designed for other projects by adapting them to a new context: a 
circuit or a calculation subprogram, a special register or counter, a FIFO 
memory, a BUS coupler, etc. 

This reuse is sometimes obligatory. For example, a software application 
runs under a given operating system. This application reuses the 
functionality offered by this system such as the input/output primitives. This 
obligation to reuse arises also from the constraints of portability . For 
example, the embedded pro grams do not generally access directly to the 
hardware resources of the electronic board which supports them. These 
programs call the primitives of a BSP (Board Support Package) which 
provides an abstract view of the hardware. For example, the applicative 
pro gram makes use of a primitive function to write on a port without the 
knowledge of the physical port address. Hence, the software is more portable 
as the hardware may be changed as long as it uses a BSP offering identical 
functions. In this way, the set hardware plus BSP constitute a reused module. 

Certain functions of the reused module can be of no use in the new 
context or can be used in a particular restrictive way: they are therefore 
redundant (we will discuss this word later). The redundancy resulting from 
the reuse of modules is frequent. For example, in order to carry out an 
addition operation in a circuit we reuse an arithmetic additionlsubtraction 
unit: in this context, the redundant subtraction function will not be used. 

Reuse is frequently employed because it is convenient and it is supposed 
to reduce costs and faults. This argument is globally true, but it should be 
emphasized that reutilization can typically lead to new sources of problems. 
On the one hand, the insertion of a component whose subtleties and 
weaknesses are not known leads to interaction faults; on the other hand, the 
induced redundancy creates large verification problems, which we will study 
afterwards. This is why the modules inserted have to be perfectly defined 
and possess standard interfaces. 



56 Chapter 3 

In order to avoid these problems, we could perhaps aposteriori think to 
get rid of all parts that are functionally or structurally redundant and 
therefore useless to a system's mission. In reality, this suppression is not 
desired, as it is likely to introduce new faults. 

3.3.2 Production Faults 

We will analyze separately the two hardware and software domains, as 
they present problems which are completely different during production. 

3.3.2.1 Hardware Technology 

Integrated circults 
We consider first of all the particular and very significant issues of the 

manufacturing of an integrated MOS circuit. The design stage provides a 
geometric model of different masks used in manufacturing. Roughly 
speaking, and in order to simplify, each technological layer has a design 
associated with it: N and P diffusions define the transistor channels and 
some conduction' lines, the polysilicon level defines the gate electrodes of 
the transistors and some conduction lines, the meta! level defines the 
interconnections between transistor structures and the links with the input 
and output pads. The manufacturing is going to interpret this information so 
that it can structure a slice of pure silicon wafer (disk of silicon of some 
15cm in diameter and less than Imm thick) in the form of an array of 
identical chips, each chip making the desired product. The process which 
transforms the silicon wafer into an electronic structure is long and calls for 
very sophisticated specialized technological equipment (ionic implanters, e
beams, diffusion ovens, epitaxy machines, deposition and etching machines 
and many more), and it has to function in extremely severe conditions 
(temperature, duration, dusts, etc.). 

After the wafer processing, the resulting wafer is cut into dies which are 
then mounted in their final plastic or ceramic packages (dual-in-line, flat 
pack, surface mounted, etc.). This implies mechanical and soldering 
operations before obtaining the final chips that will be put on the market. 

As previously mentioned, faults come from the use of rnanufacturing 
equipment. The information provided by the design of masks has of course 
got to be compatible with the equipment used during manufacturing. A 
machine's control file has to be understood correctly: compatibility of 
description formats or correct initialization of machines, etc. 

This sophisticated equipment needs precise and frequent settings 
(treatment duration, temperature, flow, intensity, position), as do the gauging 
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operations. The quality of the physico-chemical hardware used (crystalline 
structure, fluids, etc.) also conditions the quality ofthe circuit produced. 

Moreover, this process has to take place with an extremely strict control 
of the environment: temperature, hygrometry degree, elimination of all dust 
or particles which could provoke flaws (hence, different classes of dust 
removing techniques of white rooms have been defined). Thus, the dust can 
create flaws by optical or chemical interference. If the complexity of 
integrated circuits is meant to double every 18 months (according to Moore's 
empirical law), this then implies that the manufacturing costs will double 
every 4 years! 

As a consequence of this complexity, numerous faults can be introduced 
during the production of integrated circuits. 

Electronic board systems 
The manufacturing of an electronic product involves a succession of 

assembly stages and the integration of components and equipment. Each of 
these stages is an occasion for faults to appear, and this occurs despite the 
use of specialized equipment and qualified personnel. For example, 
electronic components are inserted on printed circuit boards (PCB) by 
automatic insertion machines, eventually aided by an operator. Insertion 
faults can therefore be produced: incorrect mounting, a pin folded, an 
incorrect electrical contact. This is also the case with incorrectly soldered 
pins by the component' s welding machine. Boards are linked together thanks 
to diverse and varied connectors defined by different standards. Thus, the 
connector industry causes numerous problems due to bad quality contacts 
(mechanical problems, oxidation problems, etc.). 

3.3.2.2 Software Technology 

We consider that design ends by the providing of a pro gram written in a 
language (Ada, C, etc.). The production therefore consists in obtaining an 
executable program for the execution machine and then by duplicating it 
onto physical medium (magnetic disks, CD-ROM, ROM, EEPROM, etc.). 
Naturally, these two phases are both sources offaults. 

The executable code is generally produced automatically from a source 
program by a compiler. The code generated has to be semantically 
equivalent to the code source. That is, its execution by the target computer 
has to produce a behavior equivalent to the one obtained by the 
interpretation of the source program using the language semantic (described 
in the reference manual of this language.) Two major causes thwart this 
result: 

• failure ofthe compiler, 
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• hazards in the programming language's semantic. 

Compilers are not always safe tools, in particular when the language or 
the compiler is recent. For these reasons, a lot of firms prefer to use an 'old' 
language and a compiler whose bugs have been fixed or are well known, 
than to access to up-to-date technological means. 

Hazards are associated with the semantics of the programming languages. 
The significance or interpretation of their features can present uncertainties. 
We have seen that in the design phase, these lacks of precision can generate 
failures of the system designed because the dient and the designer of the 
system (or sub-system) can have two different interpretations, although in 
agreement with the' imprecise specifications. The same situation exists for 
language users (e.g. program designers) and the people carrying out the 
compiler: they can give two different interpretations to imprecise features of 
a programming language. Incompleteness situations do not however imply 
flaws in the language; sometimes they are on the contrary indispensable. For 
example, the execution duration of a statement such as 'I : =J + K ;' is not 
defined by the standard of a programming language, whereas the actual 
duration of execution will have consequences on the application's 
performance and could lead to a failure if the performance is too weak (such 
as in real-time applications). Now, to fix a standard in a language regarding 
the execution time of each statement would be stupid, as this would not 
allow it to benefit from the permanent improvement of processor speed. 
Although indispensable, the imprecise factors of the semantics of 
programming languages can therefore lead to failures. 

The duplication of executable files to market the software onto diskettes 
or optical disks is another source of faults, as the physical media of 
recording either magnetic, optical or other, inevitably provoke flaws: 
parasitic signals during the recording or transmission, flaws by punctual 
alteration of the media and other problems. This dass of faults will be fairly 
easy to manage using redundant coding techniques intensively employed by 
all information supports, magnetic tapes, magnetic or magneto-optical disks, 
audio or digital CD ROM, electrical or Hertzian transmission means. 

3.3.3 Operational Faults 

We are now at the ultimate stage of the product's life cyde, and new 
problems arise! During operation, technological faults appear on hardware 
devices, and perturbations are provoked by the non-functional environment 
and the user (process and/or human operator). They are called operational 
faults. 
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3.3.3.1 Technological Faults 

Hardware faults affect the product during its active life. They are linked 
to the used technology and assembly techniques, but also to the conditions of 
the environment. Reliability permits us to predict in a statistieal manner 
whether a population of products has the capacity to survive. This notion 
will be discussed in detail in Chapter 7. However, we do not know what the 
next breakdown will be and when it will appear in our product. 

The occurrence of faults can be considered as a probabilistie process, 
function of time. In general, we make the hypothesis that the interactions 
between the product and the user do not have an influence on the probability 
laws. However, this is not always true: for instance, a light bulb has a higher 
probability of breaking down when it is 'switched on' than when it is 'on', 
'off', or 'switched off'. Knowledge of reliability allows us to anticipate 
failures, but not to prevent them during the active life. 

Non-functional environment has an influence on the technologieal fault 
occurrence. For example, if the temperature increases, the reliability of a 
circuit is degraded. If the environment's parameters do not correspond to 
those specified for the product, faults could then occur as a result. Thus, if 
the utilization temperature exceeds the norm associated with the product (for 
example, maximal temperature = + 70°C), this product cannot then be used 
due to a strong degradation of its reliability. Another example is that of the 
standards of space radiation for products embedded in satellites. In 
particular, magnetie media cannot be used in an efficient manner without 
costly and drastic protection. 

3.3.3.2 Faults Caused by the Functional Environment 

Functional faults are caused by the user whose behavior is not 
conforming to that planned by the specifications. For example, if an 
electronie thermometer has :been designed to display temperatures with 2 
decimal figures, it will not function correctly if it receives from sensor 
values superior or equal to 100°C! 

Another type of functional faults is due to the human user. Consider for 
example a product whose characteristies and user instructions are described 
by a user manual. The user may commit faults. For example, a video 
recorder whose channels have not been set cannot record a TV program. The 
user should have first performed a channel setting. 

The integration of a product into its final context introduces different 
problems. For example, a program correctly designed and produced is badly 
adapted to the application' s environment (the operating system incorrectly 
manages this program). Another example is an automatie control system 
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which functions badly because it does not receive a correct initialization 
from its environment (reseuing the internal state and some variables). 

The specification may be correct but the physical insertion of the product 
incorrect: for example, a connector is incorrectly plugged or the selected 
connection port is not the right one, and so on. This is the case of a video 
recorder badly connected to the television: the user cannot watch the film, or 
the sound and image will be of bad quality. 

3.4 EXAMPLES OF FUNCTIONAL FAULTS 
ALTERING A DRINKS DISTRIBUTOR 

This section deals with the study of the drinks distributors already 
discussed in Chapter 2. It shows some examples of specification and design 
faults as weH as their consequences. The specifications have been slightly 
modified in order to reveal some interesting faults. 

3.4.1 Description of the Product 

Consider the distributor represented in Figure 3.6, wh ich has to provide 
hot drinks such as coffee, tea or chocolate. The machine has a slot to put 
coins, three selection buttons for the drinks (1: coffee, 2: tea, 3: chocolate), a 
cancel button, a place where the change is delivered and/or the money is 
returned, and a place where the selected drink is delivered. 

On/Off ® 
Coins _ 

Cancel 

Select 

Change -
CofTee • 

Tea i 

Figure 3.6. Drinks distributor 
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The distributor behavior specifies a cydic treatment. One should first 
insert the money, then choose a drink, recuperate the change and finally take 
the drink. If we press on the cancel button, the coins inserted are given back 
and the cyde is cancelled. Then, a new cyde can be processed. 

3.4.2 Faults Due to Functional Specifications 

These first specifications are sources of problems because they are 
incomplete. Indeed, as no deadline is defined for cancellation, an 
interpretation of this specification could lead to a machine giving back coins 
inserted when the drink has already been distributed, if the user presses on 
the cancel button after this distribution. 

What will happen if the user inserts new coins before the cyde has 
finished? What will happen if the user changes hislher selection? The 
specifications do not give any indication. Therefore, several interpretations 
are possible, leading to different products and uses. In particular, if the 
distributor user and manufacturer make divergent interpretations, a failure 
will occur at operation time. 

These specifications are therefore insufficient. We complete them, saying 
that cancellation cannot be taken into account if the choice of a drink has 
been made (or validated by a special 'validation button' which should be 
added). We add a red/green light that indicates that the machine is being 
handling a delivery. When the light is green (indicating that the machine is 
ready), the cyde starts by the insertion of money; this light then goes red 
until the end of its current cyde. We specify that the first selected beverage 
is the only one to be taken into account, or we add a validation button. 

3.4.3 Faults Due to Technological Constraints 

We finally examine the influence of certain resource constraints. This 
distributor effectively manages resources: change, cups, spoons, sugar, 
coffee, tea, chocolate and water. The previous specifications, even consistent 
and complete, do not take into account the natural limitations of these 
resources. 

What should be done when the resources run out? To prevent access by 
switching the red light on? If there is no more coffee, why not allowing 
access to the other available drinks (tea or chocolate)? In this last case, the 
machine must authorize the choice to be modified or cancelled with money 
retumed if the desired drink is not available. If all the coins necessary for 
any change are not available, the machine should be used with the exact 
money amount: thus the service delivered is extended. 
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In all these cases, the cancel button allows the user to get his/her money 
back as long as a drink has not been selected to be delivered. Cancellation is 
an essential feature of such machine. 

Each omission of constraints in the specifications can lead to a failure in 
the service delivered to the user, leading hirn/her to be unsatisfied: loss of 
change, missing cup, incorrect choice which cannot be cancelled, etc. 

3.4.4 Design Faults 

The design is going to lead to a structure of interconnected modules, such 
as the one introduced in Chapter 2. Here the design proposes four modules: 

• a module managing the cyclic treatment, asking for services provided by 
the others modules, 

• a module getting the coins inserted, computing the sum introduced, and 
managing the money to give back, 

• a module responsible for the drink delivery, 

• and a module in charge of the management of the resources and the 
anorn.alies. 

An example of a module's design fault could lead to a bad calculation of 
the sum inserted and the money to be given back. The consequences could 
be to ask too much or too little money, or to give back too much or too little 
money. 

A first example of synchronization flaw between modules could result in 
a blockage in the cycle: the management module waits forever the end of the 
work of another module. On the contrary, the passage to the next stage when 
the current stage is not completed is a second example of failure cause. For 
instance, the end of the cycle occurs when the service has not yet been 
carried out, allowing a new client to be served at the same time. 

Figure 3.7. Global functional graph of a distributor 
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As faults are introduced during the various stages of the product life 
cyc1e, it is difficult to determine the source of a failure just from a simple 
externaiobservation. It is necessary to master all the stages, inc1uding the 
initial specifications and their multiple amendments often required by the 
design. Formal design models bring help to the research of faults, with the 
aim to eliminate them. The study of a behavioral graph modeling the stages 
and their transitions can help us to imagine different types of functional 
faults. Figure 3.7 shows an example of such a graph. Exercis~ 3.2 proposes 
the analysis of this graph. 

3.5 INTERESTS AND LIMITS OF FAULT CLASSES 

3.5.1 Simplitied Classitication 

As causes of failures, faults are numerous and varied, sometimes 
predictable but always difficult to identify. They are direcdy due to human, 
the tools he/she uses, the ageing phenomena, or aggressions coming from the 
functional and non-functional environment. Faults are produced during the 
specification, design, production and operation stages of the life cyc1e. The 
effects of these faults as failures are however uniquely perceptible during the 
product's operation phase. After this broad exploration of the fault c1asses 
made in the preceding sections, we are going to simplify the c1assification 
given in Figure 3.4, in order to facilitate the presentation of the following 
chapters. Hence, we will put aside the 'who' sub-c1asses of the 'origin' of 
faults, and the 'intention' and 'duration' sub-c1asses of the 'nature' of faults. 

These characteristics will be discussed when necessary. Three main 
criteria remain: 

• the type: functional and technological faults, 

• the origin: the product, the user and the non-functional environment, 

• the occurrence stage: specification, design, production and operation. 

A first study consists in establishing if relationships e;.ist between the 
values taken by these three criteria, that is to say knowing if they are 
independent or not. Figure 3.8 summarizes these relationships. Functional 
faults appear principally during the specification and design stages, and 
sometimes during production and operation due to external perturbations. 
Technological faults happen during the production and operation stages; they 
are influenced by perturbations from the non-functional environment. 
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Figure 3.8. Synthesis of failure causes 
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Figure 3.9. Caricature of fault cIasses 

Chapter 3 

Figure 3.9 shows a earieatured example of problems affeeting the life 
eyde of a 'box': three funetional faults arise at specifieationldesign, during 
the produetion and use, and a teehnologieal fault affeets the operation. 

The fault classifieation and the study of the relationships between the 
classes allow therefore the darifieation of problems to be treated aeeording 
to the stages of the life eyde and the agents at the origin of the faults. We 
will thus be able to seleet the means of fault handling appropriate to eaeh 
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case. The definition of fault classes facilitates the research of generic means, 
that is to say, which are valuable for aIl faults belonging to one class. If no 
fault classes were defined, no general solution would be possible because 
each solution would be unique to each particular fault. The mastering of 
faults would therefore be a coIlection of individual experiences. 

3.5.2 Limitations of the Classitication 

We should note again that it is often difficult to identify the exact cause 
of a failure. Several faults can lead to identical effects and therefore be 
equivalent. In the same way, it is not easy to precise the origin of a given 
fault. For example, the absence of a connection between two logical 
electronic components could be due to a functional fault during design, or 
because of a production fault (a forgotten connection), or to a hardware fault 
(breakdown leading to a rupture of the electrical wire), or even due to an 
extemal perturbation, or else to sabotage! The most often, the diagnosis, that 
is to say the research of the failure cause and/or of the fault origin, is limited 
by the investigation and the observation means available to the extemal 
operator (called the tester). 

The border between the defined classes is often vague. Even if a fault has 
been clearly identified, it can be difficult to put it in a given class. For 
example, a technological fault such as a cut in the connection between two 
components could be due to the environment (because of a too high 
temperature), a production problem, or even a bad design choice. 

Moreover, faults have a cumulative character which complicates the 
analysis. Faults occurring during the different stages of the life cycle will 
persist and, by combining amongst themselves, will create failures during 
the operation phase. It is only when they reveal themselves as failures that 
we see their negative and even catastrophic consequences on the application. 

The limits which have just been exposed as weIl as all the particular 
cases of special malicious faults do not however change the significance of 
our classification which has an educational interest, and facilitate the 
organization of means to fight against faults. 

3.5.3 Protection Against Faults and their Effects 

Even if they correspond to complex problems and phenomena, faults are 
not a fatality that has to be endured. They have an origin upon which we can 
act. Indeed, fault appearance is not independent of the methods, techniques 
and technologies used aIl along the product' s life eycle. Experienee shows 
that some methods, techniques and technology produce fewer faults than 
others. This knowledge will aIlow the improvement of the dependability of 
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products by reducing the probability of the appearance of faults and 
therefore failures. We will come back to this point in the second and third 
parts of this book. 

Faults depend also on the technologies used to built the product. We 
consider here computer systems which have hardware parts (e.g. electronic 
components) and software parts. Now, these two types of logical products do 
not have the same type of faults: in particular, the hardware ageing fault 
phenomena wh ich affect electronic components during their functioning 
with statisticallaws do not exist in software parts. 

In Chapter 5 we will provide information on the main fault models used 
for hardware and software technologies. 

3.6 EXERCISES 

Exercise 3.1. Failures ofthe distributor 

lmagine several failures of the drinks distributor presented in section 4. 

1. A static failure. 

2. A dynamic failure. 

3. A temporary failure. 

4. A static and persistent failure. 

Exercise 3.2. Faults ofthe drinks 4istributor 

Go back to the study of a drinks distributor, looking at the global 
behavioral graph (see Figure 3.7). 

1. Imagine several types of functional and hardware faults and show how 
they transform the graph. What failures do they lead to? 

2. Which type of faults (and on which part of the graph) affect the user's 
satisfaction by altering the functioning of the money management 
(accepting and giving back coins)? 

3. Find a functional transformation which allows this distributor to serve 
several drinks with the same initial amount of money or to give the 
change back by pressing on Cancel (you can add a Return-Money 
button). 

Exercise 3.3. Study of a stack 

This exercise studies the influence of internal and external faults on 
failures of a hardware stack. This product, carried out with the aid of a 
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logical circuit, allows to store data by PUSH operations, and to read them in 
the opposite order of their recording by POP operations. 

A typical failure wh ich can affect the stack consists in an overflow, that 
is to say executing a PUSH when the stack memory is full. To avoid this 
problem, we add an output signal called Stack_Full which takes' l' when 
the memory is full and '0' when the stack still has free space. We can 
nonetheless imagine several faults leading to an overflow despite the 
presence of this signaling mechanism: 

• an internal functional design fault: the size of the stack has been 
underestimated by the designer, 

• an internal hardware fault: a breakdown affects the Stack_Full signal 
and maintains it at '0' value (no signaling) despite an excessive piling up, 

• an external fault: the external circuit uses this stack and ignores the signal 
Stack_Full. 

We should note that a software implementation of this stack could have 
been carried out using a package which exports the subprograms PUSH and 
POP and the exception signal Stack_Full. We can imagine similar internal 
and extern al functional faults as the preceding ones. A fault equivalent to the 
technological one of non-transmission of the Stack_Full signal will arise 
if the pro gram language used does not dispose of the exception mechanisms 
to treat it. 

1. For each one of these faults, find a functioning sequence which provokes 
a stack failure. Does one functioning sequence exists which reveals the 
presence of one oftwo different faults (producing the same failure)? 

2. Imagine several failure situations that would require the use of a 
Stack_Empty signal. 

Exercise 3.4. Study 0/ a program 

We consider a program which dec1ares two global variables, A and B, of 
Integer type and the two following functions: 

function Fl return integer is 
begin 

A :=A+li 
return Ai 

end Fli 
function F2 return integer is 
begin 

A :=2*Ai 
return Ai 
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end Fi; 

Determine the value of B after the execution of the following statement, 
assuming the initial value A = 1: 

B :=Fi+F2; 



Chapter 4 

Faults and their Effects 

In the previous chapter, faults have been identified as the generic sources 
of fai/ures which can modify the operation of any given hardware and/or 
software product. In this chapter we will continue the analysis of 
dependability impairments by specifying the fault notion and introducing the 
degradation mechanisms. These mechanisms gradually transform afault into 
one or several errors (internal effects), then into fai/ures which finally have 
consequences on the functional environment and thus deteriorate the mission 
entrusted to the product (external effects). 

The internal and extern al effects of faults are examined in seetions 4.1 
and 4.2. Section 4.3 synthesizes the degradation phenomena considered here. 

4.1 INTERNAL EFFECTS 

4.1.1 Fault 

In Chapter 3, faults were defined as adjudged or hypothesized causes of 
failures. The real causes of failures are often difficult to determine and 
express. Their precise localization and identification depend on the 
investigation means used to analyze the faulty product. When these 
investigation means allow the system structure to be examined, faults can 
often be specified as structure alterations. In this case, a fault can be more 
precisely defined as follows: 

IA structural fault is a non-adequate 
alteration of the structure of a system. 
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Such a specific structural definition of faults is considered when dealing 
with general-purpose design models and more specific gate or transistor 
hardware models and program models. For example, consider the following 
program extract: 

if (A>B) then 

else 

endif; 

Let us suppose that the programmer has written 'A>B' instead of 'A>=B'. 

This is obviously a fault, as the program structure is inadequate. 
In the case of electronic circuits, a fault occurs for example if the 

designer has forgotten a connection between two components, or has used a 
NANO gate instead of a NOR gate. 

One fundamental property of faults in both hardware and software 
technologies is that they are generally not identifiable as such. A simple 
observation of the structure of the product cannot help the observer to decide 
if a fault is present or not. In the first example, the condition 'A>B' is 
syntactically correct. In the second example, the presence of a NAND gate 
may be adequate or not. Hence, to judge that a structural element of the 
system is a fault, other pieces of information are necessary to justify this 
hypothesis. In fact, to definitely say that a fault exists, the notion of "non 
adequate alteration" must be explained, specifying what is adequate or not. 
Sometimes, a reference model provides properties on the adequate or 
acceptable structures. The syntax of a programming language defines such 
properties by means of grammar rules; for instance, the omission of the 
character ')' in the first line of the previous pro gram extract is a fault: 

if (A>B then ... 

Moreover, the elements of a structure are frequently considered as faulty, 
not in an absolute way but because they produce inadequate or undesirable 
effects in operation. 

The preceding examples illustrate permanent faults affecting the structure 
of the product. In electronics, many other faults can be found which are 
temporary like an electrical interference creating a pulse on a wire. 
Temporary faults are much more difficult to identify than permanent ones. 
Some transient or intermittent faults can be modeled as temporal structural 
modifications of the electronic product. For instance, a parasitic induction 
between two electrical wires can be considered as a temporary shortcut 
between these wires. 

The fault occurrence is generally invisible from the outside of the 
product. This fault has no immediate effect on the delivered service of the 
product. For example, the cut of a wire of a Bus connecting several 
electronic components does not modify the functioning of the whole product, 
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as the altered element is not presently used. Unfortunately, during the 
operational life of the product, this fault will probably provoke a cascade of 
events leading to one or several failures. We distinguish three main phases in 
the life of a fault (Figure 4.1). 

• The fault is dormant or passive, i.e. it is present in the product but the 
functioning inside the product is not disturbed. For example, an electronic 
component is not used although a fault occurred inside it, or an incorrect 
programming statement has not yet been used at run-time. 

• The fault is active, i.e. it has an effect on the product functioning. This 
effect will be defined in the next section as an error in an internal 
component or module. For example, a fault causes an output signal of an 
electronic component of the product to be wrong, or a programming fault 
produces the assignment of a bad value in a program' s variable or an 
erroneous branching. 

• The error is propagated inside the product till it reaches the outputs of the 
product, hence creating afailure. 

The transformation of a fault into an error is called the fault activation. 
The mechanism which creates several errors in the product till provoking a 
failure will be called the error propagation mechanism. 

I fault I 
activation 

I error I 
propagation 

I failure I 

Figure 4.1. Internal effects 

4.1.2 Error 

As explored in section 2.3 of Chapter 2, the modeling of the behavior of 
each module of a product structure makes use of attributes which 
characterize this behavior. These attributes can be the external input/output 
variables and the internal variables memorizing data and control events of 
the module processing. At run-time, various values are assigned to these 
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attributes. At a given time, the set of values associated with the attributes 
defines astate of this module. The actual functioning of the module is then 
defined as transitions from state to state. A defective functioning is 
perceived when some properties on the state value or on the state evolution 
are violated. For instance, if the state of a pro gram is defined by the value of 
a variable Ternperature_of_the_Ice, then the property: 

'Ternperature_of_the_Ice <= 0.0' is expected. 

I An error occurs in a module when its actual state deviates from its 
desired or intended state. 

An eITor is due to a fault. Thus, a fault modifying the structure of the 
product will change its functioning, and produce an eITor. 

Let us now consider the following small program extract: 

if (A>B) 

endifi 

then Ternperature_of_the_Ice. - Fl (A, B) i 

else Ternperature_of_the_Ice;= F2(A,B)i 

We assurne again that the programrner has written 'A>B' instead of 
'A>=B'. Every time A and B have the same value, the faulty program 
executes function F2 instead of F 1. 

Due to the definition of an eITor, its characterization depends on the 
selected attributes and the chosen properties defining the desired or intended 
states. Consequently, several eITors can be associated with this fault 
according to the attributes and properties chosen. 

If Ternperature_of_the_Ice is considered as an attribute of this 
program, any variation of the processed value from the expected one could 
create an eITor. Unfortunately, the expected value is not apriori precisely 
known as the pro gram was created to calculate them. Therefore, properties 
must be defined in order to identify the presence of an eITor, such as 
'Ternperature_of_the_Ice <= 0.0'. This property characterizes the 
acceptable states. Other properties concern state evolutions. Thus, another 
property could have been: 'the difference between two consecutive values of 
Ternperature_of_the_Ice is bounded by 1°C'. 

For the same program, one could define another set of attributes, the two 
parameters A and B of function F2, and choose the following property: 'the 
specification of F2 assurnes that A "* B' . 

Concerning hardware, let us consider a NAND gate with two inputs, A 
and B, and one output C. In this case, we have a behavioral reference model 
expressed by the property: C = (A . B)" where the symbols '.' and '" 
respectively represent the logic AND and the logic complement. Thus, any 
fault of the transistor structure of this gate producing a wrong value on C is 
perceived as an error if C "* (A . B)'. 
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On the contrary, the property 'Ternperature_of_the_Ice <= 0.0' of 
the software example is not a complete formal model of the expected 
behavior of this program. Hence all wrong state values produeed by this 
program cannot be eharaeterized as eITors by this property. 

So, the notion of eITor is relative: 

• to the knowledge we have about the modular strueture of the produet and 
about the selection of the attributes of eaeh module, 

• to the properties associated with the attributes which define the internal 
expeeted state evolution. 

In the same manner as failures, errors have temporal eharaeteristies 
classified aeeording to two independent eriteria: 

• static error whieh eOITesponds to stable undesirable state (e.g. a false 
signal' l' instead of the eorreet one '0') or dynamic error or transient 
error which provokes transient undesirable states (e.g. a transient 
oscillation on an electrie line), 

• permanent error which alters the module for a long duration (e.g. the 
output of a module is 'stuck-at 0') or temporary error wh ich alters the 
module for a short duration (i.e. the eITor presenee is lirnited in time). 

For instance, consider a system including a sensor whieh gets data. We 
assurne that disruptions, such as eleetrical parasites, may alterate the 
sampled values. If the system acquires this input value only onee (for 
instance, at initialization time), then a persistent eITor occurs. If the sensor 
makes periodic sampling, the eITor ean be present only during one period. In 
that case, it is a temporary eITor. 

4.1.3 Error Propagation 

Once a fault has been activated as an eITor in one module, degradation 
mechanisms can propagate this error through the produet strueture until 
reaehing its output variables, thus produeing a failure. The propagation (or 
error diffusion or contamination) is conducted through one or several error 
propagation paths. This process depends on the initial eITor, the module 
which has been first disturbed, the strueture of the produet and the external 
input sequences applied to the produet since the fault has been aetivated. 

For example, let us examine the strueture of Figure 4.2 infeeted by a 
fault located in module MI. This fault is activated as the initial error inside 
this module (eITor 1). Then, it passes to module M2 (eITor 2), i.e. at the level 
of module M]2, and finally reaches M3 and provokes a failure. 
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I 

Figure 4.2. Example of error contamination 

It should be noted that another description of the product structure by 
using another modular organization would have modified the sequence of 
the varlous errors (error 1 - error 2 - error 3) taking part in the contarnination 
process. In particular, the absence of knowledge about this structure would 
have suppressed aB internal errors! Thus, the propagation mechanism 
depends on the modular structure of the product and the observation level of 
the analysis. 

A same fault can produce different errors and different failures at 
different moments of the product' s useful life. These effects depend on the 
fault location and the activity of the product during and after the fault' s 
occurrence. In particular, faults do not necessarily raise errors, and errors do 
not necessarily imply failures. It depends on the structure of the product and 
the input sequences which are applied to the product during its use. Let us 
illustrate this aspect with the program extract example of sub-section 4.1.2. 
For a given value v of A=B, we suppose that F2(A,B) is erroneously executed 
instead of Fl(A,B). If F2(v,v) = Fl(v,v), then there will be no error and, 
hence no possible failure. Hence, in that case the error contarnination is 
stopped. 

The qualifiers static and dynamic are associated with errors and failures. 
These properties are not necessarily preserved along the propagation paths in 
the product' s structure. Thus, a dynarnic error can be propagated as a static 
error. For example, a register receiving a pulse on the data Bus (dynarnic 
error) can record wrong data (then it becomes a static error). 

Moreover, an error created at any moment can evolve with time 
according to the product activity: 

• it can disappear, the operation becorning correct again (this error is also 
caBed overwritten error), 

• on the contrary, it can become worse by adegradation mechanism. 
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The reasons for these phenomena are to be found in: 

• the intrinsic evolution of the initial fault with time, e.g. temporal drift of 
the response time of electronic components, 

• the normal evolution of the product operation, i.e. the activity of the 
modules evolves with the input sequences coming from the functional 
environment, hence fault activation and/or error propagation conditions 
can also be modified. 

An error may be temporary, either because the fault is itself temporary, or 
because the operation of the product activates the faulty module during a 
short duration. Let us take the example of a parasitic signal in a control 
circuit: an alpha partic1e may change the state of a RAM (a word is 
erroneously changed) and induce a wrong value of a variable storing the 
value of a sensor used for a control algorithm. This error is temporary 
because, it will disappear at the next actualization of this variable. 

A permanent fault of a computing component (such as a 'stuck-at' 
electronic fault) may lead to incorrect processing for very special and rarely 
applied input values. Here also, the error may be temporary. 

The degradation of the behavior of a product is due to cumulative effects 
involving several faults and errors which progressively affect more and more 
functions of the product. For example, the presence of faults in a 
comrnunication Bus connecting several processing units can progressively 
disturb the operation of these units when they are using the Bus. 

4.1.4 Latency 

A fault remains passive until an error is produced in a module of the 
structure of the product. We call initial activation the first occurrence of an 
error provoked by the fault (illustrated in Figure 4.3). This error is known as 
primitive error or immediate error. In the case of the example of Figure 4.2, 
the initial activation causes 'error l' in module MJ• 

I La~enc! is the meantime between the fault occurrence and its initial 
act1vatlOn as an error. 

Where software systems are concerned, faults are generally introduced 
during the development phases. On the contrary, faults can also occur at any 
time of the operation phase of an electronic product. For the two 
technologies, errors occur at run-time. 

The latency value depends on four main parameters: 

• The module containing the fault: the latency is high if this module is 
rarely used during the mission of the product. 
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• The moment of the apparition of the fault, e.g. the module altered is used 
only at the initialization of the mission, hence its latency is small during 
this period and high during the rest of the mission. 

• The way the product is used at the occurrence of the fault, e.g. the latency 
is high because the product does not presently use the infected module. 

• The 'observation' level given to the product, that is to say the precision of 
the state definition and the properties associated with these states; for 
instance, a false signal or a wrong variable value may be considered as an 
error or not according to their action or not on the state attributes and the 
ability of the properties to perceive them as wrong. 

I fault 1--1 error 1 
I passive fault I active fault • 

(fatenv I 
Figure 4.3. Latency 

By generalization, latency can be extended to the meantime between 
the occurrence of a fault or an error in a given module and the raising 
of an error in another given module. 

Hence, this latency notion is related to the observability notion. 
Frequently, the latency is referred to as the observation of the fault as a 
failure at the primary outputs of the product. In this case, the internal states 
of the modules are not examined and thus no errors may OCCUf. 

The assessment of the latency is essentially a statistical process, typically 
obtained thanks to measurements conducted on sampIes of the product under 
investigation. However, it can also be estimated by reference to other 
products already developed. For example, in the case of software, knowledge 
coming from past designs allows the latency of the software under 
development to be estimated. 

Some products have an intensive internal activity with a low latency. It is 
the case of a sequential circuit which counts the average number of extern al 
events arriving at high speed (e.g. a particIe counter): this circuit has a low 
level latency (e.g. lms). On the contrary, a fire detector can remain in the 
same waiting state for years, till the occurrence of a fire. Therefore, the 
presence of a fault may be never observed. This is the reason why fires are 
periodically simulated. Another example is an ABS car system, which 
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avoids the blocking of the wheels. Its latency can vary according to the way 
the driver uses his/her car. 

Latency is related to the destructive mechanisms, which transform faults 
into errors and propagate errors to the product' s outputs. In all cases, it 
delays the appearance of a failure, i.e. the perturbation of the delivered 
service. This evolution is symbolized in Figure 4.4. 

4.2 

4.2.1 

@. p 

acdvali~" ~ 
propagation 

Figure 4.4. Latency caricatures 

EXTERNAL EFFECTS: CONSEQUENCES 

External Consequences of Faults 

At the end of the contamination mechanism, if propagation has not been 
stopped, a fault has been transformed into a failure, that is to say a non
desired service delivered by the product in the general framework of its 
mission. Thus, the product gives incorrect pieces of information (incorrect 
values, too high response time, spikes, etc.) to its functional environment 
(the controlled process, the human operator, etc.). We will now analyze the 
external consequences of the failure on the mission, in terms of seriousness 
or severity of the perturbations. We identify four main grades of 
consequences of failures on the mission: benign, signijicant, serious and 
catastrophic. 

• Benign. The failure has no serious consequences on the mission which 
carries on normally. For example, if a text-processor fails, the user can 
enter his/her text again from the previous back up of the file text (if such 
back-up file exists). It is also known as minor failure. 
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• Significant. The mission is disturbed and the efficiency of the delivered 
service is reduced; for instance, the failure has economic consequences in 
terms of costs (fixed or proportional to the irnmobilization duration). This 
failure is also called major failure. 

• Serious. The mission is greatly disturbed, the security margins being 
dangerously reduced; for example, an automated process control has been 
stopped for a day inducing production loss. This failure is also called 
dangerous failure. 

• Catastrophic or disastrous. The effects are unacceptable: the mission is 
stopped with destruction ofthe product and/or the controlled process (e.g. 
explosion of a heated distillation balloon) or with human injuries or 
deaths (e.g. because of the explosion or the emanation of toxic gas). 

The severity grade assigned to a given failure is relative. For instance, if 
the text-processor failure does not allow an industrial project proposal to be 
completed before the deadline, then this failure is at least significant and not 
at all benign. 

Independently from their seriousness, the consequences of failures can 
be: 

• human (loss of confidence in the product, injury of an operator, etc.), 

• economical (for example, a significant consequence is expressed in terms 
of cost implied by the recovery of the alte red function, the diagnosis and 
the repair of the product and its environment), 

• environmental (e.g. air or water pollution). 

Three parameters influence the severity of the consequences of a failure: 

• the nature of the failure, 

• the functional environment which makes use of the product, 

• the moment when the failure appeared. 

The first parameter concerns the characteristics of the fault which caused 
the failure, the module which was first altered and the activity wh ich 
propagated the errors and contaminated the product. One must firstly try to 
evaluate the loss of functionality of the altered mission. For example, let us 
consider a regulation system made up of a control unit, an arithmetic 
processing unit, a memory and an external interface unit. A fault in the 
control unit can block all the product activity; a fault in the arithmetic unit 
can, according to the activity, have benign effects (if the application does not 
make use of it) or severe effects (erroneous computation leading to a 
dangerous action on the environment). 
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A same failure of a product has different external consequences 
according to the functional environment with which the product interacts 
(second parameter). A hardware fault in a given micro-controller can have 
quite different effects whether this circuit is used for agame or is integrated 
in an embedded flight control system. 

The precise moment when the fault is revealed as a failure mayaiso be of 
importance (third parameter). The effects are different whether the product 
operates in a critical phase (for example, during an aircraft takeoft), or in 
normal phase (cruise flight), or else is stopped (the aircraft is parked). 

During the useful life of the product, the severity of the failure's 
consequences can evolve and become more critical due to: 

• internal reasons (evolution of the errors, appearance of new faults and 
errors); 

• extern al reasons (modification of the operational conditions, e.g. due to 
an evolution of the functional environment); for example, a faulty text
processor is firstly used for a non urgent letter (benign consequences), 
then for an urgent contract proposal (significant or serious); 

Let us finally insist on the fact that the seriousness notion is frequently 
subjective. For instance, let us consider a short breakdown of a TV 
transmission system embedded in a satellite during an Olympic game 
pro gram. This failure has rninor consequences for people not interested in 
sport programs. It can be considered as significant by the fans. Finally, the 
econornic cost of this failure can be catastrophic for the program producer 
because he/she will have to return money paid for the non-delivered 
advertisements. 

Example 4.1. Regulation 01 a balloon's temperature 

To illustrate the notions introduced, let us consider a product intended to 
control a distiller' s temperature. It receives sampled data from sensors and 
controls the heating gas flow by acting on an electro-valve. Let us suppose a 
fault in this product wh ich opens the electro-valve at 20% instead of 10%. 
This fault can arise from a functional design fault (bad specification 
interpretation, wrong control algorithm, bad hardware design, etc.), a 
functional or technological manufacturing fault (bad integrated circuit 
manufacturing, fault during the insertion of a component, etc.), a 
technological fault occurring during operation (stuck-at fault in a 
component) or a perturbation coming from the environment of the product 
(electromagnetic interference). We can imagine several kinds of 
consequences: 
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• significant consequences: the temperature is incorrect, so the treatment 
has a smaller yield than the expected one, implying a loss of income, 

• catastrophic consequences: after a few minutes, the high temperature of 
the balloon provokes an explosion that destroys the process. 

Note that the bad electro-valve control can firstly lead to a decreasing in 
the yield, and later, by degradation, reach a total loss of the production, 
obliging to halt the mission. 

4.2.2 Inertia of the Functional Environment 

In general, the external consequences of a failure do not occur 
immediately because the functional environment connected to the product 
presents inertia phenomenon (illustrated by Figure 4.5). Hence, the 
explosion of a distillation balloon due to a failure of the heating control 
system may occur a few minutes after the incorrect electro-valve opening. 

I The inertia is the duration between the occurrence of a failure and the 
beginning of its external consequences on the mission. 

According to the considered application domain, the inertia varies from 
milliseconds (case of electrical processes ) to hours (case of processes from 
iron & steel industry or civil engineering). Often, for a given failure, the 
duration between the failure occurrence and the occurrence of its 
consequences varies. Therefore, inertia is defined as the meantime of the 
duration values. 

failure I ~ Iconsequence I 
I I. 

Figure 4.5. Inertia of the functional environment 

4.2.3 Completeness and Compatibility 

In a first study, the reader may ignore this sub-section as weIl as sub
section 4.2.4 dealing with emergence. 

Let us suppose that the initial contract between the designer, the dient 
and the user has correctly expressed the specifications of the future product: 
function, duration, non-functional constraints on the environment and 
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dependabilityattributes. 
Let us also suppose that no fault has been introduced during the 

development phases. In that case, the following functional relation is true 

P = L = S, where: 

- S, ~ and P respectively express the specifications, the functionality of 
the system resulting from the design phase, and the functionality of the 
final embedded product, 

and the symbol '=' represents the functional identity (i.e. the provided 
function is the same as the expected one, taking the operational 
constraints into account). 

The final product used for the mission is now infected by faults that can 
produce errors and failures. Therefore, P is not identical to S. However, it is 
useful to separate the three following cases: P > S, P < Sand P ;!: S. 

• P > S: the functionality of the product is greater than the one given by the 
specifications. The product is able to do more things than given by the 
specifications: it is said to be compatible with them. 

• P < S: the functionality of the product is smaller than the one of the 
specifications. The product can do fewer things than given by the 
specifications: it is a case of implementation incompleteness. 

• P;!: S: the product does not satisfy the specifications. It is a case of 
incompatibility . 

The interest of this distinction lies in the interpretation of the failure' s 
seriousness. One generally accepts the first case as benign, as no failure will 
be produced. Frequently, the specifications are not formal. They are for 
example expressed as an English document. So, some situations may be 
unspecified. It can be deliberate if these situations are known not to occur 
during the final mission. On the contrary, they may result from omissions in 
the specifications. Then, the designer will interpret these inaccuracies during 
the design step. As a result, the product might have more functionality and 
be able to react to input data that will never be applied by the process. 

In the second case, the product may be unable to handle some expected 
external stimuli (or the reaction may not be predictable), a situation which 
may be considered as serious. 

Finally, the third case is the c1assical one of failure production already 
considered. 

Note. Reuse techniques are increasingly employed in hardware and 
software design in order to simplify the design process and standardize the 
production. They can lead to the first case (P > S) if some elements of the 
functionality provided by the reused module are not presently activated. 
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Unfortunately, the two other situations exist, being at the origin of numerous 
errors. For instance, a subprogram is reused, as it provides an expected 
function. However, its designer assumed constraints about the parameters, 
which are not satisfied in the new utilization. 

4.2.4 Intluence of the Functional Environment: 
Emergence 

The external faults due to the functional environment which interacts 
with the product are often much more difficult to identify and to master than 
the internal faults which alter the product. Indeed, modeling of the 
environment is oftert'very complex (mathematically speaking) and implies 
numerous variables and parameters with much inaccuracy. Moreover, these 
models are not static: influence of time, temperature, etc. Here, we will not 
treat faults specific to the functional environment but we will analyze the 
influence of the interactions between the product and its environment. 

The functional relations between the product and its functional 
environment place constraints on the actual functioning of the product. We 
call emergent functionality the functional part of the product which is really 
used in the context of the mission. This part is smaller than or equal to the 
total functionality of the product considered alone without external 
constraints. We express this property as: 

Em( PI II) :s; P, where II represents the functional environment. 

Embedded in its environment, a well defined and designed product must 
have a resulting emergent functionality greater or equal to the functionality 
defined by the specifications. We express this property: 

Em( PI II) ~ S. 

This expresses that the real behavior provided by the product in its 
environment must at least include the specified (i.e. expected) one. So, new 
sources of functional failures appear, which are connected to the notions of: 

• reuse of a product already designed and involved in new applications 
(software functions and packages, integrated circuits), and 

• robustness of the product faced to perturbations arising from achanging 
environment. 

Reuse. A product P which has been developed for a given known 
environment II is embedded in a different environment II *. Two situations 
might occur: 

• the functioning of the product is compatible with the new environment, 
then Em( P/JI*) ~ S, 
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• the functioning of the product is incompatible or incomplete according to 
the new environment. 

The incompatibility comes from faults introduced during the design, 
production and/or operation stages of the product. 

Robustness. The product is supposed to be correct1y specified, designed, 
produced and used. We suppose the occurrence of an external fault, also 
called perturbation, arising from the environment. This environment 
changing is noted .MI (llbecomes II *). We say that the product accepts this 
perturbation if Ern( PI II * ) ~ S. Then, the product is qualified as robust 
with regard to this perturbation. In the opposite case, the fault will produce a 
failure sooner or later. 

The robustness is the property of a system that defines its capability, 
when it is aggressed by the environment, to provide a function wh ich is 
acceptable to the user. 

Certain standards define robustness as the characteristic of a product 
which guarantees that its functionality is maintained even if specified 
operational and utilization requirements are violated. However, it assumes: 

• either a definition of the expected functionality, that is an extension of the 
specifications of the system, 

• or a temporal inactivity of the product which preserves its current state 
for future normal use. 

Our definition does not require a precise expression of what must occur, 
but just the expression of its acceptance or its rejection, for example using a 
property. For instance, if a traffic light controller detects a bad use, such as a 
faulty signal sent by a sensor, the yellow light must wink (specified safe 
behavior) or the two lights must not be simultaneously green (safe behavior). 
Furthermore, for this controller the non-reaction and the state preservation 
mayaiso be adequate to react to temporary faults. The concept of robustness 
can be linked to the fail-safe property developed in Chapter 17. 

4.3 CONCLUSION ON THE EFFECTS OF FAULTS 

Figure 4.6 sums up the destructive mechanisms linking faults, errors, 
failures and external consequences. A fault appears and is activated as an 
error. The error propagates and contaminates the product until reaching the 
output; hence, it produces a failure. Finally, the failure has external 
consequences on the environment. 

The vocabulary used in this book was selected from the various hardware 
and software domains of computer sciences. Unfortunately, dependability 
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science has not been developed jointly by specialists from these domains. 
Hence, the keywords have not always the same meaning. In Electronics, the 
word lailure often refers to operational values of parameters of a component 
being out of range. For example, a 'failure' of a MOS transistor will disturb 
the operation of a logical gate. In that context, the lailure of the MOS 
component would precede an error in the product. Therefore, these notions 
are recursive. In any case, the notions of fault, error and failure are always 
relative to the observer's point of view. Thus, a 'stuck-at 0' of a logical 
output gate may be considered as a fault of the circuit using this gate, an 
error of the gate module in the complete circuit, or a failure of the gate 
component. 1t depends on the investigation level considered. 

Latency lnertia 

Figure 4.6. Internal and external effects of faults 

Latency and inertia are phenomena which delay fault effects: latency 
delays the internal transformation of faults, and inertia delays the external 
effects of failures. So, these two phenomena seem to have always positive 
effects on a mission's dependability, because they delay the issues and give 
more time to the protective mechanisms, hence avoiding for example a 
catastrophe. This opinion is really true for inertia. 

Concerning the latency, the property is unfortunately not always true. As 
a matter of fact, latency may have negative effects on the product' s 
dependability because of the lack of observability about faults inside the 
product. This means that a fault may exist which eventually produces errors 
that cannot be observed from the outside of the product. In some cases, a 
high latency may produce an accumulation of invisible errors wh ich, later, 
may inhibit the protective mechanisms. Such mechanisms are, for example, 
off-line and on-line testing methods used during the maintenance periods or 
fault-tolerant techniques embedded in the product to avoid failures. For 
example, consider a product containing a fault-tolerant mechanism used to 
handle exactly one error. Thus, if such an error exists at the end of the 
development process, the presence of the associated fault is masked. For 
instance, it is not transformed into a failure during a testing operation. 
However, a second fault occurring anel/or activated during the operation will 
not be tolerated. 
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Figure 4.7 summarizes the positive and negative effects of latency and 
inertia. Latency and inertia measurements are fundamentally statistical 
information difficult to assess with accuracy. Therefore, the practical interest 
of their analysis is more qualitative than quantitative. 

..
• positive effccts 

Latency 
• negative effects 

Inertia _ • positive effects 

Figure 4.7. Positive and negative effects of latency and inertia 

Example 4.2. Analogy with the human pathology 

The observation of living beings gives an endless source of examples to 
illustrate and enlighten the fundamental notions implied in the destructive 
and the protective mechanisms we are studying here. Faced with the 
relentless degradation mechanisms, life has cleverly developed a wide range 
of protective mechanisms to detect and correct the problems. 

A virus (considered here as the analog of a fault) penetrating our body 
will at first be latent (passive fault). Later, according to our physiological 
evolution, this virus can disturb the functioning of one organ (the fault is 
activated as an error in a module). Then, the infection may develop and 
pro pagate until it becomes an illness (propagation of errors and failure 
occurrence). The main detection mechanism is pain. Temperature is also 
used to detect an illness but it is fundamentally a protective mechanism. 
Here also, latency plays a major role by delaying the effects of the virus. The 
consequences of latency are positive. For instance, the illness is delayed for 
months or even years. However, it has also negative effects. For example, it 
may mask the presence of an infection that will develop inside an organ and 
will be very difficult to cure later. 

4.4 EXERCISES 

Exercise 4.1. Latency of an asynchronous counter 

Let us consider a 16-bit asynchronous counter which counts pulses 
corning on the input land gives the result on the output 0 with a natural 4-
bit binary code (a, b, c, d). A stuck-at '0' of the variable a occurs while the 
counter is in the initial state (0, 0, 0, 0). Hence, the counter will now evolve 
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with constrained configurations (0, b, c, d). 
Determine the average latency of this fault for a 2ms average-time 

between input pulses. 

Exercise 4.2. Latency 01 a structured system 

We want to analyze the latency of the 3-module structured product 
considered in Chapter 2 (represented again in Figure 4.8). 

Product 

-. Mt M3 r----. Input +- Output 
-+ 

_ .. -. 

~ M2 

-- -~--- -

Figure 4.8. Structured system 

Calculate the latency at the different levels of the structure by adding 
locallatencies: 

initial fault at time 0, latency LI at the level of module M 1, propagation 
through M2, M3 (latencies L2 et L3), and then failure at the output. 

Numerical values: LI = 10 ms, L2 = 100 ms, L3 = 30 ms. 

Exercise 4.3. Consequences 01 lai/ures 

A given product may be infected by one of the faults of a set of ten faults 
{F1 •. F lO } having the same probability of occurrence p. The maintenance 
contract which has been accepted for this application specifies that the repair 
time is equal to 4 hours. 

An analysis of the application showed that the external consequences of 
the ten faults are as folIows: 

: benign consequence, 
: significant with a 'fixed cost' of 5ku 
(u being a given monetary unit), 

: significant with a 'variable cost' of 6ku per hour, 
: significant with a 'fixed cost' of lku plus a 'variable cost' of 
3ku per hour of immobilization. 

What is the average maintenance cost? 
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Exercise 4.4. Fault-Error-Failure in a program 

The following procedure extract aims at counting the number of sheets in 
a book. At first, it computes the number of the last right page. 

procedure Count_Number_of_Sheets (Sheets_Number: 

Last_Right_Page: positive; 
begin 

Last_Right_Page := ... ; 

out positive) is 

Sheets_Number := (Last_Right_Page + 1) / 2; 
end Count_Number_of_Sheets; 

We assume that the expression which calculates the Last_Right_Page 
(noted ... in the program) contains a fault. We use this procedure in a book 
editing processor to analyze a book whose actual last right page number is 
325. 

1. Is there a failure if the faulty expression gives 326 as a result? Answer the 
same question with 327 and 328. 

2. Is there an error in the three cases? 

3. What do you conclude from this experiment? 



SECONDPART 

PROTECTIVE MECHANISMS 

Confronted to the destructive mechanisms shown in the first part of 
this book, faults - errors - failures and their extern al consequences, 
designers, producers and users have developed numerous formal and 
empirie proteetion means. Their principles are introduced in this part. The 
associated practical methods and techniques will be studied in the third 
and fourth parts of this book. 

We firstly introduce in Chapter 6 the three large groups of 
dependability means allowing faults and their internal and external effects 
to be mastered: fault prevention, fault removal and fault tolerance. The 
methods, which correspond to these approaches, are presented and 
organized according to several groups. 

In Chapter 7 we consider the dependability assessment which allow us 
to measure the efficiency of the use of the previous methods. We study the 
quantitative approaches considering the principal criteria (reliability, 
testability, maintainability, availability, safety and security) , as weB as 
methods which permit us to evaluate them. We also discuss qualitative 
methods. 

Redundancy is a fundamental notion which plays a major role in 
dependability techniques, principally for fault suppression and fault 
tolerance. In Chapter 8 we define this notion and its many diverse forms. 
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Fault and Error Models 

5.1 DEFINITIONS 

5.1.1 Structural and Behavioral Properties 

We have presented the mechanisms which trans form faults into errors, 
failures and external consequences. We will now examine a fundamental 
question: how can faults and errors be expressed by means of mathematical 
modeling tools and what is the relevance of such models? The answer to this 
question is important because it affects the means that will be used to 
prevent, detect, or tolerate faults. 

Faults were defined as adjudged causes of failures with regard to the 
system structure: a fault is a non-adequate alteration of the system structure. 
The identification of faults therefore depends initially on the modeling 
means used to express the studied system. Thus, for a given product, faults 
associated with a representation by state graphs are different from those 
associated with an electronic modeling based on MOS transistors. In the first 
case, a transition from astate to another may be a fault, whereas in the 
second case, it may be a short-circuit connecting two lines. In practice, 
numerous representations are used during the life cyc1e of a 
hardware/software product: from the behavioral model of its specification to 
the technological model of its implementation. 

Moreover, the examination of each feature of a structure does not allow a 
precise fault prediction. We illustrated this fact by signaling that a 
connection linking two elements of a circuit can be considered as desirable 
(necessary to obtain a good functioning) or not (short-circuit). Similarly, the 
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simple reading of the pro gram fragment 'i f (A> B ) ...' does not permit 
the conc1usion that 'if (A>=B) ... ' should have been written instead. 

In fact, faults depend on the tool used to model the system, but also on 
the functionality that must be expressed by the system model. For instance, 
(A>=B) must be written instead of (A>B) because this last condition will 
not allow the expected behavior of the system to be obtained. 

This discussion leads us to conc1ude that faults are as varied as the 
number of representation models and modeled systems! If an exhaustive list 
of all possible faults existed, it would certainly be huge. Consequently, what 
could be proposed to help design engineers in their fight against faults? To 
answer this question, faults must not be identified by their individual 
specificity but by common characteristics. Such common characteristics will 
allow fault c1asses to be defined, and thus techniques to be proposed to 
handle all faults of a given c1ass. The issue is now the definition of such 
common characteristics. 

As faults are defined as non-adequate modifications of a product' s 
structure, we must express what is expected or required. This is generally 
difficult. Indeed, as the faults being considered in this book are 
unintentional, the knowledge of what is correct would prevent any fault 
creation during the development phases. Instead of precise expectations on 
the structure's characteristics, we will express intended properties. These 
properties are ordered into two main families: 

• physical properties, also called structural properties, wh ich deal with the 
static structure of the system or the product, 

• behavioral properties which deal with the function performed by the 
system or the product. 

5.1.2 Structural Properties 

Properties of the first group, that is physicallstructural properties, are 
expressed without any knowledge of the studied system' s function. Where 
hardware technology is concemed, examples of such properties are: a wire 
connecting two components has been cut, components have not been 
mounted on a printed circuit board, or a board has not been properly plugged 
into a rack. Inspection tools can generally perform the detection of these 
faults. Conceming the domain of software technology, the properties deal 
with syntax faults such as a wrong keyword, a grammar fault, etc. A syntax 
fault is defined as the violation of properties on keyword and identifier 
sequences defined by the language grammar rules. Each property violation 
defines a c1ass of potential faults and not one particular fault. For example, if 
an Ada compiler detects that a program calls a non-existent function, it 
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identifies a dass containing numerous possible faults e.g. the called function 
is rnissing in the file, the name of the called function is wrong, or the called 
function specification has not been previously dedared, whereas the body is 
written after the calling program. 

IA fault model defines a set of faults characterized by 
physicaVstructural properties, that is properties on the desired model 
structure. 

The properties can be generic, that is to say not specific to any given 
system. Generic properties are related to the modeling tools, even if they are 
applied to each particular modeled system. For instance, the previous syntax 
fault dass is characterized by the generic property: 'a called subprogram 
must be previously dedared'. This requirement is a generic feature of the 
programrning language. Each subprogram call can be at the origin of a 
specific fault bel on ging to this type. 

5.1.3 Behavioral Properties 

On the contrary, the second group of properties, that is the behavioral 
properties, characterizes faults by their effects as errors. For example, the 
occurrence of a '1' logical value at the output of an ANO gate when a '0' 
value is applied at one input reveals an error. This error may be due to 
numerous faults: wrong operation assigned to the variables (e.g. a NANO 
instead of a ANO), or wrong connection (e.g. the cut of an input). The 
property 'an assigned value must belong to the type range' defines a 
behavioral property for programs. It is a generic property as it is expected for 
all variables of any pro gram. A particular error is raised when a variable 
assigned by a value does not belong to the range defined by its type. Thus, 
we put all the faults producing the same sort of errors together in the same 
dass of an error model. These faults are characterized as violating the same 
behavioral property, that is, defined on the states intended to be reached 
when the system runs. 

I An error model defines a set of faults characterized 
as errors by a property on desired or intended states. 

This distinction between fault model and error model is not always easy 
to establish. In particular, relationships exist between the two notions. For 
instance, in the case of the preceding ANO gate error model, a more precise 
investigation would discover a physical fault such as a short-circuit between 
the output li ne and the ground line, that is, a fault model. In the literature, 
most authors speak of fault model as a generic term. The term error typology 
is also appropriate. 
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The variety of the means used to model the systems in addition to the 
variety of expressed properties do not allow an exhaustive list of faultlerror 
models to be provided. Our presentation focuses on examining faults and 
errors relevant to the last phases of the development process, wh ich are 
associated with the implementation technologies. We examine the families 
of faultlerror models relevant to hardware and software technologies. 

In seetion 5.2, we present examples of significant faultlerror models of 
electronic circuits and software programs. We then discuss their relevance in 
seetion 5.3. We analyze, in seetion 5.4, some faults altering two simple 
examples: functional and hardware faults affecting a hardware addition 
circuit (seetion 5.4.1), and faults of a small program and of its runtime 
resources which support its execution (seetion 5.4.2). These pieces of 
information will be useful to understand the proteetion mechanisms 
explained in the following parts of the book. 

5.2 SIGNIFICANT FAULT AND ERROR MODELS 

5.2.1 Faults and Errors at Different Representation Levels 

Table 5.1 presents some classes of faults and errors for modeling means 
used at different steps of the design of an electronic product. 

Level System examples Examples of types of faults or errors 

Abstract Finite State Machines Erroneous states I arcs (fault) 
Petri nets 

Program Programming languages Bad using of statements, 
Erroneous constants (faults) 

Register Transfer Languages Functional faultslerrors affecting the 

Functional modules (flip-flops, registers, etc) 
Controlfaultslerrors affecting transfers 
between modules 

Logic Gate, Flip-Rop Stuck-at 011 of gate inputs/outputs (errors) 

EJectronic Transistor MOS Stuck-at Ollof wires 
Short-circuit, open Iines (faults) 
Coupling (errors) 

Technology Layout Default on lhe layout 
Physical structure Erroneous dimensions of technological 

elements (faults) 

Table 5.1. Faults and errors at various representation levels 
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These 6 levels illustrate the significant steps of the design process: 
abstract, program, functional HDL (Hardware Description Level), logic, 
electronic and technological. Then, in Figure 5.1 we provide some simple 
examples of faults and eITors for these six levels. 

Abstract : design fault A 
Arc 2 ~ I was forgonen ~B~ If input B is applied from state 2, 
the system stays in this state mlsslng are 

Program: design functional fault if A <=8 then 
8 :=8 + 1; 

Une 1 becomes: if A < B thell end; 
The result S is not incremented when A = B 

HDL: functional and control faultslerrors Cl: D+-A+B; 

1. When condition Cl arises, the result of A + B is stored ~C2 in register D. If C2 is wrilten instead of Cl, an error 
in the SYllchronization of this treatment occurs 

2. When condition C arises, the value of register A is 
C : MEM(R1) +- A ; 

stored in the memory at the address provided by RI. If ~ 
RI is replaced by R2, then an addressing error exists R2 

Logic: hardware faults 

a?s!)W Stuck-at '0' or at 'I' of the inpUt/output of the gates. 
For instance, stuck-at '0' of an output or stuck-at' 1 ' 
ofan input 

Electronic MOS: hardware faults 

Short circuit between two wires: '-181-:;"'-the logic function ofthe MOS network is modified -
b-j I-d 

Hardware technology: design fault PolysWeoß 

Creation of a parasitic MOS transistor due to an 

-~ involuntary crossing of two connections (polysilicon 
and diffusion) 

Figure 5.1. Fault examples at several abstraction levels 

We need means to identify the numerous faults which can affect the 
structured models expressed during development phases. As previously 
mentioned, due to the large range of possible faults and due to the difficulty 
involved in considering a fault as the presence or the absence of structural 
elements, the faults could be classified according to the eITors they generate. 
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Unfortunately, we are again in a similar situation: the possible errors are 
innumerable and they strongly depend on studied products. For instance, 
when software applications are concerned, properties specific to each 
application can be expressed correlating the intern al state values: 

• relationships between the values of the variables of the program, for 
example the value of X must be located between those of Yand Z, 

• or relationships on the sequencing, for example a subprogram PI must be 
called before P2. 

The proposal of an 'universal' dassification of the faults therefore 
requires expeeted properties whieh depend only on the system's modeling 
means, that is, independent of each specific modeled system. For instance, if 
the programming level is considered for a software system, the following 
property is generic: 

the values assigned to a variable must belong to the set defined 
by the type associated with the variable. 

All the program faults leading to this generie error belong to one dass of 
the error model. We insist again on the fact that we defined an error model 
and not il specific error: each occurrence of an 'out-of-range' assignment of 
a given variable is one error; hence, being valid for any variables, the 
property defines an error model. 

The following two sections are dedicated to the study of some significant 
fault and error models concerning the hardware technology (section 5.2.2) 
and the software technology (section 5.2.3). 

5.2.2 Hardware Fault/Error Models 

5.2.2.1 General Error Models 

Hardware fault effects can be characterized independently from any 
precise system modeling tool. For this reason, this error modeling approach 
is qualified as 'general'. Five independent properties that take two opposite 
states are generally used to dassify errors at this level: 

• logicalor non-Iogical, 

• static or dynamic, 

• permanent or temporary, 

• single or multiple, 

• symmetric or asymmetric. 
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Logieal errors are characterized by transformations of logical values: '0' 
becomes '1' and vice versa. On the contrary, non-logical errors provoke 
alterations of the logicallevels outside the specification domains. The altered 
signals take a value between '0' and '1'. 

Static errors correspond to stable undesirable state, for example a gate 
output '1' instead of '0'. Dynamic errors represent faults which provoke 
transient undesirable states, for example an oscillation of a signal before 
reaching a correct stable value. 

Permanent errors affect the functioning for a long time or in a definitive 
way, whereas temporary errors have lirnited operation duration (sometimes 
very short). Concerning this notion, another set of definitions is found: hard 
errors corresponding to permanent errors and soft e"ors corresponding to 
temporary errors resulting from external causes (transient faults). These 
terms are used to characterize some errors altering RAM (mainly Dynarnic 
RAM) for memory testing. Soft errors can be induced by cosrnic rays or 
alpha particles. 

Single errors disturb only one element (for instance a transistor), when 
multiple errors disturb the functioning of several elements (for instance a 
problem in the electrical supply circuit affects all the components). The 
order of a multiple error is the number of elements which are altered. 

Finally, symmetrie errors provoke state modifications with the same 
probability (for instance, '0' to '1' and conversely), whereas asymmetrie 
errors have not the same probability to switch to '0' ot to '1': for example, 
several lines are switched to value '1' due to the energy provided by an 
external particle disturbing a component. 

These five parameters taking two values, we define ten error classes. 
Thus, logical, static, persistent, single and symmetric errors identify a class 
of faults leading to these kinds of errors. Note again that these properties are 
actually generic as they are independent of the modeling tool and thus of the 
analysis level considered and also of the modeled system. From this first 
characterization of the properties, more precise classes of faults will be 
defined taking the system modeling tool into account. 

5.2.2.2 Error Models at Logical Level 

The expression of a system using a model at logical level is based on 
interconnected gates. We assurne that these gates implement the following 
elementary logical functions: 

AND, OR, NOT, NAND, NOR, EXCLUSIVE OR (noted XOR). 
This level is then extended, handling more complex objects such as 

multiplexers, decoders, latches, registers, counters and other simple 
functions to store or process data. Thus, the HDL level is reached. At this 
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level, the fault effects are characterized by alterations of internal states of 
components or alteration of signals on wires linking logical components. 

All technological faults affecting gates are observed at their input and 
output level. A very old but still popular error model is the single stuck-at 
011 model. This is defined as an input / output wire (or node) having a 
persistent '0' or '1' assignment. 

Figure 5.2-a) illustrates this model for a two-input AND gate. Each one 
of the 3 input and output ports can be stuck at '0' or '1'; hence there are 6 
persistent single logical errors. Two of them are represented in the figure 
(stuck-at '0' of band stuck-at '1' of c). By generalization, we define a 
multiple stuck-at fault as any set of single stuck-at faults, for example the 
stuck-at '0' of line b and the stuck-at' l' of line c in Figure 5.2-a). 

a) Stuck-At faults b) Unidirectional faults 

Figure 5.2. logical faults/errors 

What we identify as 'stuck-at fault' represents in reality a set of unknown 
technological faults which can alter the electronic components inside the 
gate. This set of faults is strongLy dependent on the technology used to 
realize the gate. We could also say that the 'stuck-at' model is an error 
model corresponding to the activation at the input/output level of internal 
'real' faults. This apparent divergence of interpretation is a matter of 
observation about the gate module. It has no influence on any propagation 
analysis outside the module. 

A unidirectional error is a multiple asymmetric error such that all altered 
lines are stuck at the same value. An example is given in Figure 5.2-b): two 
lines, b and d, are stuck at the same value '1'. This model is realistic when 
expressing situations like apower failure of a MOS circuit or a line cut in a 
Bus connecting several units or else a parasitic phenomenon altering a 
transmission line. 

5.2.2.3 Fault Models at MOS Switch Level 

At the MOS switch level representation, a circuit is expressed as a 
network of interconnected MOS, each one being considered as a simple 
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switch whose state is ON (conducting) or OFF (blocked) according to the 
signal applied to its gate input. 

This model is naturally c10ser to the physical reality than the logicalor 
the HDL levels. Hence, the related fault models are more realistic, that is to 
say c10ser to the likelihood of electronic faults which disturb the 
components. Unfortunately, these fault models are also much more complex 
in terms of number of faults. 

In the two following sub-sections, we will examine some examples of 
fundamental fault models, first at MOS network level, then at MOS gate 
level. Two kinds of faults are specific to this level of representation: 

• shorts between lines, 

• opens paths on conducting lines. 

A particular case of a short fault, called a bridging fault, implies a 'wired 
logic' functioning. This kind of faults can occur in certain gate structures 
when the output lines of two gates are accidentally connected together. Then, 
the resulting signal on this line is the logicalOR (or the logical AND 
according to the technology) of the fault-free output lines. 

Elementary fault models at switch level 
A very simple and basic MOS fault model supposes that each line can be 

stuck-at '0' or '1', and each transistor can be: 

• stuck ON when the transistor is always conducting, or 

• stuck OFF if the transistor is always open (no conduction). 

The fault is 'single' if only one element is altered. On the contrary, it is 
'multiple' if several elements are faulty. In Figure 5.3, fault FI (transistor Tl 
is OFF, hence its equivalent switch is open) is an example of such a single 
fault. 

NetworkN 

a 

b' 

Figure 5.3. Faults of a MOS network 
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Without fault, this network implements the logical function R = a.b' + 
b.c, where the symbols '+', '.', and '" represent the logical functions OR, 
AND, and NOT. When fault FI occurs, the function becomes RI = b.c 
which produces a wrong output for two input vectors (a, b, c): 100 and 101. 

This basic model can be improved by adding shorts between lines. For 
example, fault F2 of the network of Figure 5.3 is such a short. The resulting 
function ofthe network is: R2 = (a + c). (b' + b) = a + c. 

One can easily show that the modified function R2 is different from the 
good one R. Exercise 5.1 analyzes in greater detail the influence of switch 
level faults on the behavior of this network. 

Fault models at CMOS gate level 

eMOS electronic circuits are generally organized as structures comprised 
of two wired networks: a Pull-Up network connected to the '+' power line 
and the Pull-Down network connected to the '-' power line (Figure 5.4). 
According to the input values, either the Pull-Up network is conducting and 
the Pull-Down network is blocked, forcing the output to a '1' value, or the 
Pull-Down network is conducting and the Pull Up network is blocked, 
forcing the output to a '0' value. 

+ 

Pull.Up 

r---+ Network 

- ~ output 
inputs 

Pu1I·DOWD -... Network 

. 

Figure 5.4. CMOS gate structure 

Figure 5.5 shows two simple fault examples affecting a NAND gate: 

• SI, short-circuit in a transistor, is equivalent to a stuck-at' l' of input a, 

• S2, short-circuit in a transistor, is equivalent to a stuck-at '0' of input b. 

The resulting two faulty functions,/s/ and/s2> are compared to the normal 
one/in the truth table of Figure 5.5: 

SI -+ /s/: this fault can be detected by the input vector (a b) = (0 1), 

S2 -+ /S2: this fault can be detected by the input vector (a b) = (l 1). 
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Unfortunately, many physical faults cannot be reduced to such simple 
logical transformations. In some cases, the altered circuit can even be 
transformed into a sequential circuit, as presented now. 

t 

S~ I~ a~r1 
f 

ab f fSl fS2 

00 1 1 1 

NAND ~~ 01 101 
10 1 1 1 

b I 1 1 001 

S~ 

Figure 5.5. Faults of a NAND MOS circuit 

Stuck-Open Model. The stuck-off or stuck-open model considers that a 
transistor is blocked in the OFF state. An example is given by fault 0 of 
Figure 5.6 a). In this case, if we apply the input vector (01), the two PuIl-Up 
and Pull-Down networks are blocked (not conducting) and the output value 
depends on the preceding state of the circuit because of its output equivalent 
capacitance. Hence, this circuit becomes sequential. 

The exhaustive input sequence <00, 01, 10, 11> does not detect this fault. 
To detect the fault, it is necessary to apply the two ordered vectors <11, 10>: 
then,J remains at value '0' instead of going to '1'. 

+ 

a 
0 

I f b 

L f 
NOR 

b )SO 
a) Stuck-Open b) Stuck-On 

Figure 5.6. Stuck-Open and stuck-On faults in a NAND circuit 

Stuck-On Model. The stuck-ON model considers that a transistor is 
blocked in the ON state. An example is given by fault SO of Figure 5.6 b). 
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In this case, if we apply the input vector (00), the value of output fis not 
defined because both networks are conducting, producing an electrical 
conflict between the power supply and ground lines. To reveal this fault, 
specialists traditionally use the IDDQ testing method which consists in 
measuring the power supply current passing through the circuit during 
quiescent states. 

Short-Circuit Model. The short-circuit model considers that two outputs 
of gates are wired together. This fault category also creates situations where 
the outputs cannot be easily specified to '0' nor '1' . 

Other fault models. The simple fault models previously introduced can 
be completed by taking into account other considerations such as the notion 
of 'electrical force' or 'response time' of the components. The temporal (or 
timing) faultlerror models deal with incorrect response time of components: 
they are more realistic but much more complex to implement, in particular 
for test applications. However, some timing fault can be actually induced by 
crosstalks between wires. A delay fault occurs when a signal propagated 
through a circuit is slower than it should be. This term defines a specific 
temporal fault. In many cases, delay faults do not affect the functioning of a 
device, but merely skew the results in time. This type of performance change 
can, however, be totally unacceptable if it causes the violation of timing 
specifications. 

5.2.2.4 Error and Fault Models at Technological Level 

At the technological level, faults can be analyzed with more accuracy. 
We mention hereafter some significant c1asses of faults or errors. 

• Defects of the crystalline structure of the Silicon; the quality of the 
wafers wh ich are at the origin of all integrated circuits can be altered by a 
certain number of crystalline structure defects: area defects, line defects, 
or spot defects (fault model). These defects may induce cuts, shorts, etc. 

• Punctual or global fabrication defects due to dust, optical or chemical 
fabrication problems, etc. (fault model). 

• Defects occurring during the use, e.g. aluminum electro-migrations, line 
cuttings, layer-to-Iayer shorts, thin oxide shorts (MOS gates), floating 
nodes, soldering defects (fault model). 

• Aggressions during the use: parasitic signals due to crosstalk between 
wires or external electro-magnetic induction, alpha-partic1e 
contamination, X-ray action, etc. (error model). 
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5.2.2.5 Other Integrated Circuit Faults 

The preceding fault/error models cannot direct1y express a great number 
of faults that alter electronic components. However, these actual faults have 
to be considered during the component's production stage. We provide some 
examples of such faults that have mechanical, chernical or other nature. 

• Encapsulation: Integrity, waterproofness, traces of welding. 

• Package: integrity, support quality, dimension, leaks, thermal and 
mechanical resistance. 

• Internal cavity: humidity, free partic1es, and quality ofthe support. 

• Contact points: spacing, short-circuits, passivation remains, scratches. 

• Die: corrosion, width, short-circuits, scratches and holes, alignment, 
cover, chemical defaults, passivation. 

• Electric quality: continuity and short-circuits, electric stability and 
characteristics, temperature performances and stability, sensitivity to 
electrostatic discharges, sensitivity to radiation, design quality. 

• Pins: strength, aptitude to welding, airtightness, materials and finishing, 
resistance to heat, resistance to hurnidity, spacing and length, damages. 

• Support ofthe die's fixing: strength (adhesion), consistency - uniforrnity, 
cover, humidity, die orientation, excessive accumulation of materials, 
free partic1es, dissipation, thermal and mechanical constraints, support 
type, re-processing, general manufacturing quality. 

• Connection wires: strength, position, height and curve, spacing, adhesion, 
uniformity, size, current density, re-processing, metallic contarnination, 
thermal constraints, cuts. 

5.2.3 Software Fault and Error Models 

In this sub-section, we consider fault and error models relevant to 
software technology. We firstly present a general error model. Then we 
discuss fault and error models at source code level. Finally, we introduce 
error models at executable code level. 

5.2.3.1 General Error Models 

The first general error models introduced in section 5.2.2.1 for hardware 
systems are also applicable to software technology. In practice, three of the 
five parameters presented are relevant for this technology: static or dynarnic 
errors, persistent or temporary errors, and single or multiple errors. 
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Static or dynamic errors. Let us consider a system which handles 
sampled data coming from a sensor. The new input value is stored in a 
variable x every lOms. If the program that implements this sampling 
function puts a null value in x at the end of the using of the last sampled 
value (e.g. for process control purpose), the variable x contains a wrong 
value null till a new value is sampled and stored. This is a dynamic error as 
the final value of x is correct. An example of static error would be an 
erroneous Analog-Digital conversion that would store a wrong static value. 

Permanent or temporary errors. To illustrate this property, we now 
consider a multi-task program. A consumer task Tl treats a shared variable x 
assigned by a producer task T2. When the program execution starts, x is not 
assigned to a pertinent value. If T2 assigns a correct value to x before Tl 
reads it, no problems occur. On the contrary, if Tl reads the value before it 
has been assigned by T2, an error occurs. If the tasks Tl and T2 are 
cyclically executed, this error disappears at the next cycle (after x has been 
assigned by Tl). On the contrary, if xis read by Tl only once, the error is 
permanent. 

Single or multiple errors. Single errors are errors that affect only one 
element of the software product. The term 'element' depends on the model 
used. At programming level, it may be a variable, a subprogram, a package, 
etc. At design level, it may be an object, aresource, etc. On the contrary, 
multiple errors occur when several elements are affected. 

5.2.3.2 Fault Models at Source Code Level 

The syntax of a programming language is defined by rules of a grammar. 
A grammar does not specify a unique sequence of keywords or identifiers. 
Otherwise, only one program structure could be written. The rules define 
constraints, that is properties, on the acceptable sequences. For instance: 

<statement> :: = <if-statement> I <loop-statement> I ... 
enumerates the various possible statements, by using the standard BNF 

(Backus-Naur Form) representation. 
Thus, the first role of a compiler is to check that the compiled program is 

in accordance with the properties required by the programming language 
grammar. Any violation of such a property highlights a fault. 

Consequently, each programming language defines a fault model. 
Therefore, the choice of a programming language must take into account the 
features it offers, but also the fault model it provides, that is the verification 
actions processed by its compilers. 

Let us consider the following C language extract: 

if (A>B) A++ i 
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if (A>C) C++; 

else B++; 

103 

The syntax of the program does not impose syntactic constraints on the 
definition of the beginning and the end of programming blocks. Hence, the 
previous pro gram may be erroneous, the expected correct program being: 

if (A>B) { 

A++; 

if (A>C) { 

else { 

} 

} 

} 

On the contrary, the use of the Ada language makes necessary the 
expression of the end part of the statements (end i f). For instance, the 
preceding algorithm becomes: 

if (A>B)then 

end if; 

A:=A+l; 

if (A>C) then 

C: =C+l; 

end if; 

else 

B:=B+l; 

Note. The else part is not required by the syntax but it is strongly 
recomrnended by Quality Guidelines. When nothing is to be done, a null 
block must be used: 

else 

null; 

end if; 

5.2.3.3 Error Models at Source Code Level 

As previously mentioned, a pro gram is a structure made up of an 
assembly of features provided by a language. These features are defined by: 
their syntax, allowing fault models to be expressed, and their semantics 
specifying their behavior. 

Such as in electronic technology, we are searching for expected 
properties wh ich must be generic, that is, applicable to any pro gram 
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whatever its functionality may be. The negation of properties associated with 
the semantics of the programming language features therefore defines such 
an error model. We present five examples. 

1. Afunction does not return a value. This is an actual error of the program 
execution. Indeed, unlike the other subprograms called procedures, each 
function must return a value to conclude its execution. Such a property is 
defined by the semantics of the used programming language. As previously, 
we do not want to express the fault which is at the origin of this error. It is 
maybe a simple case of negligence: the author forgot to write the statement 
return Xi. This statement may exist, but another fault in the previous 
statements leads to a control flow path which is not concluded by the 
execution of this return statement. 
2. An input parameter of a subprogram is not assigned by an actual value at 
subprogram caU. This error occurs if Push (X) i is called with an non
initialized value of x. 

3. An output parameter of a subprogram is not assigned at the subprogram 
body execution completion. For instance, no value is returned in Y after the 
execution of Pop (Y) . 

4. A variable whose type is constrained is assigned by a value not belonging 
to the range specified by this type. Example: 

subtype Ice_Temperature is integer range -70 .. Oi 

Freezer_Temperature: Ice_Temperaturei 

Freezer_Temperature := ... expression 

where the expression evaluation returns +270 at runtime. 

5. A first task caUs the service of a second task which does not exist. This 
occurs when the second task was not previously created or if, when being 
created, it was then achieved. The potential faults which are at the origin of 
this last error are numerous: 

• the source program design explicitly expresses that the second task must 
be completed before the call, 

• the second task was achieved due to an error raised during its execution, 

• the second task was unintentionally killed by another task. 

5.2.3.4 Error Models at Executable Code Level 

As usual, the error models highlight the violations of expected properties. 
However, the properties now concern attributes of the executable code. 
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The fact that the execution of a ca lied subprogram is not terminated by 
an instruction 'return' is such an example. This instruction is absolutely 
necessary to pop the call context in order to res tore the caller context. 
Numerous causes can be at the origin of this error. For instance, it may be 
due to the execution of a jump instruction of the subprogram body whose 
associated address was corrupted. The fault which has provoked such a 
situation may be: 

• a bad expression used to ca1culate the branching address due to a 
compiler failure, 

• a bad constant address coming from an electromagnetic disturbance of a 
bit of the memory word where this data is stored, etc. 

The execution stack overflows is a second example of error model at 
executable code level. A stack is used at runtime to manage subprogram 
calls (for instance, local variables and return addresses are temporally 
stored), to handle interruptions, etc. Here again, various faults can be at the 
origin of this dass of errors such as: 

• infinite recursivity of a subprogram due to bad design or programming, 

• bad assessment of the stack memory size requirements due to: 

);> the compiler whose generated code does not optirnize the stack use, 

);> the runtime executive (operating system) wh ich does not master 
correct1y the dynarnic memory allocation. 

5.3 FAULT AND ERROR MODEL ASSESSMENT 

We introduced the most significant fault and error models used for 
hardware and software technologies. Of course, these models are very 
different from one another as they reveal different realities (hence, different 
system models). Each one makes assumptions about the possible faults 
errors that may affect the system' s representation or its operation. Moreover, 
they often present a probabilistic character corning from statistical data or 
measurements from sampIes. The fault occurrence probability is an 
important piece of information accompanying the qualitative and technical 
characteristics of this fault. 

5.3.1 Assessment Criteria 

The engineers using these models for dependability purposes have to 
answer the question: "How can I choose the best fault/error model and how 
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do I assess its relevance and efficiency?". Even if we cannot provide precise 
grades to each model, several criteria to assess them can be established. We 
have identified 6 main criteria which allow the evaluation of the quality of 
fault and error models: relevance, fault expression capability, fault 
partitioning, distribution equilibrium, genericity / specificity and tractability. 

1. Relevance 

At first, there is not one good model, as each one is associated with a 
development phase and therefore is appropriate in order to characterize the 
faults and errors occurring or acting at this phase. For example, a physical 
defect of a MOS transistor will certainly provoke a dysfunction of the 
microprocessor which contains this transistor and finally lead to an error at 
the application software level. However, an error model at software level 
may be able to detect the resulting error, but not to diagnose the faulty MOS. 
For this diagnosis purpose, a switch level fault model is more suitable! The 
'realistic' notion of a fault model reveals its accuracy to identify faults. The 
more precise the model is, the more pertinent and efficient the fault analysis 
iso A fault not expressed by the model cannot be interpreted, and the 
protective means used to detect and handle it can be inefficient. 

2. Fault expression capability 

A fault/error model defines classes of faults. Such a model has a high 
fault expression capability if it allows a great number of faults to be 
characterized. Each fault belonging to this set of faults is identified in at least 
one faultlerror dass. 

3. Fault partitioning 

A third characteristic is the fact that the model makes a mathematical 
partition of the considered faults into several classes. This means that each 
fault is identified in exact1y one class. Otherwise, faults are difficult to 
identify precisely. 

4. Distribution equilibrium 

A good model must induce an equilibrated distribution of the considered 
faults into its classes. This property makes the fault diagnosis easier. 

5. Genericity or specificity 

In order to be used in many different contexts, a fault/error model must 
be generic. Even if they are applied to specific systems, fault/error models 
depend on the modeling tool used to express the system (gates, programming 
languages, Petri nets, etc.), but they do not depend on the modeled system. 
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For example, the 'stuck-at 011 fault model' is based on a gate level 
representation and may be applied to any logical structure, independently of 
any final technologie al implementation. However, even if these fault models 
are useful, they do not allow the handling of numerous errors specific to the 
particular functionality of each system. To illustrate this point of view, we 
consider the following subprogram extract: 

procedure Min_Max{L: in List; Minimum, Maximum: out 
Element) is 

begin 

We assume that this subprogram returns the values Minimum and 
Maximum of the elements of a given list (L). Certain presented fault models 
assume that a list can be unassigned at call-time or that the subprogram body 
execution can omit to return values in parameters Minimum and Maximum. 
However, these fault models are not specific to this subprogram. They only 
depend on the semantics of the language features 'in' and 'out'. 

On the contrary, 'the Minimum value is lower or equal to the Maximum 
value' is a specific property: it depends on the functionality of the 
considered subprogram. 

6. Tractability 
Finally, the fault/error models must be tractable, as automatie or semi

automatie tools generally use them. Unfortunately, certain models that are 
technologically pertinent are often unrealistic for practical reasons. For 
instance, the CPU time consumed by a computer or the memory size that is 
required by the tools to analyze or to simulate these fault models or to 
generate test sequences is prohibitive. So, in order to use tools, we often 
make many restrictive assumptions such as 'the logical faults are permanent 
and single', whereas the reality shows that most of the faults are temporary. 
A rate of 80% of temporary faults in electronic systems is often given. 

5.3.2 Relations Between FaultlError Models and Failures 

As we noticed, different fault/error models can be associated with a 
modeling tool of a system, and it is very important to measure their relative 
significance according to their use (such as testing). Figure 5.7 illustrates 
this notion. For a given modeling tool, the normal functioning is represented 
by a sub-set F of all theoretically possible behaviors (uni verse U). In the 
general case, two different fault/error models reveal two sub-sets (noted 
EM 1 and EM2) of this universe. Some failures belonging to this uni verse 
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(and caused by unknown faults) are represented by both faultlerror models, 
some failures are represented by one model only, and some other failures are 
not represented. 

U: U1iver.>e ci alI 
Jl(S'iible behaviors 

F: NlnmI FUnctioo 
FMI: Fault MxIeJ 1 
FM2: Fault MxIeJ 2 

Figure 5.7. Fault models and failures 

Different and various modeling tools are used along a project 
development, involving various faultlerror models. The pertinence and the 
consistency of these models is areal issue. 

To highlight these notions, we will consider a very simple logical gate 
circuit and show some relations between the faultlerror model and the 
resulting failures. 

Example 5.1. Fault/error models andfailures 

Let us consider the system of Figure 5.8 represented at gate level. This 
correct system expresses the logical specification f = a .b + c. If we assume 
that the theoretical behavior is combinational (restrictive hypothesis), the set 
of possible correct and incorrect logical functions is constituted of 1 correct 
function and 28 - 1 = 255 incorrect functions. So, this circuit has 255 
different failures in the combinational uni verse. 

Figure 5.8. Redundant wire 

As a first fault model, let us consider the 'single stuck-at 0/1' faultlerror 
model introduced in 5.2.2.2. As there are 5 lines (gate inputs/outputs), this 
model represents 10 faults. We want to deduce the failures associated with 
each fault. Analytic and structural methods allowing to do this will be 
explained in other chapters of this book. Here, for this very small circuit, a 
simple method (formal analysis) consists in expressing the logical function 
corresponding to each fault and draw the truth tables. For example, if input b 
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is stuck at 1, the function becomes: z = a.l + c = a + c. If we apply this 
method to all faults, we observe that several faults produce exactly the same 
failures : the stuck at 0 of lines a, b, d, and the stuck at 1 of lines c, d, z. Thus, 
we find 6 different erroneous functions (classes of failures) . The important 
consequence of this analysis is to show that 249 theoretically incorrect 
functions, hence failure configurations, are not covered by this fault model! 

Now, suppose that a functional fault has transformed the AND gate into a 
NAND gate. This new fault does not belong to the previous stuck-at fault 
model. This fault provokes a new incorrect function, so a new failure class. 
Many failures cannot be provoked by any of these two fault models. So, the 
question is: can all theoretically possible fai/ures occur? 

The answer to this question depends on the reality of the faults that might 
occur during the stage considered. The good new is that, according to actual 
used technologies, most failures have a very small occurrence probability . 
Exercise 5.3 proposes a deeper analysis of this example. 

5.4 ANALYSIS OF TWO SIMPLE EXAMPLES 

To conclude this chapter, we consider some functional and technological 
faults altering two simple examples and analyze the failures they imply. The 
first example is a fuH adder described at gate level, and the second example 
is a small pro gram which computes the average value of a set of numbers. 

5.4.1 First example: Hardware Full Adder 

5.4.1.1 Specification and Design of the Circuit 

The examined circuit is an academic three input 'full adder' whose 
specifications are given by Figure 5.9: 

• the output S is the 'modulo 2' sum of the three input bits ('exc1usive or' 
of theses bits, noted $ : S = a $ b $ c), 

• the output C is the carry of the input bits, i.e. the Majority function 
(C = a.b + a.c + b.c). 

S=aEBbEBc 
C = Maj (a, b, c) 

aSp S 
b C 
c 

Figure 5.9. Specifications of the FuH Adder 
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A modular design of this circuit at functional level uses two modules 
'half-adders' (noted lI2A) connected as shown in Figure 5.10 where the 
apostrophe ' represents the logical complement. Bach half-adder is made of 
an XOR gate (T = a $ b) and a NAND gate (U = (a.b)'). The resulting 
logical circuit has two XOR gates and three NAND gates (Figure 5.11). 

. " 1I2A 
a , . C c~ 
b l~ 11. ', 

Figure 5.10. Design of the adder at functionallevel 

Figure 5.11. Resulting gate circuit 

5.4.1.2 Fault Examples 

We will ex amine the two examples of faults of Figure 5.12: a functional 
fault (fault 1) and a technologicallhardware fault (fault 2). 

Fault 1: functlonal fault 
of each Half-Adder 
a __ ---1~ 
b 

Fault 2: stuck-at 1 fault 

c=a+b+c"'II~~ C=a+b 

Figure 5.12. Fault examples of the adder 

c 
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Functional fault (fault 1) 

During the design phase of the half-adder, the correct NAND function 
(U = (a . b)') has been erroneously transformed into a NOR function 
(U = (a + b)'). As a consequence, this fault affects both half-adders and can 
produce an error at the U output of one module or both, depending on the 
input values (a, b, c). These errors cannot be propagated towards S. On the 
contrary, they disturb the C output variable which becomes a OR function (R 
= a + b + c) instead of the desired Majority function. Hence, a failure occurs 
for three input vectors: (00 1), (0 1 0) and (100). For each case, C provides 
the value '1' instead of '0'. 

It should be noted that this fault belongs to a dass of functional faults 
that alter the gates of the half-adder module. In general, it may be very 
difficult to identify all the faults belonging to this dass. 

Hardware fault (fault 2) 
The circuit carried out is now supposed to be correctly designed. Let us 

imagine that during the operation of this circuit, one NAND input (Figure 
5.12) is stuck at '1'. This fault will be activated as an error each time a '0' 
value is expected to arrive at this point. This error has no effect on output S. 
On the contrary, it can be propagated towards output C and it provokes a 
failure for two input vectors, (0, 1,0) and 0, 0, 0), giving a wrong '1' value 
instead of '0'. 

Let us note that this fault belongs to the stuck-at error model of the global 
gate structure of the adder. This model identifies 30 dasses of faults as the 
resulting gate circuit given in Figure 2.10 has five 2-input gates (hence, the 
number of errors is 5x3x2 = 30). 

5.4.2 Second Example: Software Average Function 

Functional faults of software are introduced during the creation phases: 
specification, design and production. They are numerous and difficult to 
model. Moreover, during the operation phase they are mixed with 
technological faults coming from the executive context of the programs: 
software environment (runtime executive, etc.) and electronic components 
(micro-controller, I10 interface, etc.). As an example, let us consider an 
average function implemented in a control system. 

5.4.2.1 Faultless Program 

The faultless program computes the average value of a set of N elements 
previously stored in an array A. If A contains the float numbers (-12.0, 3.0, 
26.0, -4.0), the program gives the correct result 3.25. 
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function Average(A: in Set) return Element is 
Surn: Element :=0.0; 
begin 

for I in A'range loop 
Surn := A(I) + Surn; 

end loop; 
return Surn / (A'last - A'first + 1); 

end Average; 

5.4.2.2 Fault Examples 

We will firstly consider three functional faults; then, we will examine 
some technological '''faults induced by the hardware and/or software 
environment of this pro gram. 

1. Functional faults 

Fault 1 

A fault introduced during the programming affects line 5 which becomes 

'Sum : = A (I) - Sum;' (see Figure 5.13). 

The programmer keypressed a '-' character instead of a '+' character. 
This very simple mistake of one character totally modifies the result. With 
the previous values we obtainAverage = -3.75, instead of +3.25 

Except for very special configurations of the numbers stored in A (e. g. if 
they are all null), this fault is activated and the function fails. If, for example, 
the function is used as a filter in a flight control system of an aircraft, the 
consequences of this fault can be catastrophic for the mission. 

Line5 

~l 
Line 7 return Sum I (A' last .. N first 

Figure 5. J 3. Specificationldesign faults 

Fault 2 

~ 
Average = -3.75 

(totally false) 

Average = 4.33 .. 
(E: small if N big) 

Let us now consider a second fault that alters line 7 as follows (Figure 
513): return Surn / (A'last - A'first); 
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This fault is not activated into an error only if the sum of all elements is 
equal to zero. In fact, the average is computed by dividing the sum of all 
elements by their number minus 1. From the initial numerical values, the 
result is Average = 4.33 ... The error seriousness depends on the number of 
elements: it will be small if this number is high. Hence, the consequences of 
the fault on the mission can be small or important according to the specific 
case. 

Fault 3 

We assume that the declaration of variable Sum does not include an 
initialization to 0.0. Therefore, the retumed value is: 

(Init + A(1) + ... + A(N») IN, 

where Init is the value located in the memory when Sum is allocated. 
Due to this fault, the retumed result is hazardous, that is to say, it 

depends on the actual value of Init at each function call. 

Error models 

After the presentation of these three fault examples, we now study the 
error models that allow the faults to be characterized. 

Conceming fault 1, let us assume that the following constraint exists on 
the type of 'Element: 

subtype Element is float range 0.0 .. 10.0; 

This constraint leads to a first error model. The first fault assigns to Sum a 
negative value if the first set is A = (4.0, 3.0, 2.0, 1.0). The retumed value is -
2.0 I 4.0 = - 0.5 which does not belong to the range 0.0 .. 10.0. An error will 
be raised when the value will be retumed. 

Therefore, the definition of a constrained type seems to be an efficient 
error model. However, this does not mean that it will always highlight the 
presence of faults! As an example, let us consider the second set of values 
(1.0, 2.0, 3.0, 4.0). The retumed value is 2.0 I 4 = 0.5, which is included in 
the defined range 0.0 .. 10.0. 

Fault 2 leads to an error if the following equation is true: (sum of the N 
elements) I (N -1) ;;::10.0, that is, (sum ofthe N elements);;:: 10.0 x (N -1). 

For the two previous sets, the sum of the N = 4 elements is 10.0, which is 
less than 30.0, so no errors will be detected, even if a fault exist. 

To characterize fault 3, an error model is defined by the following 
property: "A variable used to evaluate an expression must possess a 
previously assigned value". 

Thus, the first loop execution will process the statement 'Sum : = A ( 1 ) 

+ Sum', and will raise an error, as the right side term Sum is undefined. 
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2. Technological Faults 

Let us now suppose that no specification and design faults have been 
introduced. The average function is processed by the software executive 
system on a hardware platform (Figure 5.14). 

Rounding fault 
. Software imprecision 
. Processor imprecision 

Hardware fault of the processor 

Average = 3.2 

Figure 5.14. Faults due to the execution context 

The division of the Surn value by the number of elements is necessarily 
rounded. In order to illustrate roughly the error, we assurne that the result is 
3.2 instead of 3.25. Such rounding error may have several causes: 

• hardware fault of the arithmetic co-processor (one frequently refers to the 
first version of the Pentium microprocessor which had an ALU bug), 

• production fault: the compiler uses a math library having insufficient 
arithmetic performances, due to natural limitations of the arithmetic 
processor and the number representation coding (e.g. the IEEE 754 
floating point standard). 

The activation of such faults, and the error propagation through the 
hardware/software structure is difficult to analyze because it depends on the 
real implementation which is generally unknown. Even if the errors see m not 
to be significant (the precision of one value is not so bad), their cumulative 
effects can produce significant failures of the mission. Exercise 5.6 
illustrates such a situation. 

It is very difficult to propose properties allowing floating precision errors 
to be detected. For this reason, this issue is eliminated, considering two 
points of view: 

• The expected precision is defined during the design and is implemented 
at programrning level. For example, the Ada language features authorize 
such adefinition. Then, studies are carried out on the pro gram in order to 
analyze the effects of the well-known precision value and the run-time 
system is considered by providing correct computation. 
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• The use of floating point representation is forbidden. Only fixed 
representations are authorized. This restriction is required for the high
dependable systems. 

5.5 EXERCISES 

Exercise 5.1. Faults 0/ a MOS network 

We consider once more the MOS network presented in section 5.2.2.3 
(see Figure 5.15). 

1. Compare the three logical functions performed by the circuit: 

• for a faultless circuit, 

• for fault F1 (a MOS is stuck-OFF), 

• for fault F2 (short between two lines). 

NetworkN 

a 

b' 

Figure 5. J 5. Faults of a MOS network 

2. The logical function of the faultless circuit is not modified if inputs band 
c are permuted. What is the influence of this permutation on the failure 
induced by fault F2? 

3. What is the influence of the 'stuck-ON' of transistor Tl (the transistor is 
always in an ON state)? 

Exercise 5.2. Faults 0/ a/ull adder 

Let us consider the full adder of section 5.4.1. We want to study the 
influence of functional and hardware faults on the behavior of the circuit, 
and to determine the resulting failures. 

1. Study the following functional fault, noted F 1, introduced during the 
design phase: the EXCLUSIVE OR gate has been transformed into an 
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IDENTITY gate (its output is '1' if and only if the two inputs have the 
same value). 

2. Study the hardware fault, noted F2, occurring during the operation: a 
'stuck-at 0' noted a in Figure 5.16. 

3. Compare the failures provoked by these two faults. 

Figure 5.16. Full Adder 

Exercise 5.3. Fault models and failures 

Consider again the circuit of Example 5.1. 

1. Deterrnine by formal analysis the failures provoked by each fault of the 
single stuck at 0/1 model. Draw and compare the resulting truth tables. 

2. Make the same analysis with various functional faults transforming the 
AND and OR gates. 

Exercise 5.4. Faults of a sequential circuit 

Figure 5.17 shows a Moore sequential synchronous circuit having one 
input (x), one output (z), and two internal variables (y1, y2) materialized by 
two synchronous D Flip-Flops. 

x 

Figure 5.17. Sequential circuit 

yl 

z=y2 

y2 
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1. We suppose that a functional fault made during the design of this circuit 
has led to the transformation of the NAND gate denoted A into a NOR 
gate. Analyze the new circuit in order to determine all induced failures . 

2. Now we consider the hardware ' stuck-at l ' fault of the line noted a in the 
figure. Analyze the altered circuit to determine all failures. 

Exercise 5.5. Software functional faults 

This exercise refers to the program computing the average value of a set 
of numbers, presented in section 5.4.2. 

function Average (A: in Set) return Element is 
Sum: Element: =O.O; 
begin 

for I in A'range loop 
Sum:-(A(I) + Sum) 12; 

end loop; 
return Sum; 

end Average 

Figure 5.18. Design faults 

1. Consider the two design faults of lines 5 and 7 shown in Figure 5.13. 
Analyze these faults and determine all the input vectors which provoke 
failures . Compare the seriousness of these failures. 

2. A third fault has led to the following pro gram (Figure 5.18). What are the 
input activation conditions and their relative failures? What extern al 
consequences could result from these failures? 

Exercise 5.6. Software technologicalfaults 

We want to develop a program wh ich calculates and prints the sum of the 
fIoat numbers (1.0/ fIoat (l)), for 1 varying from 1 to a given value N. The 
following algorithm performs such calculus: 

procedure Serie (N ; in integer) is 
Surn ; float ;= 0.0; 
begin 

for I in 1 .. N loop 
Surn ; = Surn + (1 . 0 / float (I)) ; 

end loop ; 
Print (Surn); 

end Serie; 

Then, execute this pro gram for different increasing values of N. Y ou may 
conc1ude that the series L 111, I = 1, N is convergent. This conc1usion is 
mathematically wrong. So, your program fails . Where is the fault? 
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Towards the Mastering of Faults and their Effects 

The science of dependability is c10sely linked to the mastering of faults 
and their internal and external effects. It firstly implies the analysis of 
destructive mechanisms (problem identification). They were studied in the 
previous chapters. Then, protection methods (use of means) must be 
proposed. This aspect is introduced in this chapter. Finally, one must assess 
the efficiency of the use of these methods on the dependability of the final 
product. This last aspect (performance evaluation) is exposed in Chapter 7. 

6.1 THREE APPROACHES 

In Chapter 3, the causes of product failures were c1assified into several 
groups: 

• internal functional faults (or creation faults) of specification, design and 
production, 

• internal technological faults (or physical, or hardware faults) of 
production and operation, 

• external functional faults (or perturbations, or disturbanees) due to the 
functional environment, 

• external technological faults (or perturbations, or disturbanees) due to 
the non-functional environment. 

We have also observed the transformation of faults into internal errors, 
then into functional failures, and finally their external effects called 
consequences. We have insisted on the remarkable properties of faults: they 
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seem to be inevitable, their occurrence follows statistical mIes, they can 
accumulate throughout a Iife cycle, and they are difficult to master. We 
identified a destmction process having two steps: 

• the occurrence of faults produced at the three first stages of the life cycle 
considered (specification, design and production), and/or faults due to the 
product' s environment in operation, 

• and then, during operation, a transformation into several stages, from 
faults to errors, then to failures, which finally have external consequences 
on the application. 

Therefore, in order to face these problems, we will use several actions, 
operating on the fault causes as well as on their effects. Traditionally, the 
different dependability techniques are distributed according to three 
complementary approaches illustrated by Figure 6.1: 

• fault prevention, 

• fault removal, 

• fault tolerance. 

We should note that the fault prevention and fault removal approaches 
are sometimes regrouped by the term fault avoidance. 

Faults - Errors 

Failures - CoosequenceJ 

1. Fault Preveotioo 
2. Fault Removal 
3. Fault Tolerante 

Figure 6.1. Protective mechanisms 

The objective of this chapter is to briefly explore these three 
dependability approaches in sections 6.2 (fault prevention), 6.3 (fault 
removal), and 6.4 (fault tolerance). Each section aims at defining the goal of 
the related approach and at giving an overview of the main techniques. Then, 
we introduce the dependability assessment problems in section 6.5. Fault 
prevention, fault removal and fault tolerance techniques will be analyzed in 
the third and fourth parts . Thus, this chapter provides an overview of the 
means which will be detailed in the following chapters of the book. 
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6.2 FAULTPREVENTION 

The fault prevention approach consists in avoiding or reducing the 
introduction of faults during the specification, design, production, and 
operation stages, and/or in reducing the occurrence of faults during the 
product' s use. Two complementary action groups limit fault occurrence: 

• mastering the stages of the process used to create a product and to use it, 

• and acting on the technological means. 

The first group of means acts on the faults committed by humans or by 
the tools they uses during specification, design, production and operation. 
The second group, which is independent of the first one, is dedicated to the 
faults which are due to the technological degradations of the product, or 
which are introduced by environmental aggressions. 

Fault prevention techniques aim at obtaining and maintaining a product 
'without any fault'. However, even if these techniques are efficient, residual 
faults frequently exist before the operation step or faults appear during this 
operation step. Hence, this remarkjustifies the use ofJault removal andJault 
tolerance techniques. 

6.2.1 During the Specification 

The initial contract that binds the different partners of a project must 
firstly express, in a complete and correct manner, all the product' s functional 
and non-functional aspects of the needs that the final product has to satisfy. 
Any incompleteness in the product definition can lead to failures in the final 
product. Indeed, such a product cannot offer the expected functionality and 
performance if they have not been expressed by the client or by the product' s 
user. However, all missing specification information does not necessarily 
imply a future failure; it could represent a degree of freedom for the 
designer. For example, the specification of a coffee distributor is to deli ver 
the coffee and give back change without defining in which order the two 
operations need to be carried out. A particular design will make a choice 
which will be accepted by clients and users. 

Moreover, the contractual base has to be understood in the same way by 
all the partners: the specifications have to be non-ambiguous. The ambiguity 
expresses the fact that precise yet different definitions can be given by the 
client, the designer and the user, which represents a potential source of 
failures. The removing of all ambiguity requires the use of a formal 
specification language, for which the semantics (the feature meanings) has to 
be precisely defined. In practice, the majority of clients and users is not 
familiar with such languages. Therefore, we will firstly define specification 
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needs written in a human language by using terms which are c1ear and 
precise as much as possible. These terms need to be defined by a glossary. 

We should note that the transformation of requirements into formal 
specifications is not systematically carried out previous to a design. In many 
industrial projects, informal specifications are the designer' s principal source 
of information. On the contrary, in other cases, formal specifications are 
requested which are established by a specialized team, after consulting the 
client and possibly the user. The formal specifications provide therefore a 
new expression of the requirements. Hence, this activity appears redundant 
and therefore useless to certain persons. On the contrary, when aiming 
towards dependability, this rewriting allows the needs to be correctly 
understood (because they have to be reformulated in another language) and 
to detect possible incompleteness or ambiguity. 

6.2.2 During the Design 

Fault prevention is obtained in diverse ways, by acting on the product 
that is being designed, and/or by acting on the creation process itself. The 
designer has to apply a 'good' method and apply it 'correctly'. 

Firstly, it is necessary to master the design process, from the 
specifications until the system is designed. The design is a top-down process 
of several stages, which begins with the specijications and ends with a 
system by successive transformations. We should remember that the system 
is an abstract vision of the future product. In order to avoid the appearance of 
faults during this process, we have to choose transformation models and 
methods that guarantee that the obtained system conforms to the 
specifications or is compatible with them. According to the notations used in 
Chapter 4, we must have 1: = S (or 1: ~ S), that is to say the functioning of the 
system has to be equivalent to the specifications (or greater: to perform more 
functions). The choice of models, methods and tools is fundamental. 

Secondly, the modeling tools and design process being defined, the way 
they are used must be mastered. For instance, programming languages are 
modeling tools used for software design. Their features can be assessed, 
taking dependability criteria into account. Thus, the 'best' (most suitable) 
language can be selected. Moreover, a bad-programming style will be at the 
origin of numerous faults in produced programs. 

6.2.3 During the Production 

Fault prevention methods during production concern above all the 
hardware products. These methods imply to master the manufacturing and 
assembly process of electronic components. The techniques used depend on 
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the nature of the components. Thus, for integrated circuits, it is necessary to 
control the parameters of diverse machines, which compose the integration 
chain and the environment conditions of the rooms that shield this 
equipment. This particularly concerns dust removal, as dust constitutes an 
important source of faults. In order to ensure that the production chain 
functions correctly, several sampies of the manufactured components are 
then subjected to a rigorous control by means of electrical, mechanical, 
rnicroscopic and chemical tests. This quality control allows an improvement 
of the quality of production. 

Where software is concerned, the production phases are in general 
automated. They use: 

• a run-time environment associated with a programrning language 
composed of a compiler, a linker and an executive (real-time kernei, 
input/output library, etc.), 

• software components developed by other companies and which are often 
called COTS (Components OffThe Shelj). 

The dependability of the executable application obviously depends 
largely on the dependability of previous elements. The need for 
dependability therefore has an important impact on their choice and their 
implementation. For example, the choice of an execution environment 
associated with a programming language has to prove that it has successfully 
passed standard tests, if they exist. If these standard tests do not ex ist, the 
developer has to write specific local tests and to apply them to the execution 
environment to be evaluated. In the same way, the use of al ready developed 
software and hardware components (called reuse) does not prevent their 
analysis in terms of dependability before their integration in the product. 

6.2.4 During the Operation 

The creation problems having supposedly been resolved, the failures that 
appear during the useful life arise from a bad utilization of the product or 
from perturbations acting on the technology and due to the non-functional 
environment. 

The prevention of numerous external faults caused by the user can be 
obtained by simplifying and making clear the use of the product in its 
context, e.g. easy to understand user manual, user friendly interfaces, on-line 
contextual help. This is the typical case of popular convivial software of 
Macintosh's Apple that we find today in many UNIX or Windows systems. 

A second approach consists in designing protection means which 
prevents the occurrence of errors, even if they are due to incorrect use of the 
product. For instance, if a user has to select an action on a computer, the first 
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approach consists in displaying a menu and in getting the keypressed 
character indicating the chosen action. However, a wrong character may be 
provided. A second solution displays a list of buttons associated with the 
offered actions. Therefore, the user cannot give unknown orders. A second 
example concems the use of connectors, wh ich cannot be incorrectly 
plugged in. For instance, different categories of connectors are not 
compatible together: electrical power, phone, printer, screen, modem, etc. 

Concerning the faults associated with technological implementation 
means and the non-functional environment, we can distinguish hardware and 
software technologies. 

Hardware faults appear during the operation phase due to component 
ageing or extern al aggressions. Their occurrence follows statistical models 
of reliability. The factors that determine the occurrence of these breakdowns 
depend on the technology used and the environment (temperature, 
vibrations, shocks, radiation, etc.). We can first of all reduce the occurrence 
of faults by choosing design and manufacturing techniques which lead to 
high reliability products: choice of components and mounting and assembly 
techniques wh ich reduce the probability of faults appearing. The electronic 
components (res, PCBs, etc.) can also be submitted to burn-in operations 
where th"ey are used at high temperature for periods which can be longer than 
24 hours in order to provoke faults of weak elements; only the components 
which survived are put on the market. Thus, the infant mortality rate of the 
used systems is drasticaUy reduced. 

Then, the faults induced by the environment can be prevented: 

• by protection techniques, for example electromagnetic shielding, thermal 
isolation, etc., 

• and/or active observation techniques of the environment' s parameters, for 
example an on-line observation of a microprocessor' s temperature in 
order to detect anomalies, such as a ventilator breakdown, which could 
lead later to component faults. 

Software technology does not age in the same way and is also not 
subjected to extern al aggressions. However, phenomena having sirnilar 
effects can happen. The software's operational life can sometimes be 
relatively long (twenty to fifty years for a software used in an aircraft), and 
the execution means can vary during time. For example, changing a 
processor for a ne wer circuit which is quicker and has new functionality, can 
lead to a modification of the execution environment. These evolutions can 
have not only an impact on performance, but also on the behavior of 
software which could provoke failures. For example, increasing the 
frequency of a processor' s clock or the optimization of a code generated by a 
new compiler can reduce the processing time and induce modifications of 
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the sequencing of executed tasks and therefore the product' s behavior. 
Where the programrning technology is concerned, these faults can be 
avoided if the language used has precise sernantics. Thus, the diverse 
execution environments of this language will produce applications which 
have identical behavior. 

6.3 FAULTREMOVAL 

6.3.1 General Notions 

Fault removal aims at detecting and eliminating faults present at the end 
of each specification, design and production stage, as weIl as faults 
appearing during use. The fault suppression techniques are different for each 
one of these stages; however, three aspects are explicitly or implicitly taken 
into consideration: 

• fault deteetion which reveals the presence of faults, 

• fault loealization (or fault diagnosis or fault isolation) which identifies 
the faults present, 

• fault eorreetion andlor re pair operation which deletes these faults when 
the systems allows it (such as with repairable produets). 

Independently of these notions of detection - localization - correction, we 
identify two distinct groups of fault removal techniques: 

• static analysis techniques, 

• dynamic analysis techniques which are also known as test techniques. 

Statie analysis is carried out 'without execution' of the analyzed model. 
This integrates: 

~ formal proof techniques by equivalence between the model which is 
treated by the stage and the model obtained at the end of the stage, or 
by researching particular properties of the obtained model, etc., 

~ review techniques, greatly used in the software domain, which 
consists of an analysis of the system by human experts. 

On the contrary, the dynamie analysis or test is carried out by executing 
the model analyzed. We test a system or a product by subjecting it to stimuli 
from the outside. More precisely, we apply a sequence of data on the inputs 
and then we observe the behavior on the outputs (sometimes, we observe 
also some internal signals or variables). This is typically an experiment. 
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In Chapter 2 we remarked that the transformation of requirements into a 
product is carried out by a succession of phases. An elementary phase 
transforms the model of the level i to the model of level i+ 1 (see Figure 6.2). 
This process is therefore said to be top-down. The detection of faults could 
consist in examining this transformation to see if the model obtained at i + 1 
level is in accordance with the initial model at level i. Whatever the 
technique used, we are speaking here of verification which is symbolized by 
a bottom-up process symbolized by an arrow in Figure 6.2. 

I Model of level; 1 
Transformatioll 

... ~ 

+ Validation 
Verijication 

., r 
I Model of level i + 11 

Figure 6.2. Fault removal during one transformation 

The faults introduced stern from a bad transformation of the initial model. 
We are therefore naturally led to question the quality of the transformation 
method chosen. If it is possible to establish that this method is bad, we may 
assurne that using a better method could have prevented faults . This 
approach is different from that of verification. We do not seek to detect 
faults but highlight the high risk uf faults being introduced. For example, a 
program review makes obvious that certain 'programming mIes' have not 
been respected. The means relevant to this process are qualified as 
validation techniques. A top-down process symbolized by an arrow in 
Figure 6.2 symbolizes this validation process. 

We should note that the two words verification and validation 
unfortunately have different meanings according to the domain considered. 

Fault removal during the development phases of an industrial product is 
very important but expensive in terms of human and technical means and 
also time consumption. Faults must be detected and removed as soon as 
possible according to the adage: "finding faults early in the design cycle 
directly impacts the development cost and schedule". Year after year, the 
design of Integrated Circuits is improved, and their fault rate decreases; 
however, as the complexity (number of transistors) of these chips increases 
in the same time, the difficulty to pinpoint the residual faults increases: 
Figure 6.3 illustrates this historical evolution with a symbolic 'Fault - Test 
complexity' diagram. 
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Figure 6.3. Fault removal rate 
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The following sub-sections introduce the objectives and principles of 
static and dynamic analysis methods used during the stages of a life cyc1e. 
These techniques are discussed and developed in the third part of this book. 

6.3.2 During Specification and Design 

The fault suppression methods applied during the specification and 
design stages concern the functional creationfaults. 

6.3.2.1 Static Analysis 

Detection 
The modeling means used to specify or design a system offer features. 

For example, the 'finite state machine' model is based on two features: the 
state and the transition; the features of a programming language are 
described in its reference manual. These constructions possess two essential 
characteristics: the power of expression and the detection capacity. 

The modeling tool features have essentially been introduced to facilitate 
the expression of models for the levels where they are used. For example, 
during the programming stage (which is part of software's design), the 
feature of the loop f or was introduced to easily express repetitive 
treatments. In electronics, the 'register' concept was created to express the 
need to store data. Where the design of real-time systems is concerned, the 
notion of 'task' was introduced to easily handle asynchronous events. 

The features were then created to make the detection of modeling errors 
easier. For example, in the programming domain, the notion of 'type' allows 
the compiler to detect situations where an expression of a type is assigned to 
a variable of a different type. In the same manner, we can quote the example 
of the Petri nets whose analysis reveals potentially reachable non-desirable 
states or deadlock situations. This second characteristic of these features was 
introduced more recently, whereas it is essential when dependability is an 
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important criterion of a product. Thus, the choice of modeling means has to 
be made taking into account these possibilities of fault detection as much as 
their power of expression. 

Once a modeling tool is chosen, two c1asses of errors can be detected. 

• The generic errors associated with the considered model means and not 
to the characteristics of a particular modeled system. For example, a 
blocking of a system' s behavior described by a Petri net can be detected, 
whatever the functionality of the system iso 

• The specijic errors of each modeled system. An example has already 
been quoted of the reachability of particular state of a graph that is 
considered undesirable. Thus, for a rail regulation system of a level 
crossing, the state 'the barrier is open' AND 'the train is passing' 
constitutes an eITor that we would like to detect. 

It is really eITors and not faults, wh ich are made obvious since they are 
about undesirable states and not structural elements wh ich have led to these 
states. For example, we do not know (for the moment) the piece of program 
or circuit which provoked the opening and staying 'open' of the baITier 
when the train passed. 

Localization 

The localization of a fault by a model' s static analysis will be easier if the 
used modeling tool proposes features which favor the expression of specific 
eIToneous behavior. Indeed, the analysis could then detect an eITor c10se to 
the original fault and not later, through errors induced by contarnination 
mechanisms (side effects). For example, if the model used allows the 
detection of a blocked system, the designer would want without doubt to 
know the functioning sequences which led to this undesirable situation. The 
localization of the fault is therefore made easier. Here again, the choice of a 
modeling means has to be taken by analyzing the facilities offered by the 
model to reveal faults which are at the origin of the detected errors. 

Correction 

Once again, the characteristics of the modeling means and the way which 
this means is used have an important impact on the facility and efficiency to 
COITect the localized fault. Consider, for example, a designed system made of 
loosely coupled components, that is to say having few interactions and 
whose actual interactions are explicit. Therefore, the correction will be 
localized in apart containing the eIToneous component. On the contrary, a 
strong coupling between components makes the correction difficult, due to 
constraining relationships which links them; it is therefore necessary to 
modify several components in order to avoid the error occurrence. The risk 
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is then to introduce other faults during this correction. For example, if a 
pro gram contains numerous global variables (shared by several procedures), 
the modification of one part of the pro gram (a procedure) risks having 
indirect consequences on other parts of the pro gram. 

When a fault is introduced during the specification and design process, 
we can ask ourselves if this results from an 'unfortunate accident' (absent
mindedness, etc.) or if it originates from a fault in the development process 
itself. This question is important, as in the second case several similar faults 
probably exist. To correct these faults one after the other is inefficient; 
therefore it is necessary to diagnose (localize) the fault in the development 
process and correct or improve the development process. This case 
corresponds to a validation process approach and leads to the introduction of 
new techniques belonging to fault prevention. For example, if we state that 
numerous faults found in a software product are due to an unclear distinction 
between the variables which are 'local' and the variables which are 'global', 
we would introduce a guide defining a programming 'style' wh ich imposes 
rules (or constraints) on the choice of variable identifiers. 

6.3.2.2 Dynamic Analysis 

Let us remind that dynamic analysis, often called test, implies the 
execution of a model. This supposes the existence of a formal semantics of 
this model as weil as associated execution means, and sometimes an external 
model of the product' s behavior. We do not consider here the particular case 
obtained at the end of the design where we dispose of a physical executable 
product mock-up. This case will be examined during the production and 
operation stages. 

Detection 
Fundamental fault detection principles of dynamic analysis consists in: 

• applying a sequence of input data to the system model in order to 
transform the faults into errors, 

• and by detecting erroneous states by any mechanism wh ich observes 
generated states, including outputs. 

The model therefore has to allow the expression of correct states and 
those wh ich are considered as incorrect. The execution of this model has also 
got to include the comparison of the system's real states, whether with those 
expected (supposedly correct), or whether with the non-desired states 
(supposedly incorrect). In the software domain, the definition of 
'constrained types' has been introduced with this in mind. Consider as an 
example 'subtype Size is Integer range 28 .. 48;'. At the 
program' s execution, the value assigned to a variable of this type has to 
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belong to this type (the interval [28,48] for our example); the violation of 
this assertion detects the error. 

Another example, typical of dynarnic analysis used for the detection of 
errors, is the test by simulation: a functioning sequence is applied to the 
product model and the outputs are then compared with the expected 
predefined outputs. Such an analysis, which transforms faults into failures, is 
applicable in numerous situations because it makes use of an external 
knowledge of the system, independently from its structure. 

The dynamic analysis confronts us with two problems: the controllability 
and observability of faults. It is necessary to find a functioning sequence 
which activates the faults into errors: this expresses the controllability 
notion. However, this error creation is not sufficient for the detection; we 
also have to be able to observe these incorrect states (errors): this induces the 
observability nation. If we dispose of an 'encapsulated' product (only the 
inputs/outputs are accessible), the dynamic analysis is totally carried out 
externally: controllability and observability are minimal. On the contrary, in 
the case of a software written in a language which has an 'exception 
mechanism', a certain number of abnormal states are signaled; thus, the 
violation of a constraint such as the one associated with a variable whose 
type 'si-ze' was previously defined could, for example, provoke an error 
message and stop the program execution. Then, the observability is high. 

In conclusion, the detection of faults by the execution of a modeled 
system reveals two problems: 

• How can the system be brought into an erroneous state? 

• How can we perceive that the system has reached such astate? 

We should note that the fault models expressing the faults that can affect 
the specification and design stages are generally difficult to establish 
precisely. We often apply the analysis of erroneous behavior by detecting the 
errors and not the faults which are at the origin of these errors. 

Localization 

Even if the existence of an error is signaled during the execution of a 
modeled system, the localization of the fault which is at the origin can turn 
out to be difficult. Indeed, we have to go back to the system structure, that is 
to say to go from the failure or error to the original fault. It is clear that this 
work is facilitated if the distance between the place where the error was 
signaled and the place where the fault occurred is reduced. Consider an 
example from the software domain. Let an assignment statement place the 
result of a function in a variable P of Size type: 

P := function(Vl, V2, V3); 

Suppose that the execution of this statement signals a violation of the 
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constraint associated with the variables of type size. If the input variables, 
VI, V2, V3 are also constrained by types and if no type violation has been 
detected in these variables, this suggests that the fault could be located in the 
function and not backwards. However, this is not a certainty. For instance, 
the function can be correct but should have been called at the wrong place. 

Thus, localization is made easier by using executable modeling means 
whose constructions have numerous and precise detection mechanisms. 

Correction 
The remarks made regarding static analysis could also be applied to 

dynamic analysis. 

6.3.3 During the Production 

As the specification and design faults have now supposedly been 
prevented or eliminated, we now look at the faults introduced by the 
production process. Stemming from this process step, the product therefore 
exists and we can subject it to dynamic analysis tests. The investigation 
means are therefore generally applied through the normal inputs/outputs: 
controllability and observability are apriori limited. However, where the 
electronic aspects of production are concemed, we dispose of relatively 
precise models of the faults which can affect the product, whether at the 
production means level (manufacturing and assembly machines, etc.) or at 
the level of the product itself (for example breakdowns could affect a 
component). Finally, the production imposes certain constraints on the test 
techniques: in particular the duration of the tests should not slow down 
excessively the rhythm of production. 

Detection 
A product being by definition executable, we employ mainly dynamic 

analysis methods: we apply a sequence of input values to the product, and 
we observe the output values produced wh ich are then compared with pre
established values or with the output values of a 'standard' product which is 
supposedly perfect. Static analysis methods also exist, such as the visual 
inspection of a printed circuit board to detect insertion or welding errors of 
electronic components. 

The detection of production faults is known as production testing. 
Whatever the methods used, this test is characterized by a short execution 
period, contrary to design testing. Indeed, if the cost of design testing is 
spread out over all the manufactured products, the cost of production testing 
has to be added to that of each product. Therefore, it is necessary to detect as 
quickly as possible the largest number of faults belonging to a technological 
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fault model. This wager implies a compromise between the demands for 
correctness of the manufactured products and the costs and delays in the 
manufacturing. 

Localization 

The localization or diagnostic or isolation of eventual faults is generally 
made difficult by the inaccessibility to the internal elements. This operation 
requires a stricter and longer analysis of the product wh ich is only accepted 
by the manufacturer if the detected failing components are aiming towards 
an improvement in productivity. In the domain of electronic circuit 
manufacturing, we proceed to a quality contral on component sampies. 
Therefore, we look for the causes of such failures: 

• in the product (for example a breakdown due to a component 
overheating), 

• in the manufacturing process (for example the temperature of welding 
equipment is badly regulated). 

Correction 
When the localization analysis reveals a flaw in the production process, 

we have to act on the process in order to correct the flaw. In certain cases, 
we can repair the detected failing product by chan ging a component, a 
connector or by re-establishing a broken line, etc.; the product is therefore 
said to be repairable. In the opposite case where the product is non
repairable, its failure constitutes a financial loss which reduces the yield of 
the production since the product is exc1uded from commercialization. 

6.3.4 During the Operation 

During operation, we meet functional and/or technological and/or 
environmental faults. The operation test also known as a maintenance test 
corresponds to the same type of problems as the production test. However, it 
is often more precise because it is longer, and is not subjected to the 
temporal constraints of production. In the case of repairable systems, we 
look to the diagnosis of the fault present in order to correct it rapidly. 

The set of manufacturing or maintenance test techniques constitutes the 
off-fine testing. This test is called as such because the normal functioning of 
the product has to be stopped in order to test it: for example, taking a car to 
the garage for technical service. 

On the contrary, we qualify the mechanisms which carry out self-tests on 
the product during its functioning as on-fine testing. For example, a light 
turns on in a car if there is not enough gas or oil, or if the engine temperature 
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is too high. More complex procedures are also applied at run-time on control 
systems embedded in all recently produced cars. 

In general, the detection or localization tests of average or high 
complexity systems are very difficult to establish, and the sequences 
obtained are very long. This has repercussions on the cost and duration of 
the test during the life cycle. A certain number of solutions to introduce as 
early as the design stage are proposed in order to make the final product 
easily testable. In particular, error detection and fault diagnosis are 
facilitated by using instrumentation techniques. Observation means are put 
into place, which observe on-line anomalies and record typical variables; 
hence, the final diagnostic carried out during the maintenance is made easier. 
This is also referred to as monitoring. 

6.4 FAULT TOLERANCE 

The two approaches, fault prevention and fault removal, go towards the 
development of dependable applications by providing: 

• means which facilitate the expression of specification and design 
modeling and transformation, hence reducing fault introduction or 
occurrence by acting on the product' s creation process, 

• means which permit fault detection, and means which avoids their 
propagation along the development stages. 

The fault tolerance strategy is different to those of the two other 
approaches: it involves acting on the effects and not on the causes! We begin 
with the realistic hypothesis that, despite the previous methods of fault 
prevention and removal, the product used remains affected by the residual 
faults arising from the design and manufacturing stages. Independently from 
these residual faults, technological faults will probably appear during the use 
of the product. Tolerance to faults is generally based on redundancy 
techniques (for example by duplicating components) which act during the 
product' s use, although they have been defined and implemented during the 
specification, design and production. 

It should be noted that the aim of fault tolerance is not to correct the 
cause of the error (the fault) but to prevent the appearance of a failure. Thus, 
if a pro gram contains a design fault, the tolerance mechanisms do not modify 
the faulty statements. In the same way, if an integrated circuit is affected by 
a breakdown, the mission should carry on functioning despite this 
breakdown. 

In order to make our presentation clearer, we distinguish three significant 
classes of fault tolerance techniques: 
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• thefailure prevention which proceed by errar masking, 

• the detection and correction of errors at their occurrence, 

• the handling of faults and errors to prevent the occurrence of 'dangerous 
failures': here we are speaking of faU-safe systems. 

Briefly introduced and commented on in the following sub-sections, 
these c1asses will be discussed in the fourth part of the book. 

6.4.1 Failure Prevention by Masking 

The error masking techniques involve redundant devices wh ich inhibit 
the effects of faults, thus preventing the appearance of failures. The most 
popular example is the TMR (Tripie Modular Redundancy) which 
corresponds to a redundancy by 'triplication' (also called trip lex) of the 
hardware and/or software modules. The outputs of the global system are 
obtained by a majority vote of the outputs of the duplicated modules. Thus, 
an erroneous result of one of these modules has no effect on the final output. 
This principle of redundancy is also used to secure the wheels of a lorry: by 
placing several wheels in parallel instead of one single wheel allows the 
effect of a burst tire to be masked. 

The redundancy used according to this first approach is qualified as 
passive redundancy because it does not require a mechanism to detect the 
error or modify the product' s action in order to prolong its mission. The 
corollary of this principle is that faults can hardly be detected externally. 

This historic approach was used in the first space projects requiring high 
dependability because it is simple. It is however abandoned today, in favor 
of the second approach by active redundancy, wh ich is more flexible and 
efficient. This second approach is described in the following section. 

6.4.2 Error Detection and Correction 

Contrary to the previous approach, the techniques based on error 
detection and correction mechanisms necessitate the explicit detection of 
errors produced by the faults, then the use of means allowing the correction 
of these errors. An example of this in daily life is the spare wheel in a car: 
the driver has to sta 
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The redundancy implied in this approach is qualified as active 
redundancy, as it requires an explicit activity to detect the appearance of 
errors and to handle them. 

An illustration of this use of active redundancy is provided by the error 
detecting and correcting codes presented in Chapter 15, and used for 
example to code data stored in CD-ROM devices. 

This approach calls for three groups of complementary techniques: 

• self-testing or on-line testing, 

• fault contention or error confinement, 

• reconfiguration. 

With the self-testing systems (or on-line testing systems), the presence of 
a fault is detected by a mechanism which signals the occurrence of an error. 

We can then, with the second group of techniques, called fault 
contention or error confinement, prevent the eITor from reaching other 
modules or functions of the product. 

Finally, with the third group of techniques, called reconfiguration 
techniques, the product is adapted to continue its mission, as long as its 
resources permit this, with or without adegradation of its performance. For 
example, the installation of a car' s spare wheel only allows one flat tire to be 
replaced; the spare therefore constitutes a 'resource' : a single puncture does 
not therefore imply reduced vehicle performance (if we do not count the halt 
of the vehic1e and the time spent to change the tire.) On the contrary, if this 
spare wheel is a 'light' type (that is to say a wheel of reduced width), the 
vehic1e whose tire has been changed will only be able to drive at reduced 
speed: therefore this implies adegradation of performance. 

6.4.3 Fail-Safe Techniques 

The techniques which prevent dangerous failures concentrate essentially 
on the product' s safety criteria, that is to say that they aim at preventing the 
appearance of failures which have dangerous or catastrophic extern al effects. 
We are speaking here of fail-safe systems. Take far example the electronic 
regulator of traffic lights on a crossroad: the failure wh ich provokes the 
action 'green - green' in both directions is reputed to be dangerous. We 
should therefore design this regulator in such a way that the prob ability of 
occurrence of this failure is very low (below an acceptable level). 

We should note that the prevention of dangerous failures is independent 
of error detection and correction techniques of the previous approach. 
However, we will see that the methods used are often c10se to the self-testing 
methods. 
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6.4.4 Resulting Fault Tolerance Classes 

The objective of fault tolerance is clearly to prevent failures. For 
pedagogical reasons, we are going to constitute three groups of techniques 
classified by their increasing complexity: 

• self-testing systems which ensure the simple detection of errors during the 
product' s functioning and often constitutes the first stage towards fault 
tolerance, 

• the faU-safe systems which prevent failures considered as dangerous, 

• fault-tolerant systems; this fault tolerance is either passive by masking, 
or active by self-testing and error correction/reconfiguration. 

6.5 DEPENDABILITY MEANS AND ASSESSMENT 

Figure 6.4 integrates the different aspects of dependability: the 
impairments, the handling means, as weIl as the techniques allowing the 
evaluation of dependability. 1t is indeed necessary to be able to measure the 
impact of the diverse techniques used on the dependability grade of the final 
product. These measurements are introduced in the next chapter. The 
dependability assurance is the set of scheduled and systematic actions 
which are taken in order to guarantee that the final product satisfies the 
dependability requirements. 

I Dependability I 
Impairements Meaos 

• Faults propagation • Fault Prevention 

• Errors mechanisms • Fault RemovaJ 

• Failur~ • Fault Tolerance 

... l. .4~ 
Analysis & Evaluation 

• Attributes: 
ReliabiJjty 
AvailabiJity 
Testability 
Maintainability 
Security . EvaJuation methods 

Figure 6.4. Dependability summary 
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Figure 6.5 illustrates the techniques wh ich stern from the three 
approaches, fault avoidance, fault removal and fault tolerance, throughout 
the product' s life cycle. On the left, the problems are symbolized, that is to 
say the types of faults and their cumulative incidence on the stages of life 
cycle: Fs (specification faults), Fd (design faults), Fp (production faults) and 
Fo (operation faults). On the right are represented the solutions used at each 
stage to reduce or suppress faults and their effects. 

It should be noted that the prevention techniques associated with a stage 
of the life cycle concern uniquely the faults which can appear during this 
stage; the removal techniques treat not only the faults introduced during the 
stage in process, but also faults stemming from previous stages. Fault 
tolerance mechanisms act on the product during its use, but their 
implementation is associated with the product's development stages 
(specification and design). 
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Production testing 
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Figure 6.5. Fault mastering 
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6.6 CONCLUSION 

The aim of this chapter was to provide the reader with an overview of the 
different aspects of dependability science. Parts three and four of the book 
develop the fault prevention, fault removal and fault tolerance techniques 
introduced in this chapter. Part three deals with fault avoidance means (fault 
prevention and fault removal). We separate the functional faults from the 
technological faults, as the related techniques are often quite different. The 
very important dass of fault removal techniques related to technological 
faults is studied with more details in three chapters of this part. Part four is 
dedicated to the fault tolerance means: on-line detection and recovery of 
errors during the operation stage. 

Before analyzing these techniques, we will explain in Chapter 7 the 
dependability assessment issues, and we will introduce in Chapter 8 the 
basic notions of redundancy. Dependability assessment means are necessary 
to evaluate the various techniques proposed to develop dependable products. 
Redundancy is a fundamental concept of most of the protective means. 
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Dependability Assessment 

7.1 QUANTITATIVEAND QUALITATIVE 
ASSESSMENT 

Dependability has been defined as 'a property such that reliance can 
justifiably be placed on the service delivered by a product' in its utilization 
context. Such a definition containing the word 'justified' implies means, 
which allow the evaluation or measuring of the reliance. The numerous 
assessment approaches which exist are typically classified into two groups. 
The first one, called quantitative dependability assessment, consists in 
defining dependability measurements and techniques to obtain the values of 
these measurements. The second one, called qualitative dependability 
assessment, is based on dreaded events and techniques to evaluate their 
effects and their potentiality. These events are faults, errors, failures and 
their consequences. Naturally, some of these techniques can be used for 
quantitative as weIl as for qualitative assessment. 

7.1.1 Quantitative Assessment 

To assess the dependability of a product in a quantitative way, several 
attributes can be defined. They depend on the meaning associated with the 
term reliance. These attributes define probabilistic values, as the occurrence 
of a failure is generaIly not certain. This is due to two causes: 

• The fault is due to non-deterministic phenomena affecting the product or 
induced by the environment; for instance, the date of the arrival of a 
heavy ion is unknown. 

141 
J.-C. Geffroy et al., Design of Dependable Computing Systems
© Springer Science+Business Media Dordrecht 2002



142 Chapter 7 

• The fault is due to the development process, but its localization in the 
product is not defined, otherwise it would have been removed. We only 
know probabilistic values of these creation faults. 

Attributes can be assessed three times throughout the product' s life cycle. 

• First of all, the attribute's expected values are defined at the beginning of 
a project. These specijication assessment values are associated with the 
specifications of the future product. They are expressed in terms of 
acceptable probability ranges for a given mission. For example, we 
demand that a new model of a particular light bulb has a probability 
greater than 0,999 to function correctly during 2000 hours. This demand 
for reliability must be integrated in the requirements expressed during the 
product' s specification. 

• Techniques are then used in order to estimate the jorecasting values of 
the attributes during the design. This allows justifying the design and 
technology choices made during the development stages. For example, 
the use of goto in a program makes the verification of its behavior more 
complex, and consequently, increases the probability of a program's 
failure. In the hardware domain, the choice of magnetic technology to 
store data can lead to insufficient reliability for an embedded product 
because of space rays. 

• Finally, the attribute's values are measured in the operational phase. We 
then obtain the exploitation values. For example, the use of thousands of 
light bulbs or the use of a pro gram by thousands of users allows the 
evaluation of the average operation duration without failure. 

The evaluation of forecasting as well as operational dependability is 
generally difficult and does not provide any certitude about a particular 
product, but only statistical information about the behavior of a population 
of products. This evaluation is based on several types of deterrninistic or 
probabilistic models (Petri nets, Markov chains, etc.). 

The forecasting evaluation is deduced from knowledge about the 
product' s structure and components. This sometimes uses interpolation and 
extrapolation techniques to take the final product and its environment into 
account. Moreover, several candidate architectures could be compared 
before any design choice. For example, the probability of a rupture of a 
generator's vapor tube in a nuclear site is 4,8 10.2 during one year. However, 
the probability that this event leads to a fusion at the heart of the nuclear site 
is only 1,5 10-7. This smaller prob ability is due to the setting up of protection 
mechanisms, from the design stage, which handle the faults. 

On the contrary, operational evaluation is based on experimental 
measurements carried out on representative sampies of the population of 
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products studied; the results are then treated by mathematical tools. This 
dependability evaluation aims at checking the dependability of real 
production; in numerous cases, this evaluation is performed relatively to 
previous products. 

The reliability that is desired for the examples of light bulbs or nuclear 
sites is not the only criteria used to assess dependability. Several other 
dependability attributes exist. They are normalized by diverse national and 
international organisms and professional groups, such as the IEEE (Institute 
of Electrical & Electronics Engineers), the MIL-STD standards of the US 
Air Force, the ANSI (American National Standards Institute), the IEC 
(International Electrotechnical Commission), the ISO (International 
Standards Organization), the (European standard organization), the BS 
(British Standard) and AFNOR (French normalization organism), etc. 

In sections 7.2 to 7.7 we define the foIIowing 6 quantitative attributes: 
Reliability, Testability, Maintainability, Availability, Safety, and Security. 
These attributes are then compared in section 7.8. Some evaluation tools are 
introduced in section 7.9: the fault simulation approach, the reliability block 
diagrams and the non-deterministic state graph approach. 

7.1.2 Qualitative Assessment 

The qualitative assessment approaches aim at examining dreaded events 
and evaluating their potentiality and their effects. The studied events are 
faults, errors or faiIures. The methods are distributed into two classes: 

• The deductive approach consists in deducing faiIures from faults or 
errors (dreaded events). The considered faults or errors often come from 
previous quantitative studies. 

• The inductive approach considers potential failures (dreaded events) and 
establishes which faults or errors can be at their origin. 

As for quantitative assessment, the qualitative assessment methods do not 
handle occurred events but potential ones, whose occurrence must be 
avoided. In section 7.10, the inductive method caIIed Failure Mode and 
Effect Analysis is presented. A popular deductive method, the Fault Tree 
Method (or event tree method), is introduced in section 7.11. 

7.1.3 Synthesis 

The various qualitative or quantitative assessment methods assume 
numerous hypotheses, and they are based on the use of models and analysis 
and measurement means. Each one of these methods provides a particular 
assessment of the reliance that can be justifiably placed on the services 
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delivered by the products. Therefore, these methods must be used jointly. 
Figure 7.1 illustrates the dependability assessment challenge. 

I Dependability Evaluation I 
Attributes Values 

• Reliability • Foreeast I Prediction 
• A vailability Experimentation 
• Maintainability Estimation 
• Testability • Exploitation 
• Safety .. ~ 
• Security • ,.. 

Methods &Tools 

• Qualitative 
Fault Tree, FMEA, etc • 

• Quantitative 
Models: Reliability BlockDiagram, 
FSM, Markov, Petri net, etc. 

Figure 7.1. Dependabilityevaluation 

As shown in Figure 7.2, these techniques can be c1assified according to 
the nature of the basic models (events such as faults, failures and their 
consequences, system with functional and structural knowledge, and 
physical such as a prototype on which experiments are applied), and the 
treatment which is applied (probabilistic or statistic). Some of these methods 
are explained in the following sections. 

Models I 

treatment treatment 

Figure 7.2. Dependability assessment methods 
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7.2 RELIABILITY 

7.2.1 General Characteristics of the Reliability of 
Electronic Systems 

Reliability has initially been defined for physical systems which are 
submitted to the law of increasing entropy which postulates that these 
systems have a tendency to degrade throughout time. Reliability is an 
attribute of dependability with regard to the continuity of the delivered 
service. The international standard IEC85 defines reliability as: 

I the aptitude of a device (product) to accomplish a required function in 
given eonditions, and for a given interval of time. 

In a quantified way: 

I reliability is a funetion of time whieh expresses the conditional 
probability that the system has survived in a speeified environment till 
the time t, given that it was operation al at time O. 

A product' s reliability is a function wh ich does not inerease with time. 
This deereasing tendency is due to the subjaeent phenomenon of the 
degradation of eleetronic devices. On the eontrary, in the ease of software 
teehnology, this funetion stays eonstant, due to the absence of ageing 
phenomena (not eonsidering the maintenance operations). 

Several statistical reliability models exist. Their pertinenee depends on 
the teehnology domain being considered. In eleetronics, the breakdowns are 
cataleptic (that is to say they appear abruptly, without an external waming 
sign), and the wearing out phenomenon, classic in meehanies, are eonsidered 
as minor. The degradation phenomena lead to breakdowns, whieh are 
generally represented by models whieh depend on the environment' s 
parameters such as temperature, radiation, vibrations, ete. The temperature is 
the dominant parameter: the reliability decreases according to Arrhenius or 
Eyring degradation models of physieo-ehemieal proeesses, applieable in 
eleetronies. 

Reliability studies eall for: 

• praetical mortality experiments on sampies representative of the analyzed 
product' s population, 

• mathematical techniques of judgment on sampies to deduee quantifiers 
(reliability parameters) applicable to the whole population. 

The first group of studies eonsists in noting the number of failures appearing 
during time on the bateh of produets tested. Following this observation, 
statistical description tools allow to draw reliability curves. Then, statistical 
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mathematical tools allow estimators to be deduced such as, for example, the 
mean lifetime of a circuit, or the failure rate. These tools also allow 
hypothesis and likelihood tests to be carried out wh ich measure the 
confidence that can be placed in these quantitative statistical results. 

Different types of reliability tests are carried out on the populations of 
components to perform reliability evaluation: 

• curtailed tests whose duration is fixed apriori, 

• censured tests which stop when a given number of faults is reached, 

• progressive tests whose decision to stop depends on the results obtained, 

• progressive curtailed tests wh ich are identical to the progressive tests 
with a maximum duration constraint, 

• step stress tests which provoke a progressive acceleration of the 
degradation mechanisms, in general by increasing the temperature which 
permits an accelerated test. 

7.2.2 Reliability Models 

7.2.2.1 Exponential Law 

Reliability is analyzed by reliability models which are mathematical 
functions of time. The exponential law is the simplest of these laws. It 
expresses the probability of survival by an exponential function which 
decreases in relation to time (see Figure 7.3): 

R(t) = e -At, 

where A is the lailure rate expressing the probability of failures 
occurring per hour, for example 10-6 failure per hour. 

R 
1 

o MTTF t 

Temperature 
cll 

time 

Figure 7.3. The exponentiallaw 

A is generally considered to be constant throughout time. For example, a 
computing system with a CPU, a Memory, and an 1/0 unit has a failure rate 
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of 10-5 failure / h. This property correspond to faults following homogeneous 
Poisson process (the average number of faults by time unit is constant). 

The preceding exponentiallaw has to be defined for a given temperature, 
for example 18°C (environment's parameters). Special abacuses (Henry's 
curves) permit the deduction of the failure rate of an electronic component of 
a given technology at any temperature belonging to a given range. 

This R(t) law is often associated with simple estimators called: 

• MTTF: Mean Time To Failure (also called MTFF, Mean time To First 
Failure) for non-repairable products, for example a mission which 
terminates as soon as a breakdown happens. 

• MTBF: Mean Time Between Failures, for repairable products, for 
example the product wh ich has broken down is repaired and put back into 
service. 

If an exponentiallaw has a constant failure rate, the average value of this 
function is: 

MTBF (or MTFF) = 1/A.. 
This is expressed in exponential values of 10 hours: for example 106 H. 
This estimator is often used as commercial arguments in a misleading 

way: if someone declares that a product has a MTIF of 106, this does not 
mean that it will survive for this duration! Indeed, in Exercise 7.2 we will 
see that, at the end of aperiod of time equal to MTIF, the product in fact 
only has a survival probability inferior to 37% (l/e = 36,7879 %) . This 
re mark justifies the observation about the worth of a product only based on 
its MTBFIMTTF. Many specifications of high dependability projects (for 
example in the aerospace domain) demand a probability of survival at the 
end of the mission much higher than the reliability at the MTBFIMTIF 
value: for example, R = 0.9999 at the end of 105 hours of mission! 

7.2.2.2 Weibull Law 

The Weibull model is the most interesting reliability law because of its 
flexibility in describing a number of failure patterns concerning electronics. 
A simplified version with two coefficients, 11 and ß, is given by the relation: 

I R(t) = e-<tl1l)ß 

When ß = 1, this law reduces to the exponentiallaw with 11 = 1/A. 
In the following part of this book, we will only consider the exponential 

law, which is the simplest and the most frequently used law for electronic 
systems. 

Other more precise laws, such as the Weibull's law, are unfortunately 
more complex to understand and manipulate. 
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7.2.3 Failure Rate Estimation 

Failure rate estimations are generally determined from survival tests 
applied to significant large sampies of components. The duration of these 
tests is short as compared with a product' s normallife cycle; this reduction 
of the test duration is due to an increase in the environment' s temperature. 
Then, by using an acceleration factor we can perform a conversion from high 
temperature stress test to equivalent nominal operating system temperature. 
Thus, the failure rate of the circuits is deduced. These experiments are thus 
called accelerated tests. The component's degradation process can be 
accelerated by increasing the temperature, and also by increasing the value 
of the power supply. 

Most Integrated Circuit failure mechanisms are based on physico
chemical reactions that are accelerated by temperature in accordance with 
the Arrhenius equation. According to the MIL-HDBK-217: 

At, = A exp(-E I (k 1)), where: 

- At, is the process failure rate (base or intrinsic failure rate depending on 
the technology), 

- Eis the activation energy for the process (in electron volts - eV), 

- k is the Boltzmann's constant (8.6 x 10-5 V lOK), 

T is the temperature in Kelvin degrees, 

- A is a constant, 

- exp is the exponentiation operator. 

The real value of the A. of a given circuit is deduced from At, by a relation 
A. = A.b.A.l... which integrates numerous A.; factors characterizing the influence 
of the manufacturing process. 

7.2.4 Reliability Evolution 

In reality, experiments conducted on physical products (mechanical 
devices or electronic components) show that the failure rate A. is not constant 
during time. 1t is assumed that this number is high at the beginning of the 
product's life (infant mortality), then it drops and becomes more or less 
constant during its usefullife, and finally it increases substantially during its 
wearout phase. 

This evolution is typically presented by the A.(t) curve, which is described 
as a bathtub curve, shown in Figure 7.4. So, the hypothesis that A. IS 

constant generally corresponds to the 'active life' stage only. 
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Figure 7.4. Bathtub curve 
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We should note that the test is one of the fundamental means of fault 
suppression. Used during the design, manufacturing and operation stages, a 
test consists in subjecting a product or its model (a model during the design, 
as the product is not yet a physical product) to an experiment from the 
outside, e.g. by a tester. The test is conducted through functioning sequences 
which are made of input/output vectors. A test allows: 

• to show the presence of faults (detection test), 

• and eventually to localize them (diagnosis or localization test). 

We will not develop these test methods here, as they will be analyzed in 
Chapters 12 and 13. 

Testability measures several factors: 

• the ease with which a given product can be tested, that is to say the 
facility with which we can determine detection or localization test 
sequences, and the facility with which these sequences can be applied. 

• the length of the obtained test sequences, that is to say the number of 
input vectors to be applied to the product and the number of 
corresponding output vectors to be observed, 

• the coverage or efficiency of the obtained test, that is to say the 
percentage of detected faults in relation to the total number of faults 
which could affect the product according to a predefined fault model. 

A product with a 'good testability' allows to rapidly determine a test 
sequence having a short number of vectors and a high fault coverage. As 
certain technological choices have an influence on the final product' s 
testability , design or production choices can increase or decrease the 
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testability. For example, the injection of observation means in the heart of 
the product greatly facilitates the detection of errors during functioning (on
line detection), but also during test operations. This is the case of systems 
which integrate error detecting codes or programs instrurnented by 
executable assertions. 

Several methods have been developed in order to evaluate the testability 
of a product. They are often based on an analysis of the product's structure 
and an estimation of its controllability and observability. These two 'system 
level' notions of controllability and observability are linked to the ease with 
which the interna! states of the system can be controlled from the input 
variables, and their real values observed at the externaioutput variables. 

Testability is assessed on a product, but also on the used technology. This 
notion has recently been applied to software technology. For example, the 
ISO 15942 standard evaluates each feature of the Ada language in terms of 
the ease of verification of programs using this feature. Each feature thus 
receives one of 3 grades: 

• included when the feature use makes the verification easier, 

• allowed when its using requires additional but tractable work, 

• excluded when the verification techniques cannot be applied when the 
feature is used in the pro gram. 

Testability and reliability are two different attributes, which are however 
correlated. Indeed, a good testability has to lead to an increase in the number 
of faults detected, which therefore leads to a product' s higher reliability. 

7.4 MAINTAINABILITY 

7.4.1 Maintenance 

Maintenance is an important activity related to product operation. This 
activity will be explained in this section in order to introduce the 
maintainability criterion. 

7.4.1.1 Definitions 

Maintenance is originally an operation linked to the operation stage of a 
life cyc1e. It consists in stopping the product' s mission and subjecting it, 
'off-line', to a certain number of troubleshooting and re pair actions: 
determination of its state of health (presence of faults by detection) and 
eventually putting it back in a good state by localization. and then repair of 
the fault (Figure 7.5). 
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Operation 

Stop .. Return 10 ,,. operation 

Maintenance 
Detection 
Dlagnosil 
Repair 

Figure 7.5. Maintenance 

The product is therefore said to be repairable in the context of its 
application. However, in numerous cases, maintenance is not applicable 
because the systems are isolated or inaccessible. This is the case, for 
example, with the hardware elements of satellites or polar beacons. Such 
systems are therefore said to be non-repairable. Some other products are 
both repairable and non-repairable according to the different stages of their 
life. Thus, a rocket is considered to be repairable when it is on ground 
whereas it becomes non-repairable when it is launched. 

I Maintenance is the set of actions which permit a product to be 
maintained or re-established in a specified state, or to be ready to 
deliver a determined service. 

7.4.1.2 Maintenance Categories 

Three large categories of maintenance exist (Figure 7.6): 

• preventive maintenance when an action detects the presence of faults 
before they lead to a failure, 

• corrective maintenance when a product reputed to be failing is cured, 

• evolutive maintenance in order to improve the product's functionality. 

-PreII'entive 

I MainteT1l11lCe I .Corrective 

- EvoIutive 

Figure 7.6. Maintenance categories 

These three categories call for different techniques and have to resolve 
different problems, at the technicallevel as weIl as at the management level. 
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Preventive maintenance 
Preventive maintenance of computing equipment is carried out with a 

fixed or variable periodicity. The measure of the maintenance periodicity 
does not always use the same units. They depend on the considered 
application domain. We can use the absolute time, the number of functioning 
hours or the number of miles covered. Thus, an automobile is revised every 
5000 miles or each year. 

Two variants of preventive maintenance exist: 

• systematic (or scheduled) preventive maintenance when its occurrence is 
fixed, 

• conditional preventive maintenance when it is conditioned by some 
operational events (use of wearout or temperature sensors, etc.). 

Corrective maintenance 
Corrective or curative maintenance is carried out after the detection of 

an anomaly during the product's functioning on the mission site. Thus, we 
drive a car to the 'garage if it does not function properly. 

Evolutive maintenance 
Evolutive maintenance deals with the modification of certain functions 

of an already designed and developed product which is supposed to operate 
correctly. This is done to improve its performance, or to adapt it to new 
procedures or constraints. For example, the successive versions of a product 
software: 1.0, 2.0, etc. 

7.4.2 Maintainability 

7.4.2.1 Definition 

Maintainability measures the aptitude of a product: 

• to be repaired, that is to say putting the product back into a correct 
functioning state, suppressing the present fault, 

• to evolve, that is to say to accept modification by adding new 
functionality or improving already existing functionality. 

First of all, maintainability aims at measuring the ease with which a 
preventive or corrective maintenance operation can be carried out: detection 
and localization of the fault(s), repair and, eventually, re-initialization. 
Secondly, maintainability assesses the ease with which the product allows 
the modifications to be done in order to adapt it to a new functional and/or 
non-functional environment or to accept a new functionality. 
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Maintainability is an important criterion to assess dependability. In many 
cases, the increase of its value reduces the risk of fault introduction during 
the maintenance stage, and hence increases the reliability of the product. 

Note. The term serviceability is used by numerous manufacturers of 
electronic components and computing systems in order to express the 
maintainability. 

7.4.2.2 Probabilistic Models 

Where the aptitude to repair is concerned, we often define probabilistic 
maintenance models. In a similar way to the exponential reliability model, 
the most frequent model is the exponentiallaw with a constant coefficient: 

I M(t) = 1 - e -11 t, 

M is the probability of being repaired, 1.1. is called the re pair rate. 

From this definition, the Mean Time To Repair or MTTR is deduced. 
The MTTR is the average time between the instant of failure occurrence and 
the return to full functional operation. 

MTTR= 1/1.1. 

Where the measure of the product' s capacity to evolve is concerned, we 
quantify its complexity by evaluating: 

• the degree of structu ration , for example, in a program, we count the 
average number of statements in its sub-programs, 

• the degree of coupling, for example, in a program, we determine the 
number of shared variables, the complexity of the graph expressing the 
sub-program calls, etc. 

7.4.3 Reliability and Maintainability 

Corrective maintenance operations are supposed to integrally restore the 
functionality of a product. In reality, three cases are often met: 

• stable reliability: the capability of the product to deli ver its service is 
statistically preserved (thejailure rate remains constant after repair); 

• increasing reliability: the failing components are replaced by higher 
reliability components when design or production faults are eliminated 
(and without introducing new faults!), thus the failure rate decreases; 

• decreasing reliability: in some cases, maintenance operations set out to 
weaken some components which become less reliable, or in other cases, 
the reliability of components decrease naturally with time, and therefore 
the failure rate increases (c1assical wearout phenomenon). 



154 Chapter 7 

7.5 A V AlLABILITY 

The availability eriterion eoneems repairable produets, that is to say 
produets which are submitted to destruetive and repairing meehanisms. 

I Availability is the probability that the produet funetions eorreetly at 
time t, knowing that it funetions eorreetly at the initial time. 

This attribute differs from the reliability beeause it takes into aeeount the 
error eorreetion meehanisms introdueed during the development of the 
produet. In the ease of simple exponential laws modeling the degradation 
(faults) and repair meehanisms, we use probabilistie finite state maehine 
models whose ares have been labeled by A and Jl eoefficients. Figure 7.7 
shows a simple state diagram whose state 1 expresses that the produet 
operates eorreetly (henee, the produet is available), state 2 speeifies a failing 
situation. The are 1-2 models a failure of the produet with a failure rate A 
(probability labeling the are); the are 2-1 represents arepairing of the failing 
produet with arepair rate Jl (probability labeling the are). 

I A I 
I~ i 1 ~\:..J i 
I Available ).1 Failed I 

Figure 7.7. Degradation Irepair eycle 

Instant availability. For exponential failure and repair laws with 
eonstant failure rate A and repair rate Jl, the instant availability is: 

A(t) = Jl / (Jl + A) + A / (Jl + A) . e - ().1 + A) t 

We should note that the availability is strietly equal to the reliability of a 
non-repairable system (Jl = 0). In the opposite ease, it is superior. Indeed, the 
probability of funetioning eorreetly at time t is inereased by the repair 
mechanism: a fault arriving between 0 and t eould have been treated and the 
produet therefore retumed to its eorreet state at t. 

A vailability during the permanent stage. The permanent availability is 
defined in the permanent stage (when such stage exists): 

When t + 00, A(t) + A = Jl / (/J. + A), i.e. A = MTBF/(MTBF + MTTR). 

We also define two other estimators in permanent funetioning: 

• the Mean Down Time (MDT), mean time during wh ich the produet is not 
available, 
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• the Mean Up Time (MUn, mean time during which the product is 
useable. 

Example 7.1. Repairable Product 

In order to illustrate the relationships between the notions of reliability, 
testability and availability, we consider a repairable product. At time t, this 
product is affected by a fault which transforms itself into an error, then a 
failure, before being detected, for example, by application of a test sequence. 
Then, we use a diagnosis technique wh ich localizes the fault, then repairs it 
and puts the product back in service. 

Figure 7.8 shows this mechanism: we see the periods of availability 
(Mean Up Time) and non-availability (Mean Down Time). The period of the 
correct operation depends on the product reliability. The duration used to 
detect and localize the existing faults depends on the product maintainability, 
more precisely its testability . The time spent in correcting the faults depends 
on the product maintainability. All these characteristics affect the product 
availability. Exercise 7.1 refines the study of this diagram. 

product product product 
available non-available available 

t 
I 1 

TIME 
I I .. 
I I I I ... 

fault error detection repair fault 

failure diagnosis 

Figure 7.8. Example of arepair cycle 

7.6 SAFETY 

Safety is direct1y linked to the notion of seriousness of the failures 
described in the first part. We have explained that the failures induce several 
c1asses of external consequences (Chapter 4): benign, significant, serious, 
catastrophic. Safety is the privileged criterion for highly critical applications 
for which the consequences of certain failures are catastrophic: embedded 
systems from avionics or space domain, etc. This criterion measures the trust 
wh ich can be attributed to a product which does not present failures having 
catastrophic external consequences. 
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I Safety is the probability that the product will not have failures 
belonging to unacceptable seriousness c1asses, between the initial time 
and a given time t. 

Very often, the unacceptable seriousness c1asses concerns catastrophic 
failures. If we refer to a statistical state model, we measure the probability of 
not reaching the third state, which is judged to be unacceptable, knowing 
that it was in state 1 at the initial time and that we know the probability of 
passing from state 1 to states 2 or 3 (Figure 7.9). 

1. Correc:t functioniDg 
2. Non-catastrophlc faDare 
3. Catastrophic faDare 

Figure 7.9. Safety: dangerous failing state 

A simple example is that of a balloon' s heating regulator which contains 
a dangerous liquid. A failure of this regulator is catastrophic if it leads to the 
explosion of the balloon by overheating. We measure the safety of this 
product as the probability that it will not reach astate that provokes an 
explosion. The safety naturally depends on the technology used and the 
environment' s parameters (such as temperature), but also on the protection 
mechanisms wh ich tend to avoid the occurrence of the failure which causes 
an explosion (by a suitable design process avoiding the fault presence and/or 
occurrence), or to prevent the failure from provoking an explosion (by an 
external product protection or, more generally, a fault tolerance mechanism). 

Relation between safety and reliability 

A system that continues to function correctiy for long period of time has 
a good reliability. However, it is possible to have reliable but unsafe systems 
as weIl as safe but unreliable systems. A safe system can fail, as long as it 
does so without creating an accident: destruction of the controlled process or 
human injuries or deaths. 

A handgun may be very reliable but particularly unsafe. In many 
systems, safety and reliability go hand-in-hand. For example, reliability is a 
very necessary safety condition for an aircraft, as most of the failures of the 
flight control system may have catastrophic consequences. 

Methods that increase safety are of course expensive! A first obvious 
approach concerns the increase of reliability of the components used: this 
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produces fault probability reduction, therefore failure reduction . However, 
when this approach turns out to be insufficient, we use specific redundancy 
techniques. They can at the origin of some antagonistic effects between the 
two reliability and safety parameters: for instance, the increase of the 
number of components destined to increase the safety often reduces the 
reliability. In sub-section 7.9.3 we will see how to apprehend the quantitative 
analysis of safety on Markovian type models. 

7.7 SECURITY 

I Security is an attribute of dependability with regard to the prevention 
of unauthorized access andJor handling information. 

This attribute covers two parameters: confidentiality and integrity: 

• Confzdentiality measures the non-occurrence of unauthorized disclosure 
of information. 

• Integrity expresses the non-occurrence of improper alterations of 
information. 

These parameters lead to numerous techniques to protect the produet' s 
access, or its utilization. The simplest example of confidentiality means is 
the use of passwords in order to access a computer. We also use encryption 
techniques to protect data from being understood in ease of involuntary or 
fraudulent accesses. The security attribute is not considered in this book. 

7.8 SYNTHESIS OF TUE MAIN CRITERIA 

The evolution of a product's functioning is symbolized in Figure 7.10 by 
a simple probabilistic three state model. 

1. Corred functioDlDe 
Z. NOD-catutrophlc faflure 
3. Cata.tropbtc raUa~ 

Figure 7.10. Probabilistic model 

State 1 is the correet functioning state, state 2 is a failing state which does 
not lead to the loss of the mission and ean be repaired according to the are 
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(2-1), and state 3 is a catastrophic failure state. The arc (1-2) that leads to the 
non-catastrophic failure of the product is labeled by the failure rate P1 2, the 
arc (2-1), which restores the correct function, is labeled by the repair rate 
P21, and the arc (1-3) which lead to the end of the mission is labeled by the 
rate PI3. We should note that the probabilities associated with the transitions 
are expressed in general with failure and repair rates of type t.. and fl. 

With this basic model, the four principal dependability criteria are 
expressed by Figure 7.11, the graph being in state 1 at the beginning. 
Expression q(t) represents the state in which the system is at time t. At the 
initial time (t = 0), the system is supposed to be in the correct state 1. 

RELlABILlTY: 

SAFETY: 

AVAILABILlTY: 

R (t) = P (q ('t) = 1, 't E (0, t) ) 

S ( t ) = P ( q ( t) ~ 3) 

A(t)=P(q(t)=l) 

Repairable Systems 

MAINTAINABILITY: M(t) = P( q (t +tJ.) = llq (t) = 2) 

Repairable Systems 

Figure 7.11. Expression ofthe main attributes 

• The reliability at time t is the probability (noted as P in Figure 7.11) that 
the product remains in state 1 from time 0 to t. This corresponds to a 
measure of the capacity that the product does not fail between 0 and t. 

• The safety at time t is the probability that the product is not in state 3 at 
time t. This property implies that the product will never reach state 3 
between 0 and t . 

• The availability is the probability that the product is in state 1 at time t, 
whatever the evolutions which occurred before time t. The product may 
produce non-catastrophic failures wh ich are repaired: its state changes 
between states 1 and 2. 

• The maintainability is the probability that the product failing at time t 
will be repaired before a certain predefined ~ duration. This definition is 
a variant of the exponentiallaw with a constant failure rate; it emphasizes 
the repair delay. 

Let us note that the two last criteria apply to repairable products. 

Table 7.1 synthesizes the four attributes, reliability, availability and 
maintainability, for exponentiallaws with constant coefficients applied to a 
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repairable system. Note that availability expression is equal to reliability 
expression when J..1 = o. 

These attributes must be precisely defined in the specifications of a 
project leading to any industrial product. According to the application, one 
or several attributes can have a particular importance, leading to the use of 
appropriate development techniques. Reliability is essential for a spatial 
probe (for example, R = 0.99999 after a 12 month mission); as no repair is 
possible, maintainability has no sense and availability and reliability laws are 
equal. The development of a telephone electronic switching system requires 
high availability (for example, a few minutes of unavailability per year). The 
first attribute of a control system embedded in an aircraft is safety (for 
example, 10.9 catastrophic failure during a flight). Naturally, in the general 
case, a compromise must be found between the dependability requirements 
expressed by quantitative values of the previous attributes, and the other 
criteria ofthe specifications (cost, development duration, etc.). 

R(t)=e"lol 
Reliability MTBF I MTFF = 1/1.. 

A(t) = 111 (Il + 1.) + 1.1 (Il + 1.) . e - (11 + lo) I 

A vailability A( 00) = A = 111 (Il + 1.) = MTBF I (MTBF + M1TR) 

M(t) = l-e"1I 1 

Maintainability M1TR= 1/1l 

Table 7.1. Simplified expressions ofthe main attributes 

7.9 QUANTITATIVE ANALYSIS TOOLS AT 
SYSTEM LEVEL 

In the following paragraphs we introduce three models and methods used 
for quantitative analysis: the fault simulation, the reliability block diagrams 
which constitute one of the first analytical models used (see also in 
Appendix B), and the analysis of non-deterministic state graph models (such 
as Markovian graphs). 

7.9.1 Fault Simulation 

Fault simulation constitutes a universal approach, intensively used in 
different situations. It assumes an 'executable' system model of the product 
studied, a set of external input/output sequences which are applied to this 
model, and the possibility to inject faults of a fault model in the system 
model. This is why some of these techniques are calledfault injection. 
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We will briefly explain the principles of the Monte Carlo simulation, 
wh ich is a relatively simple and easy process. The events which make the 
system evolve are the destructive and repairing mechanisms. At each step of 
simulation, these events are randomly chosen and injected whilst taking their 
respective probability laws into consideration. 

This process is repeated a certain number of times, starting from the same 
initial state. The statistical laws will make the system evolve towards 
different states which are recorded. If the number of simulations carried out 
is sufficiently important to satisfy the law of large numbers, we can deduce 
from this simulation significant quantitative information about the 
dependability parameters such as reliability and availability. For example, 
we calculate the number of favorable cases among the total number of cases, 
in order to estimate the survival or safety of a simulated product. This 
method requires a system be ha vi oral model and often implies long run-time. 
However, it is a very flexible method, accepting complex statistical models 
and the introduction of queuing mechanisms used in computing to access 
certain resources. 

7.9.2 Reliability Block Diagrams 

Once a product has been designed from an assembling of elementary 
components with known reliability, the global reliability of the product can 
be deduced. The reliability block diagram method introduced hereafter 
comes from studies on electronic components. However, it is also used for 
reliability studies done at system level. 

7.9.2.1 Series Reliability Model 

Consider a product constituted by n components, CI ... , Cno having 
reliability laws, RI(t), .. , Rit). Let us assurne that the failure of one of them 
is sufficient to provoke a product's failure (this is the case with the majority 
of products). The reliability of the whole system is then derived from the 
reliability of each component, by using the cIassical theorem of independent 
probabilities. Hence, the global reliability is the product of the reliabilities of 
the components: R = n Ri • 

n 

R=ll Ri 
i= 1 

Figure 7.12. Components 'in series' 
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When the reliability of the components is defined by exponential laws 
with constant failure rates, the reliability of the global product is also defined 
by an exponential law with a failure rate 1.. wh ich is the sum of the failure 
rates of the components (~): 1.. = L ~. 

Therefore, it is said that these components are 'in series' and we establish 
a reliability block diagram shown in Figure 7.12. Exercise 7.3 develops 
these calculations and establishes that, when the components are all identical 
(each having a rate A.o), the global failure rate is multiplied ,by n, and the 
global MTBF is divided by n: 

1.. = n A.o, and MTBF = MTBFol n, with MTBFo= 1 I A.o. 
Consequently, the reliability decreases according to the number of 

components: it is sensitive to the complexity with regard to this nllmber. 

7.9.2.2 Parallel Reliability Model 

All electronic structures are not of the previous 'series' type. In certain 
redundancy cases, the failure of the product only appears when all the 
components are failing. A simple example is that of two light bulbs in 
parallel: as long as one light bulb functions correctly, lighting is ensured. We 
often meet such redundant structures in dependable products, because they 
have a better reliability. They also have a better availability in the case of 
repairable systems. 

D 

R=l-II(l-R.) 
i = 1 I 

Figure 7.13. Components in 'parallel' 

For n components, the reliability block diagram of this situation is 
represented in Figure 7.13: we say that these components are in 'parallel'. 
The reliability increase is due to the fact that the probability that the product 
fails is the product of the failure probabilities of all components; 

1 - R = II (1 - R;) -+ R = 1 - n (1 - R;) 

Exercise 7.3 provides the opportunity to carry out calculations and to 
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show that the reliability is increased: when the failure rates of the 
components are identical, and for n = 2, we show that the MTBF is 
multiplied by 1.5 only. Thus, the improvement of reliability is not 
proportional to redundancy means: it is always smaller. 

We will meet more sophisticated redundancy situations, such as a 
redundancy with different reliability values of duplicate modules, or 
redundancy with majority vote. The study of the reliability of these 
structures involves other tools not considered here, such as the Laplace 
transform. 

In Exercise 7.4, we will compare two reliability block diagrams: a 
'parallel-series' structure versus a 'series-parallel' structure. 

To complement this introductive section, some results of the reliability of 
c1assical structures are given in Appendix B. 

7.9.3 Non-Deterministic State Graph Models 

A Markov graph is astate graph with non-deterrninistic transitions. The 
behavior evolves from state to state as in a c1assical state graph, but the 
transitions between states are labeled by probabilistic values. The fact of 
firing one transition or another one from a given state is in relation to these 
probabilities. In dependability studies, such graphs express the different 
states of a product submitted to degradation and protective mechanisms. As 
long as some mathematical hypotheses are satisfied, we can apply simple 
analysis tools handling probabilistic matrix associated with these graphs. 

Therefore, we evaluate a prod\Jct' s behavior in terms of the prob ability to 
reach or not astate or a group of states from an initial known state (typically 
the fault free state). A matrix analysis method based on a Markov graph in 
introduced by Example 7.2. 

Other methods based on non-deterrninistic state graph models have been 
defined, such as the analysis of stochastic Petri nets. This model has the 
property to express parallelism. 1t uses places and transitions; tokens are 
placed in some places and this marking constitutes the state of the Petri net 
at a given time. Firing mies allows an asynchronous evolution of the graph. 
Example 7.3 shows the use of this model to represent the evolutions of a 
redundant system. 

Example 7.2. Analysis 0/ a simple graph 

We consider a repairable product with constant failure and repair rates. 
Figure 7.14 shows its evolution graph which specifies the states and the 
transitions between these states. The evolution modeled by this graph is 
discrete with time; the time unit is the unity of failure or repair rate time: for 
example one hour. This evolution is controlled by the probabilities which 
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label the ares. We remark that the sum of the probabilities of all the ares 
leaving the same state is always equal to 1. 

Suppose that the produet is in state 1 at time n: 
• the probability that it stays in state 1 at time (n + 1) is (1 - A), 

• the probability that it goes to state 2 at time (n + 1) is A. 

I .. Available ~ ................ ~~~~d ............ ...J 

Figure 7.14. Simple Markov graph 

We associate a two-dimensional evolution matrix with this graph: 

p=[1-+1 1-+2]=[1-11. 11.] 
2-+12-+2 /l 1-/l 

Example of numerical values : [0.9 0.1] 
0.8 0.2 

Eaeh element indexed by ij gives the probability of passing in state j from 
state i. 

If P is squared, the resulting matrix gives the probability to reaeh, in the 
next elementary time, state 1 or state 2 from an initial state 1 or 2. By 
ealeulating the sueeessive raising of P to the power of n, we analyze the 
evolution of these probabilities when time progresses: 

[
0.9 

P= 
0.8 

0.1], p2 = [0.89 
0.2 0.88 

0.11], p3 =[0.889 
0.12 0.888 

0.111] 
0.112 

As the system is initially supposed to be in the eorreet state 1, we want to 
know the evolution probabilities towards the eorrect state 1 or the ineorreet 
state 2, with time. The probability of being in the ineorreet state is 0,11, then 
0,111. A permanent state is reaehed when these probabilities stabilize. 

We ean also study Markovian proeesses with continuous evolution, the 
transitions between states being eontinuous probabilities during time. 

Example 7.3. Stochastic Petn net 

A regulation system has three redundant aetive units and one inaetive 
spare unit. The regulation funetion is ensured as long as two of the aetive 
units have no failure. When one unit is faulty, a reeonfiguration proeess is 
started: this proeess replaees the faulty unit by the spare unit, if this unit has 
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not already been used. 
This system can be represented with the Petri net of Figure 7.15. It has 

three places: P 1 represents the active units by the number of tokens which 
are inside, P2 represents the spare unit, and P3 represents the failing units. 
The graph is initialized with 3 tokens in P1 (three active units), I token in P3 
(one spare unit), and 0 token in P3 (no failing units). 

Transition Tl is labeled with the failure rate /.. of the active units. When 
one unit fails, one token is taken in P 1 and one token is set in P2. In this 
state, the system continues to function correctly. If a second active unit fails, 
before any restoration, a second token is shifted from place P 1 to place P2, 
and the system fails. Transition T2 is labeled with the restoring rate p. If one 
spare unit is available (one token in P 3), and if there is at least one token in 
P2, then T2 is fired: one token is removed from P2 and P3, and one token is 
put in each place P 1 and P2. Hence, the regulation system works again. 
Now, if another active unit fails, the system will fails and the restoring 
mechanism will not be possible, as no token remains in P 3. 

Exercise 7.6 proposes to modify this Petri net according to achanging in 
the specifications. 

1"2 P3 

Active uniJs Spare availob1e 

A T1 

P2 

Figure 7.15. Stochastic Petri net 

7.10 INDUCTIVE QUALITATIVE ASSESSMENT: 
FAlLURE MODE AND EFFECT ANALYSIS 

7.10.1 Principles 

The FMEA (Failure Modes and Effects Analysis) is a normalized 
technique dedicated to qualitative analysis of reliability and safety. It is 
based on an inductive process, which starts with simple failures (altering 
components or modules) in order to deduce their consequences on the 
complete system. This approach is used in numerous fields such as avionics, 
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aeronautics, nuc1ear, chemical and automotive industries. 
Initially developed by the US army in 1949 (military procedure MIL

STD-1629A, 'Procedure for Performing a Failure Mode, Effects and 
Criticality Analysis), this approach has then be amended and refined by 
several institutions: CEI document 812-1985, AIAG (Automotive Industry 
Action Group) and ASQC (American Society for Quality Control) in 1993, 
SEA (Society of Automotive Engineers) procedure J-1739. 

The AIAG presents this technique as a systematic group of activities 
intended to: 

• recognize and evaluate the potential failure of a product or process and its 
effects, 

• identify actions which could eliminate or reduce the chance of the 
potential failure occuITing, 

• document the process. 

The keywords on wh ich the FMEA and its main extension, the FMECA 
introduced hereafter, are based are: the functions, the failure modes, the 
effects and their severity, the causes and their OCCUITence and the controls. 
Hence, FMEA is a technique used to highlight the consequences of a failed 
component of the system on the behavior of the wh oie system. 

[ LevelN I ~ M12 ~ 

ILevel N+ll 

Figure 7.16. Top-Down design 

Let us consider a system designed according to a top-down approach. At 
step N, the designer analyzes the specifications of the components used in 
the system modeling of this level and proposes their implementation 
combining sub-components of level N+ 1. Figure 7.16 illustrates this step of 
the design of one component. Then, the designer defines the possible failures 
of the sub-components. 

The FMEA deals with the study of the effects of known failures at level 
N+ 1, then N, ... , and finally at the global system level and the environmental 
level. The eITor propagation analysis is expressed by tables providing: 
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• the identity of the analyzed component (name, reference, number, etc.), 

• the function performed by the component, 

• the considered failure of the component, i.e. an error of the global system, 

• the possible cause of the failure (this is optional), 

• the local effects, that is to say the consequences on the others components 
at the same design level (N + 1), 

• the effects at the next higher level (N), i.e. the component which includes 
the failed component, 

• the effects on the global behavior (end effects), 

• the failure detection method, 

• the reaction to the errors. 

These last two aspects are relative to the techniques used to handle the 
errors. They will be considered in Chapter 17 (fail-safe systems) and Chapter 
18 (fault-tolerant systems). 

7.10.2 Means 

The MIL-STD-1629 standard defines a worksheet used to express all the 
necessary pieces of information (Figure 7.17). The filling of this worksheet 
reveals two problems: the definition of the failure modes, and then, their 
propagation to highlight their effects on the components introduced at each 
design step, and finallyon the product' s services. 

~ nue --
Imtmrelewl SlBt -- cI --
Rtferen:t,~ CbIqJiIedby --

J\.biion Approved --
by 

Idtrt. IIfmI FIn:öon F.ihreltld5 M<o;im Fail .... flfeds Fail .... an.- Sewrity Rma10i 
JUJb!r tin:ti<nII anlCIIU'lI5 p/BII1 .-. SIIÜJl: chHI 

ideniI'icaIim qxmIiInJI LocaJ Next EnI -~ (1III1eJr.IabR) mxIe flfeds ligIu' flfeds 
leYeI 

Figure 7.17. FMEA Worksheet 

At low level of hardware system design, quite simple and realistic error 
models exist, which can be used as pertinent failure modes. During the first 
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steps of a system design, the failure modes are defined as violation of 
properties on the use (pre-conditions) or the behavior (post-conditions) of 
the components. The considered errors must be representative of actual 
errors, that is to say errors that can occur, taking the component design into 
account. This can be conduded by using a deductive analysis (c.f. Fault Tree 
Method in next section). Moreover, nobody knows if the list of the studied 
errors is complete. To cover all the errors, general properties must be 
considered. For instance, "the actuator provides a bad value" is better than 
"the actuator provides value Vl instead of V", as the numerous other values, 
V2, V3, etc., will not be handled. 

The second problem deals with the propagation of errors through the 
system structure. When failure modes are defined by bad values, and the 
system modeling tool is formally defined, a simulation provides the effects. 
Such a situation occurs, for instance, for a stuck-at 1 error of a component of 
a structure defined by interconnected gates. On the contrary, when failure 
modes are defined by temporal properties (such as "the data output is 
delayed") or by general properties (such as "the data output is incorrect"), 
the assessment of their effects is more difficult. This difficulty also exists 
when the modeling tool used to express the system does not possess formal 
semantics. This occurs when the relationships between the components are 
expressed in English. 

7.10.3 FMECA 

The failure modes are potential failures of components. When their 
occurrence probability is known, it is possible to deduce the probability of 
occurrence of failures at the global system level. FMECA (Failure Modes, 
Effects and Criticality Analysis) is a variant of FMEA that associates a 
probability with the failure of the components and with their effects. Hence a 
seriousness dass and its occurrence risk can be associated with each failure. 

As previously mentioned, the values of the probability of the initial errors 
(failure modes) are generaHy obtained by exploitation feedback. Some of 
these values are standard for a given technology: for example a 
semiconductor manufacturer provides the user with the failure probability of 
an integrated circuit. Other values are specific to each design process: it is 
the case of design faults which are influenced by several parameters such as 
the tools, the design 'style', the used methods, the design team, etc. Thus, 
FMECA is a qualitative as weH as a quantitative method. 
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7.11 DEDUCTIVE QUALITATIVE ASSESSMENT: 
FAULT TREE METHOD 

7.11.1 Principles 

Numerous failures can be imagined. Fortunately, only a few of them may 
occur. The FTM (Fault Tree Methocl) aims at examining if a supposed 
failure may occur or not, taking the system structure into account. It also 
defines the circumstances of the failure occurrence, by expressing the 
studied failure as a composition of run-time events using the 'AND' and 
'OR' operators as shown in Figure 7.18 

Figure 7.18. Fault Tree Method 

This figure specifies that the failure is raised if (EVT1 and EVT2) occurs. 
Then, it explains the causes ofthe occurrence of EVT1 (EVT3 and EVT4 and 
EVT5) and EVT2 (EVT6 or EVT7) . Three situations allow to conclude on the 
failure effectiveness. 

• If the values of the leaves of the fault tree (basic events) are known, the 
failure raising can be predicted. For instance, if EVT3 = false, and EVT4, 
EVT5, EVT6 and EVT7 are true, then the failure cannot appear. 

• Relationships between the basic events show contradictions. For instance, 
suppose we know that EVT5 is true only if EVT6 and EVT7 are both false. 
Thus, EVT1 and EVT2 cannot be true simultaneously, and consequently, 
the failure cannot occur! 

• Relationships between the events of a branch reveal contradictions. For 
instance, EVT5 is the negation of the assertion defining the failure. 

In practice, the three studies are often combined and the conclusion on 
the failure occurrence is not simply true orfalse, but a potentiality. However, 
the fault tree defines thecircumstances of this potentiality. 
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Two difficulties exist in the definition of fault trees: the choice of the 
failures to be examined, and the obtaining of the tree from a given failure . 
The tree is built by a system structure analysis. When the formal 
composition laws can be used to combine elements to define a structure, a 
systematic process is sometimes proposed to derive the tree. For instance, 
Nancy Leveson proposes such process when Ada programming language is 
used to express a software system. 

Note. The nodes of the fault tree being general events, including 
erroneous but also correct events, this modeling is also called event tree. 

Example 7.4. Redundant system 

A system is made of three modules: M 1, M2 and M 3. M 1 and M2 are two 
redundant active units: as long as one of them is faultless, the performed 
function is correct. M 3 ensure another part of the system' s function . 

Thus, the system fails if M 1 and M2 fail or M3 fails . This analysis can be 
represented by the fault tree of Figure 7.19. This model can be used to 
perform quantitative failure evaluations. Exercise 7.7 proposes to evaluate 
the reliability of this system with the FTM approach, and to compare with 
the Reliability Block Diagram approach. 

M3 fai ls 

Figure 7.19. Redundant system 

7.11.2 Software Example 

Example 7.5. Stack 

Consider the procedure Simple_Example wh ich uses the procedures 
Push and Pop provided by the package Stack: 

with Stack, Ada.Text_Ioi 
procedure Simple_Example (Element: in out 

Type_Element) is 

beg in 
Stack.Push (Element) i 

Stack.Pop (Element) i 
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exception 

when Overflow ==> Ada.Text_Io.Put_Line 
("Stack Overflow·); 

end Sirnple_Example; 

The exception Overflow (respectively Underflow) can be raised by the 
procedure Push (respectively Pop). The exception Overflow is handled 
locally be the procedure Simple_Example, whereas no handler exists for 
Underflow. So, if it is raised by Pop, this exception is propagated by 
Simple_Example signaling a faHure. We use the Fault Tree Method to 
study this faHure. 

The exception Underflow is raised by Simple_Example: if it is raised 
by Push, or if it is raised by Pop and no exception is raised by Push. 

Stack empty before 
caU to Pop 

Stack empty after 
Push execution 

No exception raised 
byPush 

Stack executed 
normally 

Stack not empty 
after Push execution 

Figure 7.20. Example ofFault Tree 

This last condition is due to the fact that an exception raising terminates 
the execution of the procedure body. The top of Figure 7.20 illustrates this 
first step of analysis. 

Looking at the body of the procedure, Push (not provided here), we 
notice that it cannot raise the exception Underflow. So, the event 
"Underflow raised by Push" is always false. 

The event "Underflow raised by Pop and no exception raised by Push" 
results from two branches connected by a AND. 

• The Underflow can be raised by Pop if the stack is empty before Pop is 
called. This conclusion is obtained by analyzing the Pop procedure body 
(not provided here). As Pop is called after Push, this conclusion is 
derived from the assertion "Stack empty after Push execution". 
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• If no exception is raised by Push, the procedure execution was conc1uded 
normally. So, an element was memorized in the stack which is therefore 
not empty. 

In conc1usion, an Underflow can be raised by Simple_Example if E 
and not (E) is true, where E = "Stack empty after Push execution". This 
contradiction leads to conc1ude that the root event is false; hence the 
considered failure cannot occur. 

7.11.3 Use ofthe FTM 

Generally , the Fault Tree Method does not lead to conc1ude that a failure 
is always true (that is, the product is always failing), or always false (the 
failure will never occur). This method provides a Boolean expression which 
defines the cause of the failure. For instance, Figure 7.18 specifies that: 

failure = (EVT3 . EVT4 . EVT5) . (EVT6 + EVT7), 

where '.' and '+' represent the AND and OR operators. 
Partial knowledge on the basic event values allows to reduce the 

expression. For instance, assurne that EVT4 is always true and that EVT6 => 
EVT7. Then, this expression becomes: 

failure = EVT3 . EVT5 . EVT6 

This result will be used by most of the fault handling techniques. For 
example, the occurrence of the basic events must be prevented, or the faults 
that make the expression true must be detected and removed. This 
expression also gives the circumstances of the failure, information very 
useful to design a fault-tolerant product. 

Let us note again that this method has also quantitative assessment 
applications. Indeed, if probability values are associated with the basic 
events, it is possible to apply probability compositional rules (to treat the OR 
and AND nodes) in order to deduce the probability of any event in the tree, 
inc1uding the failure occurrence probability . Exercise 7.7 uses this method to 
calculate the reliability of a redundant system, and to compare the results 
with those obtained by the reliability block diagram method. 

7.12 EXERCISES 

Exercise 7.1. The 'fault - error - failure - detection - repair' cycle 

In Figure 7.8, place time intervals which correspond to fault latency, 
detection mean time, then repair mean time. By supposing that the temporal 
diagram results from a statistical study of the product behavior during 
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several cycles of functioning, how can the MTBF (for repairable system) and 
the MTTR be deduced? 

Exercise 7.2. Reliability of a component 

An electronic circuit has an exponential reliability with a constant J.... rate. 

1. Calculate the mean time (MTBF or MTTR), as weIl as the R(t) value at 
this mean time. Numerical value: J.... = 10-6. 

2. Demonstrate that this MTBFIMTTF corresponds to the time which is at 
the intersection of the tangent at the origin of the curve with the time axis 
(as indicated by Figure 7.3). 

3. Explain why A is similar to a 'failure rate by unit of time'. 

4. With another technology, the component has a failure rate equals to 10.7. 

What is the relationship of the probabilities of these two vers ions when 
t = 104 hours? 

Exercise 7.3. Composed reliability 

We wish to study the reliability of a system constituted of 2 basic 

modules (noted Mi) interconnected according to diverse 'series' and 
'parallel' reliability diagrams. The reliability of each module is modeled by 

an exponentiallaw with a constant failure rate J....: Ri(t) = e -Ait. 

1. Determine the reliability of a 'series' reliability diagram of these modules. 
Calculate the global MTTF. Study the particular case where the two 
failure rates are identical. 

2. Carry out the same study for a 'parallel' diagram. 

3. Consider the previous questions with J.... = 10-4, and compare the reliability 
of these structures at time t = 1000H. 

Exercise 7.4. Comparison of two redundant structures 

Figure 7.21. 'Parallel-series' and 'series-parallel' structures 

1. Study the reliability of the two systems which are represented by the two 
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reliability diagrams in Figure 7.21, noted as Sps and Ssp, knowing that all 
the modules have the same reliability. 

2. Which of the two organizations has the best reliability? 

Exercise 7.5. Safety analysis on a Markov graph 

Consider the graph in Figure 7.22. From the initial state 1 which 
represents a behavior without fault, the system degrades with the appearance 
of faults; it evolves towards the states 2, 3 and 4 which are failing states. On 
the contrary, protective and repair mechanisms are going to make the system 
evolve towards better states, for example the state 3 towards the state I! The 
arcs between states indicate the hourly rate of evolution (probabilities): pI, 
p2, p3, p4 for the degradations and rI, r2 for the corrections and repairs. 

Study the evolution of the graph from state 1 towards state 4 which is 
here supposed to be catastrophic. 

Figure 7.22. Markov graph 

Exercise 7.6. Representation of a system by a stochastic Petri net 

We modify the specifications of the system studied in Example 7.3. The 
spare unit has a failure rate A.s and arepair rate Jls. When an active unit has 
been detected faulty, this unit is repaired with a rate Ils; this repaired unit can 
then replace the spare unit. 
Represent this redundant system with a stochastic Petri net. 

Exercise 7.7. Fault Tree and Reliability Block Diagram 

Use the FTM to calculate the reliability of the redundant system of Example 
7.4. Compare with the Reliability Block Diagram method. 
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FAULT AVOIDANCE MEANS 

During the first part of this book we identified the sources of the 
problems which can affect a product in its applicative environment. In the 
second part, we firstly introduced he approaches allowing faults and their 
effects to be mastered: fault prevention, removal and tolerance techniques 
used or acting during a product life cycle. Then, the dependability 
assessment means were presented. Finally, we developed the basic notions 
relative to redundancy, which are necessary to implement the means 
allowing dependability impairments to be resolved. 

In the third and fourth parts we will refine the methods and techniques 
which allow us to get rid of faults and their interna! and extern al effects. 
The groups of technique relative to fault prevention and fault removal, 
known as fault avoidance, are presented in this third part, as they are 
closely tied to one another. The groups of techniques relative to fault 
tolerance will be studied in the fourth part of this book. 

The writing of these chapters was rather problematic from the author' s 
point of view: how detailed should the presentation be? For example, just 
the functional and structural testing methods, which provide dynarnic 
analysis of systems in order to detect faults, could by themselves justify 
an entire book. However, a too detailed description of this subject (as with 
the others) would not offer an overview of the problems and means of the 
dependability, which is the aim of this book. We have therefore had to 
maintain a good equilibrium between the principles and the detailed 
techniques. 

The first two chapters of this part are dedicated to the avoidance of 
functional faults during the specification (Chapter 9) and during the 
design (Chapter 10). Then, Chapter 11 deals with the prevention of 
technological faults. The last three chapters offer a more detailed analysis 
of the techniques to remove technological faults: an overview of the 
problems and solutions in Chapter 12, the development of some 
significant techniques in Chapter 13, and an introduction of design for 
testability techniques in Chapter 14. 
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Redundancy 

Whether in the form of traditional error detecting and correcting codes 
used in transmission systems, in the form of more specific codes such as the 
m-out-oJ-n code or arithmetic codes, or even in the form of task duplication 
techniques with majority vote or type feature of programming languages, 
redundancy is omnipresent in almost all dependability techniques. In this 
chapter, we introduce this concept and the associated notions. They will be 
used later on in the following chapters of parts three and four. 

Whether natural, intrinsic, or on the contrary, artificial (e.g. introduced 
during design), redundancy is a universal property of all systems, 
independently from their functionality. It can be found in computing, 
linguistic and biology domains for example. Redundancy basically concems 
system's structures by adding more components than necessary. However, it 
also concems their behavior, i.e. the input-output relationships, the meaning 
of human language sentences, or also the semantic of the statements of a 
programming language. We will observe that the word redundancy is 
sometimes ambiguous. On the one hand, it can have a pejorative meaning by 
qualifying that is useless, or even harmful to the dependability. On the other 
hand, it has sometimes a positive meaning by allowing the detection and/or 
correction or else the compensation of errors. 

We will analyze the two fundamental forms of redundancy: 

• functional redundancy, 

• structural redundancy. 

We will discuss the possible applications of these forms in order to 
detect, correct, or tolerate faults. These applications will be described in the 
third and fourth parts of the book. 
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8.1 FUNCTIONAL AND STRUCTURAL 
REDUNDANCY 

Chapter8 

8.1.1 Linguistic Redundancy 

The word redundancy comes from the Latin word redondare which 
means plentiful, overflowing. Therefore, the meaning tends towards excess 
and what is superfluous. Thus, the attribute redundant often qualifies what is 
useless. We are therefore very far from the objectives of the dependability. 
Its interpretation with a positive sense is actually very recent, principally 
with the use of error detecting and correcting codes for transmissions. 

I We say that a product or system presents redundancy if some of its 
constitutive elements are not necessary to perform the normal 
input/output relationships. 

We will define the two terms elements and normal input/output 
relationships in the case of computing systems. But be fore that, in order to 
introduce the two forms of the redundancy, we analyze some examples 
coming from the linguistic domain. 

The sentence 'men men are are mortal mortal' c1early demonstrates a 
structure redundancy, known as syntactic redundancy. This redundancy 
does not however affect the understanding of the sentence. Naturally, the 
non-redundant phrase is: 'men are mortal' . 

We consider the following set of three sentences: 
Socrates is a man, 
men are mortal, 
Socrates is mortal. 

Any of these sentences read individually does not present syntactic 
redundancy, however, the third one is semantically implied by the two 
others: this is a case of syllogism. Thus, we notice a second type of 
redundancy known as semantic redundancy. 

Many words in human languages can be modified without harming their 
understanding; to remove for example, a letter r in the word terrible will not 
change the meaning at all. This type of redundancy is considered as useful or 
non-useful, according to the understanding of the person who reads the 
sentence: this person is known as the receptor. Removing these letters only 
reduces the readability. For example: men ar mortl is generally more 
difficult to understand, but it remains understandable. 

All these redundancies induce a growth in the cost of syllabies, words, or 
enunciation time. They have appeared spontaneously in all human languages 
for varied reasons, logical and historical. 

The effects of redundancy in language are antagonistic in two ways: 
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• reduction of the readability and comprehension by making the text Ion ger 
and more complicated (this is the case for example with periphrases): to 
make clear by avoiding redundancies, 

• on the contrary, reduction of the comprehension errors due to phonetic 
changes, due to noise made by the environment, due to a receptor' s lack 
of knowledge: to make clear by repetition. 

To conclude, the unnecessary elements introduced in the definition of the 
term redundancy are syntactic parts or semantic information of the 
sentences. A text is a structure which is scanned by the reader who deduces a 
meaning. Scanning and meaning define the input/output relationships. If the 
meaning of the text is correctly understood, these relationships are qualified 
as normal. Some text elements are redundant if their removal does not 
modify the correct meaning. The repetition of lexicographic or syntactic 
elements in the sentences is not necessary if the comprehension is good. On 
the contrary, these elements are useful in case of a failure of comprehension. 

For instance, consider areader of the previous syllogism who has not 
made the semantic correlation between the first two phrases and the last one. 
Therefore, he/she has not concluded that Socrates is mortal. This deduction 
is therefore brought by the third phrase, which is hence found to be useful 
for the comprehension. In this example, illustrated by Figure 8.1, we see that 
redundancy is a useful tool for increasing the quality of the comprehension 
of the semantics of the sentences, but that it is difficult to master. 

)--~ 
Functional Structural 
(Semantic) (Syntactic) 

· Socrates is a man . men men are morta) 
· men are mortal . men ar mortl 
· Socrates is amortal 

Figure 8.1. The two aspects of redundancy 

8.1.2 Redundancy of Computer Systems 

In the context of design, production and use of electronic products, we 
will also often meet difficulties when trying to master the redundancy and 
distinguish its positive and negative aspects relatively to the dependability 
requirements. The redundancy of electronic system also presents two forms 
(Figure 8.2): 
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• functional redundancy which corresponds to semantic redundancy in the 
case of linguistics, 

• structural redundancy which corresponds to syntactic redundancy in the 
case of linguistics. 

Extern al behavior: 

IIO relations 

I 0 ...... 

Intemal reallzation: 
lntcrconnectcd 

components 

Figure 8.2. Functional and structural redundancy 

The functional redundancy of a product is a characteristic of its extemal 
behavior in its functional environment: certain input values or sequences are 
never applied whilst the product could react, or certain output values and 
sequences are never produced by the product during its functioning. A 
simple example is that of a system adding two I-digit decimal numbers. The 
result obtained is a two-digit number, but only the configurations between 00 
and 18 are possible: redundancy in this case concems the output values (19, 
20, ... , 99) which cannot appear in reality, whereas the dimension of the 
output would potentially permit them (see Figure 8.3). 

[ Fup.clioaal 1 
RedundaDcy 

Adderoftwo 
I-digit numbers: 

C> 18 is impossible! 

Circuit duplicadon: 

Twice as many 
components! 

Figure 8.3. Simple examples of redundancy 

This type of redundancy is also due to constraints between inputs and 
outputs: for example, if a sub-pro gram calculates the greatest value of a list 
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of numbers provided as inputs, the property 'the greatest value belongs to the 
initial list' expresses a functional redundancy: not any value can be normally 
returned by the product; the output value is constrained by the input values. 

Whereas the functional redundancy characterizes the external behavior of 
a product, the structural redundancy depends on its internal structure: there 
is more hardware of software than necessary. The duplication of two circuits 
with identical outputs is such an example. This is a duplex technique studied 
further on and illustrated in Figure 8.3. There are twice as many transistors 
or logical gates than are strictly necessary. 

In the software domain, the definition of a constrain type such as 
'subtype Shoe_Size is integer range 28 .. 46;' in a program 
also constitutes a structural redundancy. Indeed, only the type integer is 
necessary to generate the memory allocation of variables of this type as weIl 
as the arithmetic operation code (+, -, *, I). The constraint 'range 28 .. 
46' will generate assembly instructions, which are useless where the 
function is concerned. If no fault is committed upstream the program, these 
instructions do not serve any purpose: they constitute a structural 
redundancy. However, such a redundancy is clearly useful in order to verify 
the type of values provided to or calculated by the pro gram, and to detect 
possible errors. 

These two types of redundancy are complementary: a product can present 
structural and functional redundancy at the same time. The two following 
sections develop these notions for hardware and software systems. 

8.2 FUNCTIONAL REDUNDANCY 

From a purely functional point of view, the product to design and then 
implement carries out a certain treatment of information provided by the 
functional environment via the inputs. This product treats this information, 
then it sends back the results transmitted to the environment by the outputs. 
Functional redundancy is going to qualify the product' s behavior relative to 
its inputs/outputs relationships. 

A product has junctional redundancy if: 

- some theoretically possible input va lues or sequences are not 
applicable according to the product' s specifications, 

- some theoretically possible output va lues or sequences are not 
produced according to the product' s specifications, 

- some theoretically possible input/output values or sequences never 
occur according to the product' s specifications, 
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This definition conforms to the general definition of redundancy given in 
8.1.1. It considers as elements the input and/or outputs values, and as normal 
situation a correct usage andlor functioning. This kind of redundancy, is 
independent of the product design and implementation, as it concerns the 
product function. The modeling tools allowing this redundancy to be 
characterized are studied in this section. 

8.2.1 Static Functional Domains 

Imagine that a product P has n inputs and m outputs whose values are 
expressed in any numeration base (binary, decimal or other) B = {O, .. , b}. 
The values taken by the inputs (and the outputs respectively) are called input 
vectors (and output vectors respectively). We suppose that this product 
could be a combinational or a sequential system. The output values of a 
combinational system only depend on the applied input values, whereas the 
output values of a sequential system depend on the applied input values and 
the internal state wh ich expresses the system's behavior by a finite state 
machine. 

US1 and Uso are the static universes of all the possible theoretical input 
and output vectors. For example, a product wh ich has n = 3 binary inputs 
and m = 2 binary outputs possesses: 
- a static input universe with 8 vectors US1 = {OOO, ... , 111}, 
- and a static output universe with 4 vectors Uso = (00, 01, 10, 11). 

8.2.1.1 Statie Funetional Domain of Inputs and Outputs 

The static behavior of the product introduces the notion of static 
functional domain . We call: 

• static input functional domain, noted Ds/, the set of the vectors applied 
to the product by the environment, as defined by the specifications, that is 
to say without faults in the environment: Ds/ ~ US1, 

• static output functional domain, noted Dso, the set of the product' s 
output vectors which result from its activity, as defined by the 
specifications, that is to say without product failure: Dso ~ Uso. 

A combinational system is characterized by a mathematical application 
from the DS1 domain in the Dso domain, as illustrated by Figure 8.4. For 
each vector applied at the input, the system gives an output vector. 

IA static (input/output) functional domain is redundant if and only if 
it is strictly included in its static uni verse. 

This implies that certain vectors of the static uni verse are not part of the 
product' s specifications defining the product relationships with the 
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functional environment. This is symbolized by the crowns in light gray in 
Figure 8.4. We define the static (input/output) functional redundancy rate 
as (size ( USx ) - size (Usx » / size ( USx ), where x = I for inputs and x = 0 for 
outputs. 

~ o 
p ~ 

(n) (rn) 

US1 ={O, I}D Uso={O,I}m 

Figure 8.4. Static domains of a combinational circuit 

Example 8.1. Decimal adder 

Let us consider a decimal adder which receives two I-digit numbers a 
and band provides the result c on two decimal digits. Whether implemented 
in the form of a hardware or software system, this product presents a 
functional redundancy of the outputs, as illustrated by Figure 8.5. 

1 Uso={O, •• ,9} 

Figure 8.5. Decimal adder 

Indeed, assurning that all the configurations applied to the input are 
possible, the static input domain does not present redundancy (Ds/ = Us/). On 
the contrary, c has two digits. Therefore, the output uni verse has 100 
numbers whilst only 19 of them (the numbers between 0 and 18) will 
effectively be ca1culated by the product. Thus, there is an output redundancy 
of 81 % of vectors! 

Functional redundancy is an interesting concept. For instance, it allows 
the detection of failures that imply an output of the functional domain. In the 
case of the previous example, an ob server placed at the output of the decimal 
adder can detect a failure by checking that the result effectively belongs to 
the output domain: c ~ Dso. Thus, the result c = 56 is perceived as a failure. 
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Therefore an intemal fault exists in the product, but the location of this error 
is unknown for the moment. This faHure defines a class of equivalent faults 
from the externaiobservation point of view (Figure 8.6). 

In the third and fourth parts we will present several examples of 
functional redundancy applications, and show how this notion increases the 
system dependability, notably in the case of software. 

Ce {O,18}? I 

Figure 8.6. Observation of the adder 

8.2.1.2 Static Functional Domain of Input/Output Relations 

In the previous section, redundancy concerned either inputs or outputs. In 
a more general way, functional redundancies exist which correlate the input 
and output domains. Thus, we define a tuple of input and output universes, 
noted as US/O = US1 X Uso. The input/output domain, noted as Ds/O, comprises 
the set of an possible vectors in US/O. A product has an input/output 
functional redundancy if Ds/O c US/O. 

Example 8.2. Search for the greatest number of a list 

Consider a system which receives 4 natural 1-digit numbers and which 
gives out the greatest number. The input universe has 104 vectors {OOOO, ... , 
9999}, and the output uni verse has 10 vectors {O, ... , 9}. Consequently, the 
input/output uni verse contains 105 vectors. The input/output domain has only 
104 vectors, because for each input vector the product only provides one 
single output value which is one of the entered numbers. Consequently, the 
input/output static functional redundancy rate is 90%, whereas no static 
redundancy is revealed (neither at the input nor at the output). 

8.2.2 Dynamic Functional Domains 

What we have just discussed regarding static function (in terms of 
vectors) is also relevant for the dynamic behavior of sequential systems. 
Now, we no longer deal with the input and output vectors but with the input 
and output sequences of vectors. We assume that an these sequences are of a 
finished length. Thus, we name the set of an these theoretical sequences 
which can be formed with the input and output sequences, the dynamic input 
functional universe (UD!) and dynamic output functional universe (UDO). 
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With the same generalization used for static domains, we define the dynamic 
input/output productfunctional universe by UD/O = UD/ X UDO. 

8.2.2.1 Dynamic Functional Domains of Inputs and Outputs 

The dynamic input functional domain, noted as DD/, is the set of the 
input sequences applied to the product by the environment, 
conformably to the specifications: DD/ ~ UD/, 

The dynamic output functional domain, noted as DDo, is the set of 
the product' s output sequences resulting from the product activity 
conformably to its specifications: DDo ~ UDO. 

A sequential system is characterized by an application of the dynamic 
input domain in the dynamic output domain. lAs for static domains, we say that a dynamic input domain or a 

dynamic output domain is redundant if and only if it is strictly 
included in its uni verse. 

Example 8.3. Binary counter 

Let us consider a 4-bit binary asynchronous counter. Each time it 
receives a pulse on its asynchronous I input, it increments a memorized 
value and sends it to the 0 output in the form of a 4-bit number. We note this 
operation: Oj+l = Oj + 1 [modulo 16]. Such a circuit is used for example to 
count the number of objects wh ich cross a certain space. The analysis of 
static input and output domains shows that there is no static redundancy; 
indeed, all the input values are applied, and the counter can take any of the 
16 output values. On the contrary, if we determine that the dynamic output 
domain has sequences of length 2, we obtain the couples (Oj, Oj+ 1) modulo 
16, that is 16 different couples, whilst the dynamic output universe for length 
2 sequences has a cardinality of 16x15 = 24. Therefore, the redundancy rate 
is more than 93%. 

Figure 8.7. Observation of the counter 

As in the combinational case of Example 8.1, we can use this redundancy 
by placing an observer at the product' s output which memories the output' s 
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two successive values and detects any dynamic domain violation (Figure 
8.7). These failures are created by a dass of faults which depends on the 
product' s design. Hence, the functional redundancy is exploited to detect 
errors by means of an automatic observer which is itself redundant according 
to the normal functionality of the counter. 

Example 8.4. Control software module 

Let a sub-program, which, at each call, acts on an external process (for 
example an engine) by an output variable which takes alternatively the two 
values 'On' and 'Off . These values provoke the running and stopping of the 
extern al process. If we consider the output sequences of length 2, the 
dynamic output universe is {(On, On), (On, Oft), (Off, On), (Off, Oft)}. 
However, each sub-program call aims at chan ging the state of the external 
process. It stops if it is the running and makes it run if it was stopped. 
Therefore, the dynamic output domain only comprises of two values: (On, 
Oft) and (Off, On). There is a dynamic redundancy rate of 50%. 

8.2.2.2 Dynamic Functional Domain of Input/Output Relations 

We call dynamic input/output functional universe , noted as U D/O, the 
set of sequences U DI x U DO' 

As for the static domains, we define the dynamic input/output 
functional domain, noted DD/O, as the set of input and output 
sequences which are in conformance to the specifications. 

We say that there is adynamie functional redundancy if DD/O is 
strictly induded in U D/o. 

We consider Example 8.4 again. We suppose that, in addition, the sub
program named 'Control' switches off automatically the process after a 
delay D (it acts as a timer). This, for example, could be implemented in Ada 
language using a task and a variable of type 'duration' (which allows the 
time to be managed). The input uni verse has two values {Control sub
program call, D}. This last D value symbolizes the fact that a D duration has 
elapsed since the last call of Control. In this new context, the relations 
correlating the inputs and outputs lead to a dynamic input/output domain of 
length 2 that can take the values: 

• {(Control, On), (Control, Oft)}, {(Control, Oft), (Control, On)} if the 
interval between the two Control calls if inferior to the D duration, 

• {(Control, On), (D, Oft)} in the opposite case. 
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8.2.3 Generalization of Functional Redundancy 

To sum-up the previous explanations: 

A product pos ses ses a statie funetional redundaney if one of its static 
functional domains is redundant. 

A product possesses adynamie funetional redundaney if one of its 
dynarnie funetional domains is redundant. 

When a deterrninistic finite state machine describes the behavior of the 
system, the output value results from the input value and the eurrent value of 
the internal state. The theory of languages shows the equivalenee between 
eertain expressions of input/output sequenees (language) and the automaton 
model. Redundaney expresses itself in terms of states and/or ares non-used 
by the funetioning of the product: for example, it is impossible, from an 
initial state to lead the automaton deseribing the behavior into astate whieh 
is however part of its specifieations. Example 8.5 illustrates this notion. 

Another (and independent) extension of funetional redundaney leads to a 
probabilistic vision of the domains. We end up with more general studies 
which belong to the domain of the theory of information and its applieations 
in the deteetion of errors. Indeed, as the reader could ensure by treating 
Exereise 8.1, the adder's output domain of Example 8.1 presents a non
uniform speetrum of the probability of oeeurrenee of output veetors. This 
knowledge ean be exploited in order to deeide the likelihood of the 
frequency of appearanee of a given veetor; thus, the value c = 9 has to 
statistically appear 10 times more often than c = 0 or c = 18. The studies, 
which analyze these probabilistie aspeets, will not be developed in this book. 

Example 8.5. Redundaney of a FSM 

Figure 8.8 shows an example of a redundant 4-state automaton. Let us 
suppose that the initial state is state 1, and that the inputs are constrained by 
the property 'the input c is never applied after the input b'. 

Figure 8.8. Redundancy at FSM level 

With these eonditions, it is easy to show that the are from state 3 to state 
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1 is redundant, as it will never be used. State 4 is also redundant, as it cannot 
be reached from statel : it is called an unreachable state. 

A variation of this FSM will be studied in Exercise 8.2. 

8.2.4 Redundancy and Module Composition 

The design - process, which structures a system into interconnected 
modules, frequently introduces functional redundancy because of the 
constraints due to the relationships between the modules. 

The general problem, not developed in this book, can be expressed on the 
structure of Figure 8.9 wh ich comprises a father module Ml2 structured into 
two interconnected son modules, MI et M 2• We know the global function of 
the father and the structure of the interconnection between the two sons. We 
suppose as weIl that the module MI is reused from another application. The 
module MI can present redundancy due to: 

• the constraints of use of module Ml2 which are more restrictive than those 
predicted during the design of MI : all value sequences admissible by the 
MI are not applied to the external input I e of Ml2, 

• the constraints on the value sequences stemming from M2: all the internal 
input value I i sequences admissible by M2 are not produced by MI. 

Figure 8.9. Reusability 

The functional redundancy of structured systems can be formally 
analyzed using two operators: the fusion which determines the father' s 
functioning by the composition of the son's functioning and the emergence 
which searches for the son's function used at the father's level. 

• The fusion operator combines the behavior of the two son modules: 
M/2e = MI C Mb the operator c being the composition operator and M12e 

being the effective functioning of Mn resulting from the interactions 
between MI and M z. 
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The emergence operator determines the behavioral part of MI which is 
actually used in combination with M 2 to produce the behavior of Mn: 
M/ = Em (MI. Mn)· 

There is a functional redundancy with regard to the module MI if: 
MI> Em (MI, Mn) and/or if (MI c M 2) > Mn. 

8.3 STRUCTURALREDUNDANCY 

8.3.1 Definition and Illustration 

Independently of the functional redundancy associated with the 
specification of a product, the design stages wh ich provide a structured 
system can introduce another type of redundancy: the structural redundancy. 

A system presents a structural redundancy if its structure possesses 
certain elements which are not necessary to the obtaining of a 
behavior conform to the specifications, assuming that all the structure 
elements have a correct functioning. 

For instance, structural redundancy of the implementation model 
corresponds to an overabundance of the resources used, in terms of: 

• hardware (logical gates, electronic components or integrated circuits), 

• software (statements, functions, procedures, data or objects), 

• time (execution time of the algorithm andJor the circuit). 

Whatever the system studied is, a theoretical design exists, sometimes 
inaccessible, which minimizes the resources used. Each additional element 
introduces structural redundancy, whatever the reason. This can be due to a 
non-optimal design, or even due to a voluntary duplication of the modules 
allowing the detection of errors, etc. Of course, the hardware aspects of this 
redundancy concern the physical components (for example electronic 
circuits). The software aspects concern the programming primitives 
(statements, variables), and the used software resources (operating system, 
etc.). Finally, the temporal aspects are relative to the product's execution 
time, whether hardware or software technology. We should note that these 
temporal aspects could be observed externally to the product. However, we 
include them in the structural redundancy when they are induced by the 
implementation means (circuits, programs) and not by the functional 
environment. 

In the following sub-sections, we distinguish several forms of structural 
redundancy: 
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• on the one hand, between passive redundancy and active redundancy, 

• on the other hand, between separable redundancy and non-separable 
redundancy. 

8.3.2 Active and Passive Redundancy 

8.3.2.1 Definitions 

Structural redundancy is essentially studied on system model using 
primitive elements: for example a set of electronic components (transistors 
MOS), or logical elements (gates, Flip-Flops), or code lines. Redundancy 
exists as soon as the number of these constituents is greater than the optimal 
value: greater number of MOS components or gates, greater number of 
statements or variables in a program. This is therefore a theoretical notion, 
which, in many cases, is really very difficult to evaluate: in particular, the 
optimal values are often inaccessible. 

A product possesses passive redundancy if certain elements can be 
removed without modifying the product' s behavior. 

A product possesses active redundancy if the number of elements is 
greater than the optimal value without direct possibility to removing 
one ofthem. 

An element is irredundant if its removal causes the system to be 
functionally different 

This distinction between passive and active redundancy is fundamental 
regarding the consequences on the dependability in general, and on the test 
in particular. The two following sub-sections iIIustrate these two notions on 
systems implemented by means of logical gates or features of a 
programrning language. 

8.3.2.2 Redundancy at Gate Level 

The following examples show that the notion of active or passive 
redundancy is fairly easy to understand in the case of combinational logic 
circuits. This is more difficult to present in the case of sequential logic 
circuits composed cIassicaIly of a combinational part and storage elements 
impiemented by Flip-Flops (noted FF in Figure 8.10). We should note that, 
even if the combinational part is irredundant, the complete sequential circuit 
might have redundancy because of feedback loops created by the Flip-Flops. 
Irredundancy of the combinational part is a necessary but non-sufficient 
condition. 
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I -~~ Combinational 
Circuit 

L..---I FF 14--....J 

Figure 8.10. Sequential circuit 
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Concerning passive redundancy, the gates as weIl as their input/output 
wires are the elements considered. Before presenting examples of passive 
redundancy, the notion of prime gate is defined: 

IA gate of a logical circuit is said to be prime if none of its inputs can 
be removed without causing a functional change of the circuit. 

Example 8.6. Passive redundancy: non-prime gate 

The analysis of the function carried out by the circuit in Figure 8.11 
shows that the input noted as X of the OR gate is redundant and can be 
removed without changing the function f Indeed, if the X input is present, 
theJfunction is:J= a'.( a + b + c) = a'.b + a'.b. (where a' is the logical 
complement of a). If the X input is removed, the function is the same: J = a ' .( 
b + c) = a'.b + a'.b. This OR gate is therefore not prime, but it cannot 
however be totaIly removed. Thus, this example shows a redundancy of one 
input wire only. 

a 

a 
b---\ 

b----I 

c--~ C--7 

Figure 8.11. Redundant wire 

Example 8.7. Passive redundancy: redundant gate 

We take the simple example of a logical circuit with 3 inputs a, b, c and 
an output f, carried out with elementary gates: J = a.b + a ' .c + b.c. A 
classical 'SIGMA-PI' realization of this function is shown by Figure 8.12: it 
has 3 AND gates and one OR gate. This circuit is redundant because the 
term b,c is useless in the J expression (a 'consensus' term derived from the 
first two terms). Indeed: 



190 

f = a.b + a'.c + b.c = a.b + a'.c + (a + a').b.c 

= a.b + a'.c + a.b.c + a'.b.c = a.b + a'.c, 

Chapter 8 

because the two last terms (a.b.c and a'.b.c) are included in the first two 
(a.b and a'.c). 

Therefore, this circuit is not optimal. It presents a passive redundancy, as 
the gate b.c can be removed. 

a 

b 

a' 

c f 

b 

c I RedundaDCY I 

Figure 8.12. Passive redundant gate 

Example. 8.8. Active redundancy 0/ a logical circuit 

We now show an example of active redundancy obtained by adding a 
second output g on the previous circuit, such as g = a.b + a.c. 

The realization shown by Figure 8.13 does not have passive redundancy, 
as we cannot remove one of the gates without changing function f or g. 
However, the term a.b, common to the two fand g outputs, could have been 
shared between these two outputs (the dark gray gates in Figure 8.13). This 
therefore is a case of active redundancy: all the elements are actively 
employed to produce the outputs. 

Figure 8.13. Active redundancy 
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8.3.2.3 Redundancy in Software Systems 

The structural elements considered here are the statements. 

Example 8.9. Passive redundancy 0/ a program 

We analyze the following extract of an Ada source program: 
j : = i; 
k := i; 
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We suppose that the compiler has separately translated each of these 
statements into machine language by using an intermediate AX register. Thus 
we obtain the following assembly program: 

mov AX, @i coding , j : = i' 
mov @j , AX 

mov AX, @ coding 'k .- i' 
mov @k, AX 

The third instruction in assembly language, 'mov AX, @i', is redundant 
in a passive way, because AX already contains the variable i. This instruction 
can therefore be removed. 

Example 8.10. Active redundancy 0/ a program 

We consider a pro gram extract shown in Figure 8.14 which computes the 
average value and then the sum of a set of floating numbers memorized in an 
array named Table. 

Total :- 0.0; 

for I in Table'range loop 

Total :- Total + Table(I); 

end loop; 

NUmber :- Table'Last - Table'First + 1; 

Total :- Total I float(NUmber); 

Put(" the average value iss "); 

Put(Total); 

Total :- 0.0; 

for I in Table'range loop 

Total I- Total + Table(I); 

end loop; 
Put«"the sum of the values iss "); 

Put(Total); 

Figure 8.14. Redundant program 
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To provide the sum, the gray part repeats the calculation carried out to 
obtain the average. Thus, this program possesses a structural redundancy in 
terms of its code lines. However, we cannot simply pull out the gray lines, 
because the first accumulated value has been crushed by the average. This 
redundancy's suppression demands the program rewriting and the 
declaration of a second variable named Average in which the average value 
is assigned at line 6: 

Average := Total / float(Number); 

In a more subtle way, active redundancy is frequent when considering 
program' s variables. Two variables of the same type can be used in different 
parts of a program whereas one would suffice. For example, we could find 
the following variables 

The_Number_of_Registered_Passengers 
and The_Number_of_Boarded_Passengers 

in an airport management software. 
The use of two distinct identifiers instead of one (The_Number_ 

of_Passengers) renders the program more readable and also serves to 
detect errors (when their values are different). 

8.3.2.4 Redundancy and Dependability 

A first consequence of the notion of passive redundancy concerns the 
detection of faults. A redundant passive element may have faults which 
cannot be detected from the inputs/outputs of the system: we say therefore 
that this fault is undetectable or masked. Figure 8.15 provides an example 
of such non-detection: the fault of the stuck-at '0' at the redundant gate's 
output cannot be detected by observing fOther examples are given in the 
form of exercises at the end of the chapter. 

a 

b 

a' 
f 

c 

b 
uDdetectable 

c fault 

Figure 8.15. Passive redundancy: undetectable fault 

Passive redundant elements (superfluous in functioning) could have been 
introduced involuntarily, for example because the method used had not 
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optimized the design. On the eontrary, we will so on find other examples, 
whieh make use of passive or aetive redundaney in order to improve the 
dependability of produets. Henee, we will introduee automatie detection 
mechanisms by duplieation, or fault-tolerant structures by triplication. 

In electronics, passive redundancy creates real problems for fault 
detection or diagnosis (testing) because of the 'masking' phenomena that 
have just been illustrated. We will find out about this problem later on, in the 
third part of this book. When dealing with 'stuck-at' faults models of gate 
arrays, the presence of a passive redundant element implies the existence of 
such non-detectable faults; on the contrary, in the case of active redundancy, 
all stuck-at faults can be observed as eireuit failures for at least one of the 
applied input vectors: in that case, the cireuit is said to be totally testable. 

8.3.3 Separable Redundancy 

In this sub-section we introduce another criterion to characterize 
structural redundancy. A product presents a separable structural 
redundancy if the redundant and non-redundant elements belong to distinct 
modules in the product' s structure. Therefore, we are talking about: 

• functional modules which refer to the modules containing the functional 
elements, 

• and redundant modules which refer to the modules containing the 
redundancies. 

On the contrary, this redundancy is qualified as non-separable if it is not 
possible to separate functional and redundant elements into distinct modules. 
The redundancy is thus integrated into the original functional modules. 

Separable redundancy is typical of duplication and triplication 
techniques. Each redundant module is also called version or replicate 
module. 

input output 

Duplex 

Comparison 

Figure 8.16. Separable redundancy: the duplex 
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Figure 8.16 shows a redundant separable structure called a duplex. This 
technique will be explained in the fourth part. The functional module is 
duplicated and the two module's outputs are then compared. An error is 
signaled as soon as the results given by the functional module and its duplex 
are different. 

A criterion is often used to characterize separable redundancy: 

• on-line separable redundancy (or hot standby), 

• and off-line separable redundancy (or cold standby). 

A redundant module is said to be on-Une or hot standby if it is active at 
the same time as the functional module. This is the case of the previous 
example. The duplex is powered, and it receives the inputs and elaborates 
the outputs in parallel with the functional module connected to the external 
process. In Chapter 7, section 7.9, by using reliability block diagrams, we 
studied the reliability of 'parallel' settings wh ich correspond to this type of 
redundancy. 

On the contrary, a redundant module is said to be off-Une or on cold 
standby if it does not function at the same time as the functional module. 
This module, called aspare, is only switched on when the primary module 
fails . Putting this spare module into service corresponds: 

• to the electric power on andlor input/output connection to the 
environment for hardware implementation, 

• to the execution or use of this module in the case of software 
implementation. 

input output 

Figure 8.17. Off-line separable redundancy 

Figure 8.17 represents a simple example of this redundancy: module M 1 
is connected to the functional environment, whereas module M2 is switched 
off, waiting to be activated. The C switch symbolizes this off-line waiting 
situation; it can also represent a switch of the redundant module power 
supply. It should be noted that in specialized papers the terms active for on
line redundancy and passive for off-Une redundancy are often used. 
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8.3.4 Summary of tbe Various Redundancy Forms 

Figure 8.18 sums-up the three main aspects of the structural redundancy: 

• hardware, software or temporal, 

• passive or active, 

• separable or non-separable. 

These criteria are independent. Numerous combinations of their values exist. 
For example, the duplex is a redundancy of active and separable type of 
hardware and software modules. 

Passive 
non-observable 

values/states 

Active 
observable 

values/states 

Hardwan 
too mud) components 

Figure 8.18. Structural redundancy 

8.4 EXERCISES 

Exercise 8.1. Functional redundancy 0/ an adder 

Consider the adder of Example 8.1 in section 8.2.1.1 : C = A + B ('+' is 
here the addition operator). 

1. We suppose that inputs A and Bare two one-digit decimal numbers, and 
that all (A, B) combinations have the same occurrence probability . We 
want to analyze the probabilistic functional redundancy of this circuit. 
Draw the probabilistic output functional domain and deduce the existing 
functional redundancy. How can this information be used to detect 
calculation errors? 

2. The two numbers A and B are now in Natural Binary Coded Decimal 
(with 4 bits) : 0 = (0000), 1 = (0001), .. . , 9 = (1001). Knowing that the 
inputs have the same probability, determine the input and the output 
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functional redundancy rates of this system. 

3. We suppose now that the two input numbers are binary with two bits, and 
that an extern al constraint exists between these numbers: A $; B. 
Determine the input functional redundancy of this product. 

Exercise 8.2. Functional redundancy of astate graph 

The state graph of Example 8.5 is modified as shown in Figure 8.19. We 
assume the same hypotheses as in Example 8.5: 

• the initial state is state 1, 

• the inputs are constrained by the property 'the input c is never applied 
after the input b'. 

Analyze this graph and determine its functional redundancies. 

Figure 8.19. Redundant FSM 

Exercise 8.3. Structural redundancy and faults 

Consider the circuit of Figure 8.20 wh ich has two inputs and two outputs. 
Let us suppose that this circuit can be affected by stuck-at '0' or '1' of the 
wires noted a and ß. 
1. Study the failures induced by each of these faults. 

2. From this study, deduce structural redundancies. 

3. Does this circuit present functional redundancy? 

b--,--..,..--"y f 

g 

Figure 8.20. Redundancy of a circuit 
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Exercise 8.4. Structural redundancy of several circuits 

1. Determine if each of the circuits in Figure 8.21, has passive and/or active 
structural redundancies. 

2. W ork out the logical structures of the cOITesponding non-redundant 
circuits. 

I---f 

b--r--t f 

1 --r-----~, 

f 

ac be 

Figure 8.21. Structural redundancy of several circuits 

Exercise 8.5. Software redundancy and constraint types 

We consider the following statements: 

Circuit 2 

Circuit 4 

subtype Size_of_Shoe is new integer range 28 .. 45; 
P: Shoe_Size; 

f 

1. Does the declaration of a new type (new) instead of using the type integer 
(P: integer) introduce a redundancy? If yes, is it functional or 
structural? Is it active or passive? 

2. Refer to the previous questions for the statement of the constraint: 
'range 28 . . 45'. 

Exercise 8.6. Exception mechanisms of languages: termination model 

Programming languages such as Ada offer mechanisms wh ich permit the 
detection of eITor occurrence and provoke the call to an exception handler 
which terminates the interrupted execution. 

Example: 
procedure XYZ( ... ) is 

-- declarative part 
begin 

-- current body 
exception 
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when others => exception handling 

end XYZ; 

Analyze the redundancy characteristics due to the exception mechanism. 
Is this redundancy: active or passive, separable or non-separable, on-line 
or off-line? 
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A voidance of Functional Faults During Specification 

9.1 INTRODUCTION 

9.1.1 Specification Phase 

The use of a product is fundamentally justified by the user' s needs. The 
user possesses the initial motivation to buy or develop a product. In certain 
cases, this motivation corresponds to a necessity. For example, the fact that 
society does not accept accidents caused by the simultaneous presence of a 
train and a vehic1e on a railroad crossing, justifies the creation of a system 
that avoids such accidents. Therefore, a product' s life has to naturally start 
with the client's or future user's requirements (also called needs). 

Then, this life cyc1e carries on with the product' s specijication stage in 
response to the previous needs. The previous example shows that one need 
could involve radically different specifications: a level crossing, or a bridge 
or a tunnel. The result of this stage is called specijications. 

From the product' s specifications, we obtain the system by a descending 
process known as design. This concems a succession of stages, which are 
going to structure a system using the specifications expressed at an abstract 
level, to result in a system which is finally materialized as a physical 
(electronic) product or a software implemented on a physical support. 

This chapter focuses on the requirement and specification stages which 
are at the origin of numerous faults. Their avoidance is fundamental, as their 
detection during the design or production stages is generally very costly. 

In Chapter 6, we introduced two approaches which permit fault 
avoidance, that is to say fault prevention and fault removal. The objectives 
of such means have been presented conceming faults which can happen 
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during the ereation stages. In this ehapter, we present the praetieal 
teehniques to reaeh the objeetives assigned to these means during the 
requirement and speeifieation stages. The integration of fault prevention and 
fault removal teehniques in the same ehapter is justified by their 
simultaneous use during the studied stages and their close eorrelations. 
Figure 9.1 shows the loeation of these teehniques in the life eycle. 

Fault avoidanee teehniques used during design are eonsidered in Chapter 
10. The mastering of faults associated with the teehnology used (eleetronie 
or software) to implement the produet is diseussed in Chapter 11 (fault 
prevention) and Chapter 12 (fault removal). 

9.1.2 

Problems 

[ ~l 
Solutions 

Avoidance: 
• Prevention 
. Removal 

(Chap.9) 

Avoidance: 
. Prevention 
• Removal 
(Chap.i0) 

PreveDtioD 
.U •• U •• N •••• ' • • • m •••• u .. NU •••••• ••••••• U __ • 

RemovaJ 
Prodllction testing 

Toleraoee 

Removal 

Figure 9.1. Fault avoidance during the specification and the design 

Validation and Verification 

The primary voeation of fault avoidance means is to prevent fault 
introduetion during the eonsidered stages of a system' s ereation proeess 
(here the expression of the requirements and of the speeifieations). During 
ereation stages, we have seen that the faults introdueed were due to the 
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method used to create the system (bad method andJor bad use of this 
method). Therefore, we seek first of all to master this method. Secondly, 
fault avoidance sets out to remove the faults introduced despite the 
precautions implied by fault prevention. We then need to identify the 
existing faults at each stage, in order to correct them. To do this, the result 
(what has been produced) of the considered stage is analyzed. 

Fault prevention techniques can be divided into two c1asses: 

• techniques acting on the method used during the considered stage, 

• techniques acting on the result or solution of the considered stage. 

The techniques of the first c1ass allow a product to be developed in a 
correct way and to detect the erroneous aspects of the process used. Hence, 
we will speak of validation of the method. For example, these means seek i) 
to limit the incertitude of the method, in order to eliminate potential 
interpretation faults, ii) to limit the bad use of the method, in order to avoid 
the faults associated with its use. The techniques of the second c1ass help the 
engineer to evaluate if the actual state of the developed product is correct. 
These techniques involve what we call verification of the solution. 

I Problem statement I Model #1 

~don 1 Design ..t~ 

(method) 
Verijication 

" 
I Solution I Model #2 

Figure 9.2. Design-Validation-Verification 

Figure 9.2 synthesizes these two aspects. The statement of the problem 
as weIl as the formulated solution depends on the stage in consideration. For 
example, in the case of the specification phase, the statement is the 
requirements whilst the solution is a specification model. 

We have to say that the two terms 'validation' and 'verification' often 
have a very similar meaning in current language. Opposed meanings to those 
proposed could even be envisaged. However, in this book, we will consider 
the meaning that has just been provided. 

In the next part of this chapter, we present validation and verification 
techniques associated with the stages of requirement expression (section 9.2) 
and specification (section 9.3). The most popular verification technique, the 
review, is explained in section 9.4. 
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9.2 

9.2.1 

FAULT PREVENTION DU RING THE 
REQUIREMENT EXPRESSION 

Introduction 

Chapter 9 

The system's specifications, that is to say the definition of a product to be 
developed, are derived from the dient' s or future user' s requirements. 
Determination and expression of needs is difficult. This is probably one of 
the reasons for which we talk of 'need capture' techniques. The faults 
introduced in the expression of needs have two principal causes: 

• a bad interpretation of real needs, 

• a bad expression of needs which have been correctly understood. 

In sub-section 9.2.2 we introduce a method which should reduce the 
presence of the first type of faults. In sub-section 9.2.3, we then propose a 
method in order to limit the occurrence of the second type of faults. 

We present a simple and specific method for each of these two cases. 
Numerous other methods exist. Unfortunately, we cannot go into greater 
detail, as this would mean a book of an unacceptable length and a lack of 
generality. Moreover, our goal is to focus on dependability issues. So, in 
sub-section 9.2.4 we provide a way to evaluate the capability of methods to 
produce correct expression of needs. The reader can use this to judge the 
numerous other need expression's methods available, so that hislher choice 
is guided by the required dependability of the product to be developed. 

9.2.2 Help in the Capturing of Needs 

The needs are generally obtained by interviewing the dient. To be 
efficient, that is to say to produce non-erroneous needs, these interviews 
have to be carried out with a certain method. One possible method consists 
in leading the interviews by seeking the responses to five questions: What? 
Where? When? Who? Why? The responses to each of these questions 
permits dasses of generic faults to be avoided, that is to say those which are 
non-specific in the development of a certain product. 

1. What? 
We seek to define the entities upon which the future product has to act, as 

the needs concern the user environment. This allows the detection and 
exdusion of the elements wh ich do not have relationships with the future 
product. In effect, the dient often has worries or other needs in mind which 
he/she exposes but wh ich should not interfere with the project; if not, they 
lead to the analysis of erroneous needs. 
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2. Where? 
The objective of this question is to determine the localization of the 

elements brought out by the previous question. The answers split the entities 
into external entities (for example an electric signal which the product 
should take into account), and internal entities (for example memorized data 
which qualifies the product's state). This question is fundamental as it 
perrnits the separation of what should be inside the system and what should 
already belong to its external environment. This issue becomes increasingly 
critical in electronic systems due to their interaction with other systems 
(electronic, mechanical, human, etc.). Therefore, it is essential to define the 
location of enumerated entities in order to avoid starting a development 
assuming, for example, that a piece of information is delivered to the system 
by its environment whereas it should be computed by the system. 

3. When? 
This question aims at taking the temporal aspects into account. Where the 

product' s internal entities are concerned, the response perrnits the expression 
of the state's sequencing. For the external entities, it defines, for example, 
the sequencing of events which could arise and the actions which need to be 
performed. For example, if a c1ient desires a system which controls the 
access to a protected room, the sequence 'card entered - code captured - code 
correct -lock open' describes such a relationship between the entities. 

4. Who? 
The response to this question defines the actors which act on the entities 

and the actors influenced by them. This could involve the external actors (for 
example, the code is typed by the user) or the internal actors (for example, 
the code's validity is evaluated by the system). It perrnits the description of 
the agents who influence or who are influenced by the entities treated. 

5. Why? 
The c1ient has to justify the necessity of the elements expressed. The 

response to this question allows, in particular, information to be perceived 
which is relative to the c1ient's current preoccupations but which are not 
related to the project. This question is therefore redundant with the others. 
However, it perrnits each requirement to be analyzed again and verified. 

9.2.3 Expression Aid 

After having examined the first part of the method which concerns the 
capture of needs, we should consider the second part which helps the 
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expression of these needs. The availability of guides for such an expression 
is in effect indispensable, as many faults arise during the expression process. 
They are principally due to the high volume of information provided by the 
client. The mastering of this great amount of information is carried out 
according to two complementary approaches: 

• the definition of entity farnilies, 

• the definition of abstraction levels. 

The aim of the definition of the families of entities is to group the 
elements of information into classes of the same nature. For example, if an 
aspect of a problem concerns the scheduling of manufacturing activities, all 
the information relative to this subject have to be regrouped. Indeed, the 
client generally provides information in a disorderly way, that is to say 
without structure. He or she passes from one aspect to another of the needs 
as soon as an idea comes to mind, or when he/she remembers that a certain 
aspect has been ornitted. This phase provides a horizontal structuration of 
the information, as represented by Figure 9.3 a). 

x 

x 
x 
x 

families 

x 

a) Horizontal structuration 

I 
I' 
x'x E ' --+ ntity 

hierarchy 
b) Vertical Strucluration 

Figure 9.3. Information structuration 

The aim of the second approach is to organize the elements of a class by 
detecting the hierarchical relationships linking them. For example, the 
development of a bank management system requires the following pieces of 
information belonging to a same class: bank account, client' s name, bank 
balance, account holder' s address. They can, however, be organized in the 
following hierarchical way. The bank account notion is more abstract: it 
provides a reference to a client and his/her account: the client himself/herself 
is defined by his/her name, his/her address, etc. The detection of the levels of 
abstraction perrnits a vertical structuration of the information in each of the 
classes obtained by the previous horizontal structuration into families. 
Figure 9.3 b) represents such a vertical structuration. 

These two methods of information organization prevent faults such as the 
use of two different terms for the same notion. Indeed, these two terms can 
be found in the same farnily where their equivalent meaning will be easier to 
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perceive. In the same way, the natural language's semantics being 
ambiguous, the hierarchy permits the darification of the belonging links and 
therefore the fault detection through a comprehension of these links. For 
example, is a dient' s address an element of a bank account or does this 
information belong to two families if a dient has several accounts? 

9.2.4 Evaluation of a Method 

We have just described a simple method for capturing and expressing 
needs. Many other methods exist, and to present them all would require 
another complete book. Whatever the choice, the chosen method has itself to 
be judged. This involves, therefore, a validation process which aims at 
responding to this question: am I developing a product in the correct way? 
The incorrect way could result from a bad usage of a good method (this will 
be detected in the resulting product), or a correct usage of a bad method. We 
are going to study the last point. It should not be forgotten that the 
underlying idea of this analysis is that a bad method will undoubtedly cause 
an erroneous model of the product. This method evaluation has to be done 
using criteria. Where the expression of needs is concemed, we use the 8 
criteria described below. 

1. Facilitate the comprehension of the method 
It is dear that a method can be effective in theory, but that in practice it 

can be applied in an erroneous way (and therefore produce a faulty result) 
due to the fact that it was badly understood by its user. Therefore, the 
relative simplicity of the method of need expression and capture is a first 
criterion of its efficiency for dependability purpose. This is the case of the 
method presented in the previous section. 

2. Systematize its application 
The method has to dearly guide its user in order that he or she cannot 

badly use it, but also so that he or she concentrates on the dient' s needs and 
not on the method itself (if it necessitates further analyses for its use). In 
particular, it has to dearly separate the explicit different stages and define, if 
necessary, their sequencing. The five questions regarding the capture method 
and the two dassifications of information received by the expression 
method, which have been previously presented, have this goal. 

3. Facilitate clarification of the problem 
The aim here is to evaluate if the chosen method permits, or not, its user 

to separate the problem posed by other parasitic information. We seek to 
deterrnine if the information retained is pertinent or not. In the previous 



208 Chapter9 

method, the majority of the questions and the need to dass the obtained 
information concem, among others, this objective. 

4. Facilitate clarification of the incoherence in the information 
provided by the client 

The method could be redundant, that is led to ask the same information 
in several ways or possess the means to find relationships between pieces of 
information. This is typicaHy an objective of the fifth question of the capture 
method proposed. The fact of asking why the dient has a need does not 
provide additional information necessary for the establishing of the future 
specifications. The demand for a justification, however, aHows detecting 
useless pieces of information, or consistency problems. 

5. Facilitate the communication with the client 
The analysis of the needs, and then the definition of the system' s 

specifications, are the only stages in the development process which permit a 
dialogue with the dient as weH as the expression of an acceptance or 
disagreement by the dient. Only the system' s delivery will then be the object 
of such an exchange. However, this last stage is too late to state a 
dis agreement. The method used to understand the dient' s needs therefore 
has to privilege the dialogue with the dient. 

6. Encourage the creation of documents 
Documentation is an essential means of communication with the dient. 

Writing documents also provides a way for the designer to avoid faults by 
obliging himlshe to materialize (by a text) and thus analyze his/her 
understanding of the needs. 

7. Take the changes into account with ease 
Whilst a method has to be rigorous and systematic, it also has to be able 

to take modifications of the dient' s information into account. Indeed, the 
c1ient can take advantage of successive interviews to define (and therefore 
modify or precise) hislher own needs. 

8. Provide means favoring the partitioning, abstraction and 
projection of information 

The five questions of the proposed method provide up to 5 projections of 
information. The c1assifications permit the partitioning (by horizontal 
structuring) and the abstraction (by vertical structuring). 

Note. The information redundancy, which appeared in the previous 
elements, can be perceived as harmful as they increase the work of the need 
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expression and could lead to the creation of more faults. In reality, it aims at 
mastering need expression and fault detection by stating inconsistencies. A 
compromise between 'not enough' and 'too much' information is however 
difficult to find. 

Being always expressed by informal languages (for instance, English), 
the requirements cannot be checked by automatic tools. Fault detection is led 
by human appraisals. The most important approach is the review technique 
which is useful to analyze the requirements as well as the specifications; this 
approach is introduced in the next section, and developed in section 9.4. 

9.3 FAULT A VOIDANCE DURING THE 
SPECIFICATION PHASE 

Once the dient' s needs have been obtained, the engineer has to define the 
system which he/she wants to propose to answer these needs. This work 
leads to the expression of specijications. Here also, the faults relative to the 
specification stage are due to three causes: a bad understanding of the 
dient' s or future user' s needs, the proposal of a system which does not 
respond to the needs which have however been dearly understood, and a bad 
expression of a specification which has been well thought out. 

In order to avoid these faults, the engineers need adequate methods to 
help them in their work. This work is approached in sub-section 9.3.1 for the 
fault avoidance during the specification expression phase. Then, means 
permitting the product' s specifications to be evaluated in order to remove the 
faults are required. This is the object of sub-section 9.3.2. 

9.3.1 Fault Prevention: Valid Method 

9.3.1.1 Choice of the Modeling Tool 

The work carried out during the specification phase consists in producing 
a model which defines the product to be developed. This model is expressed 
using a language (or modeling tool or even model by language abuse). This 
work will be facilitated, and therefore the number of faults will be reduced, 
if the chosen modeling tool offers features dose to the concepts of the 
system' s domain. For example, if a system' s behavior to be specified is 
purely sequential, the use of a 'finite state machine' model is weIl adapted. 
On the contrary, if it is necessary to represent parallel activities, the use of a 
model such as Petri nets is preferable. The objective of the dependability 
implies thus firstly an explicit and justijied choice of a modeling tool. 

It is here difficult to provide an exhaustive enumeration of such means of 
modeling and criteria which define their suitability to application domains. 
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Indeed, for each specific problem, it is necessary to determine its domain 
and then choose the means of modeling. We should also note that this choice 
problem is not particular to the specification model but will also be 
necessary for the design models and the implementation models. For this 
reason, we will tackle the selection technique for treating design in Chapter 
10. We should only insist here on the importance of this choice on the 
dependability of the systems produced. A non-adapted modeling tool will 
without doubt lead to a complex modeling wh ich renders the understanding 
difficult and thus will create faults during the following phases. 

Even if the modeling means is specific to each application domain, it has 
to possess intrinsic qualities. For instance, it has to compensate for the 
intellectual limits of all human beings, including the specification team 
members. In particular, it has to allow abstraction expression in order to 
obtain more or less detailed views to facilitate expression and understanding. 
These permit the use of a limited number of abstract objects whose reality 
will be defined in the ultimate stages. On the other hand, it has to have a 
precise semantic so that a feature cannot be interpreted in different ways by 
the system designers. The question therefore concerns the use of a formal 
model. We make two remarks regarding this point: 

• it is important that the models described from such a modeling means are 
understandable by the client so that he/she can give his/her approval to 
the definition of the specified product, 

• it is essential that the modeling means used permit the expression of 
different views (or abstractions ) of the defined system, such as the 
inputs/outputs, the behavior, etc., whose redundancies allow checking to 
be done. 

9.3.1.2 Mastering of Modeling Process 

The knowledge about a modeling tool is not sufficient. Still with the 
objective to develop a dependable system, the designer has to dispose of 
guides helping hirn/her to transform the client' s needs into the system' s 
specifications. He/she should use these guides and demonstrate their real 
use. Here again, the guides which can be proposed depend on the modeling 
tool used. For example, the reasons for using a given synchronization when 
using Petri nets as specification tool are relative to this model feature and to 
the classes of systems specified. In order to remain coherent ab out this 
book's objectives, we cannot provide a complete guide for a given model. 
However, examples of information that should be contained in this guide 
will be studied in Chapter 10 dealing with the design process, as an identical 
problem exists. Indeed, such guides have one general aim: to help the 
deriving of a new modeling from an existing modeling. 
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9.3.2 Fault Removal: Verification of the Specifications 

The aspects described in the previous seetion are associated with the 
validation (how can a specification be produced in a correct way?). Onee 
produced, the specification has to be verified in a way which brings out 
possible faults. This is the theme of this seetion. 

9.3.2.1 Verification Parameters 

Specification verification seeks to detect the presenee of faults. To do 
this, there are two approaehes: 

• the first one studies the system' s role by looking to confront with the 
user' s needs, 

• the second one carries an intrinsie judgment on the quality of the 
specifications expressed, without being preoeeupied with what they 
express; the underlying idea is to think thai: an expression of bad quality 
has a high risk of containing faults. 

1. Specific fault detection (or conformity) 
Speeification verification can seek to detect two types of faults: 

• faults which provoke characteristic errors of the modeling tool used, 

• faults specific to the modeled system. 

For example, the Petri net model allows the deteetion of a deadlock 
between parallel cooperative activities. In the case of the use of a formal 
modeling means, an automatie tool ean perform the detection of these errors 
which are characteristic of this modeling means. These eharacteristie errors 
are qualified as generic. Following this, a human expert has to diagnose the 
faults which are at the origin of these errors. 

In the second case of faults specific to the modeled system, we will seek, 
for example, to show if the modeled system can reach non-desired states 
whose definition depends on the particular system considered. Thus, if a 
system controls the barrier of a level crossing, the state 'the train passes on 
the crossing and the barrier is open' is unaeeeptabie. The client pays for the 
development of a system wh ich guarantees that trains and cars cannot pass 
simultaneously (this is a need). Here also, the use of a formal model favors 
the use of tools and thus reinforces the guarantee that such undesired states 
will not occur, and therefore the faults whieh lead to it. 

2. Qualitative verification 
Specifications can be analyzed using eertain qualitative criteria which are 

detailed afterwards. These eriteria are generic faced with the specified 
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system and also with the modeling tool used. Here we judge the intrinsic 
qualities of the information contained in the specification document. These 
criteria therefore induce a third type of judgment on the modeling proposed. 

The non-conformity to these criteria increases the risk offaults. 

Consequently, contrary to the two previous evaluation types, this does 
not make obvious precise errors but only signals the potentiality of faults. 

In order to illustrate this, we will give some criteria and sometimes 
advice in order to obtain the conformity to these criteria. Therefore, the fault 
risk will be reduced and thus many faults avoided. These criteria concern the 
semantic or the syntax of the proposed modeling. 

Four criteria are generally associated with the semantics: non-ambiguity, 
completeness, consistency and traceability. 

• Non-ambiguity. Each element of the specifications should only have one 
interpretation. One simple means to satisfy this criterion is the definition 
of a glossary, and the verification that all its words are used in the whole 
specification document according to the meaning given in the glossary. 

• Completeness. We want to check that the specification predicts all 
possible cases. Any missing information can indeed lead the designer to 
substitute another information which is not desired. 

• Consistency. We seek to establish that there are no conflicts between 
several specification elements. The glossary is again useful. 

• Traceability. The engineer has to express the link between the client' s 
needs and the system's specifications. A method which permits the 
introduction of justification of the model' s constructs (here regarding 
specification) will be presented in Chapter 10, but the exposed method is 
applicable at every stage, inc1uding the specification. 

Four criteria are associated with the syntactic aspects: 

• concision: the specification statement should not contain useless 
verbiage, 

• clarity: the statement has to be easy to read (it does not mean that its 
comprehension is easy), 

• simplicity: the concepts manipulated have to be simple, in particular, the 
number of these concepts has to be limited and they should be loosely 
coupled, 

• comprehension: the reading has to facilitate the understanding of the 
semantics. 

Note. The previous criteria apply also to design models. Neglecting some 
specific features which will be signaled, we will find similar problems and 
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thus similar solutions. 

9.3.2.2 Verification Methods 

In sub-section 9.3.2.1, we pointed out that the use of formal models 
permits an automated analysis in order to detect the errors created by faults 
associated with the modeling tool and the faults specific to the modeled 
system (specific detection methods). When the model is 'executable' (e.g. a 
program or a model that can be simulated), this model can be considered as a 
product on which we can apply dynamic verijication techniques which will 
be discussed in the following chapters (the test techniques principally). An 
analysis, generally performed by a human, has to then establish a diagnosis, 
that is to say find the faults at the origin of the error. 

Where non-executable models are concemed, the analysis is human. 
Different methods exist: 1) review, 2) use of scenarios, 3) prototyping. We 
mention below the principles of these three methods. 

1. Review 
The review consists in a human analysis of the contents of the 

specifications. The reviewer may search for specific faults in the 
specification model. If we look for faults in a qualitative manner, that is 
searching for risks of faults, this review can only be carried out on a sampie 
of these contents. In this case, we reckon that the violation of the criteria, if 
it happens on this sampie, is without doubt repeated on the whole 
specification, as it is due to a bad work method. A team independent from 
the specification creation team can carry out this analysis, by studying the 
associated documents. Notes raising real or potential problems are 
transmitted to the specification creators so that they can provide 
justifications or act to take these remarks into account. The specification 
creators can also carry out the analysis during a presentation. The potential 
problems are therefore directly raised. The two approaches can be combined: 
an initial presentation reduces the study that is then refined in an isolated 
manner by the people leading the review. As the review techniques are very 
popular, they are presented in seetion 9.4. 

2. Use of scenarios 
Prom the specifications we derive input/output sequences which simulate 

the possible interactions between the environment and the specified system. 
These scenarios are then exposed to the dient (or to the specification 
designer) who either approves or disapproves them. On the contrary, if the 
expression of need has already led to the expression of scenarios, they can be 
applied to the specified system. We find ourselves therefore in the test 
situation which will be discussed afterwards. 
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3. Prototyping 

Prototyping consists in deriving a tool from the specification document. 
This tool simulates the system's interactions, but it does not correspond to a 
realization of the system. For example, the technological aspects of the 
future system (execution hardware, input/output devices, etc.) can be 
simulated in the prototype by software (data file, processing, etc) or by the 
operator (whose reactions substitute the absent elements). The tool's use by 
the c1ient allows the detection of understanding and expression errors of 
hislher needs. 

9.4 REVIEW TECHNIQUES 

9.4.1 Principles 

The review is a technique used to detect faults by analyzing the 
documents produced at the end of one or several phases. This technique is 
often used to exarnine the expressions of the requirements or of the 
specifications. Indeed, reviews do not need executable models. Hence, this 
allows partial andlor informal documents to be assessed. As a consequence, 
this technique can be used early in the development process, in order to 
detect faults as soon as possible. 

The reviewer realizes four activities described hereafter. 

1. He/she analyzes the current state of the system, but also of the process 
followed to obtain it. In particular, methods, techniques, and tools 
involved during the development stages can be judged, if the engineer 
produces documents specifying his/her way of working. 

2. He/she expresses hislher conc1usion conceming, sometimes existing 
faults, and often potential presence of faults. For instance, if global 
variables are used in a multitask application, a great risk of bad accesses 
to these shared resources exists. The reviewer has not to be sure of the 
occurrence of these problems: he/she has just to notice their potentiality 

3. He/she communicates hislher conc1usions to the authors of the analyzed 
documents, justifying hislher opinion. 

4. He/she analyzes the reply and provides a final conc1usion, as a set of 
actions to be done. Frequently, many elements expressed in the first 
opinion do not belong to the final proposed actions, as the authors have 
explained why the suspected problems cannot occur. For instance, if 
variables are shared by several tasks, the use of mechanisms guaranteeing 
their mutual exc1usion for access, and the use of techniques proving the 
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absence of deadlock caused by these accesses, may not require additional 
action. 

Sometimes, the reviewer also checks that the specified actions were 
actually applied. 

In the following sub-sections, two techniques implementing the four 
previous activities are presented: walkthrough and inspection. 

9.4.2 Walkthrough 

Walkthrough consists in a presentation by the engineer (the author, also 
called the speaker) of his/her results (a system) and the process he/she used. 
During this talk, the reviewer asks for questions to improve his/her 
understanding and to express his/her opinion. The engineer answers and the 
actions to be done are defined immediately. Hence, the four previously 
mentioned activities are mixed together. 

This technique has the advantage of training the reviewer. Thanks to the 
questions that are imrnediately answered, the reviewer obtains a good 
understanding of the system produced or the process. In particular, he/she 
must not read numerous documents. So, this review does not spend a lot of 
time, and therefore its cost is not prohibitive. For these reasons, this 
technique is often used as a first step of a fault removal process. 

However, several drawbacks exist. Based on a discussion, this review 
process is not formal. The condusi()ns provided by the reviewer may greatly 
depend on his/her personality and the personal influence of the speaker. The 
review process may look like a bargaining whose results are hazardous. 
Finally, the speaker often masks pieces of information, intentionally or not. 
For instance, certain aspects are passed over in silen ce, as the speaker who 
has not spend enough time on some aspects of its work knows that problems 
mayexist. 

9.4.3 Inspection 

Inspection is a review technique whose process is formalized by 9 steps. 

1. Request for inspection by the developer, the dient or an external 
authority. During this first step, aleader is chosen. 

2. Entry. The leader establishes the review feasibility. In particular, he/she 
checks that all the useful documents are available. 

3. Planning. The leader defines the inspection strategy (for instance, what 
are the critical aspects), the tasks to be done and their scheduling, and the 
persons who will carry out these tasks. 
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4. Kick-off meeting. The leader presents the objectives and ascertains that 
the selected experts understood their tasks. 

5. Individual analysis. The experts search for actual faults or issues, which 
are expressed on special sheets described hereafter. 

6. Logging meeting. The experts are grouped: 

~ to enumerate the faults or issues noticed during their analysis, 

~ to bring out other problems or to cancel certain issues, thanks to the 
knowledge of other experts, 

~ to define additional studies to be made. 

7. Author answer. The author of the part of the system for which an issue 
was signaled, answers. He/she may agree (if the fault actually exists) or 
disagree, justifying his/her reply. 

8. Actions to be done. The group of experts analyzes the answers and 
decides if actions must be done. 

9. Checking. The leader accepts or refuses the recommended actions, and 
then he/she checks their realization. An action advised by the experts can 
be rejected, due to the time of the money it requires. Therefore, the leader 
and his/her firm take the decision after he/she has considered that other 
actions have been applied to reduce the assumed risk, or that the potential 
failure is not dangerous. 

The pieces of information relative to each issue are put together on a 
sheet which contains: a reference number, the expert name, the task 
identifier (for example, the part of the analyzed document), the description 
of the issue, the ans wer provided by the author, the conclusions of the group 
of experts, and the final decision of the leader conceming the realization of a 
recommended action. 

Numerous criteria are used to analyze the documents during step 5 
(individual analysis). They may be generic, by checking for instance if the 
process standards or the document writing standards specified by the project 
requirements were respected. For example, the capability of the requirement 
capture or specification method to help the engineer is assessed by these 
criteria. In this case, only sampies of the documents are analyzed, as these 
criteria detect a bad method which was certainly used during all author' s 
activity. Specific criteria are associated with a particular handled problem. 
For instance, if a specification document is reviewed, the reviewer checks 
that expected requirements are taken into account by the specifications. 

The review is a non-automated process, as humans lead it. However, this 
approach is very efficient, as it highlight numerous erroneous situations due 
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to actual faults. Moreover, it does not require the execution of a formal 
model, so it can be applied on various documents and particularly during the 
first stages of the development process of a product. 

9.5 EXERCISE 

Exercise 9.1. Requirement analysis 

The following text was recorded during an interview: "The 
communication means must be mobile. It must be transported in cars, ... It 
must have a maximized power autonomy, ... It must fit into one hand". 

Analyze this text to define the families of entities and their hierarchy. 



Chapter 10 

A voidance of Functional Faults During Design 

10.1 PRINCIPLES 

Design is a complex stage of the creation of a product. It is potentially at 
the origin of numerous functional faults whose prevention and removal are 
quite difficult. The company IBM was the first industrial to public1y 
recognize the difficult nature of design faults. A fault analysis carried out on 
large operating systems of the 1970's revealed that not only did a small 
number of non-eliminated design faults exist, but also that the efforts made 
to totally eliminate them did not necessarily converge: eliminating a fault 
meant the appearance of other faults. This knowledge encouraged people to 
study and to use new methods and techniques, providing an important 
improvement of the product's dependability. As an example of the result of 
these efforts, the company Fujitsu announced in the 1990's that their 
software did not possess more than 10 faults on average per million program 
lines at the end of the first design. Even if these figures do not come from an 
independent organism, they are significant and should encourage the 
leaming and use of the techniques introduced here. 

The design stage is a top-down process transforming the specifications 
into a system. For example, the design of an integrated circuit successively 
produces the behavioral, functional, logical, electronic and technological 
models. Each model reveals new elements in relation to the previous level: 

• from the behavioral to the functionallevel, we make appear the functions 
to perform and their relationships (functional modules are introduced), 

• by passing to the logical structurallevel, we reveal the block primitives 
(gates, flip-flops, registers, arithmetic and logic units, memory, etc.), 
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• by passing to the electronic level, we use the cornmutation entities 
(transistors) and the electric power lines (which do not have any meaning 
in the previous levels), 

• by passing to the technologicallevel, the circuit becomes a topology with 
several technological layers: we encounter specific problems such as 
geometric dimensions and routing between elementary components 
(notably the power lines which have to be led to the processing places). 

The same phenomena exist in the software domain where the behavioral 
level specifies the expected behavior of the future product (according to the 
HOOD and UML notations). This behavior is then expressed in the form of a 
structure of objects (using other features of the same notations), which are 
then transformed to the software level as a program written in a program
ming language. The technological level is often transparent, as the designer 
does not directly act either on the code generation or on the execution 
environment (use of compilers, input/output libraries, real-time kernei, etc.). 

The development process of industrial projects is often more complex, as 
supplementary product integration stages exist at different levels . Let us give 
as examples, the integration of a software into a given hardware and 
software computing context, or even the integration of a module into an 
already developed product. Moreover, the sequencing of the step is not 
always linear (from behavioral level to technologicallevel) . Iterative design 
methods exist which progressively take the specification elements into 
account (incremental approaches). So, our splitting up of the design process 
into four phases offers a simplified view. However, in all cases, the 
transformations, wh ich pass from one level to another, imply methods and 
their associated models at each level. 

valida .. n! Verijication 

Figure 10.1. Design - validation - verification process 

The means used to prevent or detect faults have the same objectives as 
those presented in the previous chapter for the expression of requirements or 
specification. Hence, the general scheme is identical (cf. Figure 10.1): 
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• use of an adequate method which permits a design model to be produced 
in a correct way (validation), 

• use of means which allow the correction of the model produced to be 
ensured (verification). 

The cyc1e 'validation and verification' is relevant for each phase of the 
design process. We obtain therefore the structure drawn in Figure 10.2: the 
design appears as a top-down chain of links, which, at each level, shows a 
model transformation which has to be validated, and the model produced 
which has to be verified. Thus, prevention and removal are c10sely coupled 
since the detected and corrected faults on one level are then prevented for the 
following levels. For example, the four levels represented in Figure 10.2 can 
correspond to the four design levels of an integrated circuit previously 
mentioned. This chain translates the development process by successive 
structuration and refinement operations, from an abstract model until the 
final structure of primitive components. The model of the obtained system at 
a given stage makes the components appear whose specifications must be 
analyzed at the following level. Very often, due to reuse of already designed 
resources, this process is made more complex by adding a bottom-up process 
which assembles the available components to produce the complete system. 

VI level 1 

V2 level 1 

V3 level 3 

V4 level 4 

Figure 10.2. Multi-level design chain 

Fault prevention is the first approach to consider. To put a validated 
design method into practice, three aspects must be considered: 

• choice of a good method, 

• correct application of this method, 

• and checking that this application was correct. 

The term method encompasses the expression means (also called 
expression tool, or modeling tool) of a design model, as well as the 
development process which allows a particular modeling to be obtained. The 
choice and the correct use of the modeling tool are studied in section 10.2, 
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and the design process is tackled in section 10.3. The use of a validated 
design method aims at preventing faults. 

The second approach, fault removal, aims at verifying the model 
correction. It is discussed in section 10.4. Section 10.5 details one of the 
most important fault removal techniques: functional testing. Finally, section 
10.6 proposes the study of someformal prooftechniques. 

10.2 PREVENTION BY DESIGN MODEL CHOICE 

The general ideas introduced for the specification model remain pertinent 
for the design model. Here also, the choice of the expression means has to be 
carried out according to the characteristics of the system to be designed. 
Indeed, the more the model features are elose to the concepts to be modeled, 
the more the design stage will be facilitated, and thus smaller the probability 
of introducing faults will be, as the solution will be less complex. It is 
difficult to develop this aspect without considering a particular application 
domain. We provide two examples to illustrate this idea. 

• In order to express that a system is reacting to the occurrence of events, it 
is desirable to use a model integrating the notion of task. The 
asynchronous reaction (meaning here 'in parallel with the current 
processing') to the occurrence of an event could easily be done by 
specifying the reaction as a task and by associating this event with the 
task. On the contrary, the use of a sequential model necessitates studying 
when this event appears and inserting occurrence observation actions in 
the sequential activity, which makes the proposed solution more complex. 

• If the problem is expressed using constraints which link pieces of data, 
then the use of the features offered by the CLP (Constraints Logical 
Program) is weH adapted. 

The choice of the design model can be carried out by showing the 
characteristics of the specified system to design, and by comparing them to 
the characteristics taken into account by the considered design approaches. 
This aim is discussed in the next section which tackles the design process. 

The model has also to be capable of taking into account needs which are 
not associated with the designed system, but with the design process itself. 
We pointed out that this process is done by successive stages. The model 
used must allow abstract notions to be expressed whose realization 
(eventually partial) will be proposed at the foHowing stage of design. If the 
model aHows the expression of 'abstract data types by identifying only their 
name and associated operations, it is possible for example to write at one 
design stage 'the abstract type Stack offers the operations Push (in X) and 



10. Avoidance of Functional Faults During Design 223 

Pop (out Y)', and to manipulate objects of this type in the designed model. 
Then, in the following design stage, it is convenient to propose a realization 
of this Stack 

The means proposed to answer to the needs relative to the nature of the 
system to be designed, and to those associated with the design process are 
sometimes coupled. It is the case with the notion of Object which is 
frequently used in software design. This facilitates first the expression of the 
application's entities (dass notion), and then it permits, them to be 
specialized (heritage notion). This answers the needs relative to the system's 
nature. For example, an 'acknowledge' window asking for a confirmation of 
arequest by dicking on the buttons 'Yes' and 'No', inherits the properties of 
the generic dass Window. This object notion is also a means associated with 
the design process. Indeed, it permits the manipulation of abstract entities by 
masking the means used during their implementation. 

10.3 PREVENTION BY DESIGN PROCESS CHOICE 

10.3.1 General Considerations 

The choice of an adequate design modeling tool is necessary, but not 
sufficient for the design of a faultless system. Indeed, faults can also be due 
to the designer' s difficulty in deducing a correct modeling thanks to this 
expression means. To do this, he/she disposes of a model at level 1 and a 
modeling means associated with level 1+1 (cf. Figure 10.1 and Figure 10.2). 
Certain elements of the level 1+1 model can be automatically generated from 
the level 1 model. For example, if a level 1 model uses an abstract data type 
expressed by its specification, this can then be reproduced at level 1+ 1 where 
its implementation is defined. Thus, the specification becomes the interface 
of the designed component. Another example concerns the coding stage 
(writing of pro grams using statements). Numerous tools generate parts of the 
code, or skeletons of the code (Ada, C++, etc.), from the last design model. 

However, the majority of the elements of a design model must be defined 
by the designer himself/herself. Without looking for automating this work 
(which would without doubt be in vain), there are two types of advice that 
can be provided in order to limit the introduction of faults, that is to say in 
order to create a correct model. The first dass encompasses advice relative 
to the analysis process (design guide), whilst the second concerns the 
modeled system (expression guide). This last advice group being linked to 
the way a model is expressed, they are associated with the method, which 
justifies their presentation in this seetion. We are going to successively 
examine and illustrate these two aspects. 
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10.3.2 Design Guide 

The model proposed at the end of a design stage has to combine features 
offered by the modeling means. For example, these features are plaees, 
transitions and ares if we use Petri nets as modeling too1. These features are 
loops, tests and sequenees if we use an algorithm or a sequential 
prograrnming language as expression means. 

The designer often meets the problem of knowing how to correctly 
combine these features in the aim of creating a correct model. It could be 
thought that the correction of this work (and therefore of the model) is 
uniquely a knowledge gained from experience. This is, in fact, the case 
today. However, we are going to see how this know-how can be formalized 
in the form of advice which can be used by everybody. 

These guidelines depend, on the characteristics of modeling tools used or 
rather on the underlying concepts offered by these models (paradigm 
notion). We cannot give an exhaustive list of guidelines, as, on the one hand, 
we do not wish to treat a unique design model, and, on the other hand, this 
would again necessitate too many pages. We are uniquely going to give an 
idea of such guides by explaining their contents and contributions. 

The person or team who proposes a modeling tool possesses an overall 
vision of systems world. Indeed, as a modeling is an abstraction form of a 
system, the features chosen to define a modeling tool are the elements 
considered as pertinent by the authors of this modeling too1. These features 
are supposed to be necessary for all modeling. Moreover, the authors have 
introduced these features in order to take into account the whole set of the 
specific characteristics of the domain of the considered systems. Remember 
the example of the 'Real-Time Systems'. One of this dornain's specific 
characteristics is the necessity of taking the occurrence of asynchronous 
events into account. To ans wer this need, design model creators have 
introduced the concept of task. This example shows two points: 

• firstly, the models are adapted to a dass of systems, and the choice of a 
particular model has to be carried out according to the belonging of the 
considered system to this class (this point has already been discussed in 
section 10.2), 

• on the other hand, the introduction of modeling tool features has been 
deduced from needs associated with a system dass, this is the second 
aspect which we develop hereafter. 

If a designer knows the relationships existing between the features 
offered by a modeling tool and the needs associated with the dornain of the 
considered systems, he/she possesses an essential aid to guide hirnselfl 
herself in this design. It suffices that he/she points out the needs of his/her 
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particular problems in order to deduce the means, that is to say the features 
to be used. If, for example, the analysis of a system specification makes the 
existence of two events appear which have to create their own reactions 
during independent occurrences, two tasks have to be introduced in the 
design model. On the contrary, if a second event can only be taken into 
account after the reaction to the first event, one single task has to be used. 

In conclusion, knowledge on the syntax and semantics of the modeling 
tool features is not sufficient for the designing of dependable systems. 
Knowledge of the feature origins is also indispensable. It is therefore 
desirable to dispose of guides which provide such information. 

As weil as the fact that these guides facilitate the deduction of a model, 
they also make corrections easier and provide the trace between the elements 
of the specification provided at each level 1, and the elements of the design 
model proposed at levell + 1. 

10.3.3 Expression Guide 

10.3.3.1 Principles 

Whilst reading seetion 10.3.2, the experience acquired by the system's 
designers seems useless since the previous guides are only stemmed from the 
background of modeling means creators. This experience is on the contrary, 
very important, but in another domain, and its formalization leads to a 
second type of necessary guides. Indeed, despite the use of guides presented 
in the previous sub-section, the designed models can still contain faults. In 
particular, these are due to a bad comprehension of the system to be 
designed or a bad expression of a designed model which has otherwise been 
intelligently deduced. 

1. Understandin~ 

~ ~ 

12. Analysis 

----I~. cEell3> 
3. Expression 

Figure 10.3. Phases of a design process 

The design process uses three consecutive phases (Figure 10.3): 

1. the understanding of the model of the system to be designed at levell, 

2. the analysis (deduction of the designed model), 
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3. the expression ofthe designed model at level 1+1. 

We should note that, once more, we find the three causes of faults 
relevant to the three aspects associated with the specification stage (see 
Chapter9). 

The first phase is the understanding of the previous level 1 model and the 
present state of the 1+1 level modeling. Indeed, the modeling which sterns 
from a stage is not produced in one single attempt but necessitates a certain 
period of time. Therefore, the designer has to make this design progress. 
Numerous faults stern from the difficulty wh ich the designers meet when 
trying to master their own designed model during the whole design stage. 

Then, an analysis phase is performed, which allows the modeling of level 
1+ 1 using level 1 data to be intelligently conceived. The guides proposed in 
the previous sub-section aim at avoiding faults associated with this phase. 

We arrive finally at the expression of a designed model. Although the 
intellectual analysis is correct, numerous faults are due to bad expression of 
the correctly imagined solution. 

The guides which we tackle in this part aim at avoiding faults associated 
with phases 1 and 3. Here also, the advices which can be given depend 
greatly on the modeling means used. In order to illustrate and put in concrete 
form the introduced notions, we consider the programming language as a 
modeling means. More precisely, in the two following sub-sections we 
provide some advice relative to Ada language. These guides can be adapted 
for other programming languages. 

10.3.3.2 Understanding Improvement 

Understanding is improved, and therefore the faults due to bad 
understanding are avoided, by firstly using rules relative to the readability. 
These concem for example, the following aspects of a programming 
language: 

1) lexicography, 

2) self-documenting, 

3) choice of kinds of words according to the type of identifiers. 

1. Lexicography 

For example, we could quote as advice relevant to the lexicography, the 
use of identifiers constituted only of words whose first letter is in upper case 
and separated by the symbol '_'. Example: Number_Of_Sold_Tickets. 

On the contrary, the language's reserved words are written in lower case. 
These rules highlight the words contained in the identifiers, that is to say the 
entities or concepts introduced by the designers. Indeed, we should suppose 
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that the language user knows well the language's features (if then 
... else, while ... , etc.) which should then not be highlighted. 

2. Self-documenting 
Where self-documenting is concerned, we can quote three guides: 

1. to pay attention to the meaning of the identifiers which have to be 
deduced from their reading, 

2. not to use the constant values in the program body but to explicitly 
dec1are constant identifiers, 

3. not to introduce comments to compensate for a loss of self-explanatory 
information. 

Example 10.1. Bad use 

for I in 1 .. 320 loop 
-- we process the payments to social security 
-- of each employee 

The I variable as well as the constants used in the loop (1 to 320) are not 
c1ear. In addition, comments have been added to try to remedy the situation. 

Example 10.2. Good use 

for Member_Of_Insurance_Company in Employees'range loop 

where the Employees' range defines the list of employees. If these are 
referenced by a number, we could have replaced this expression by 
First_Employee Last_Employee, where First_Employee 
(respectively Last_Employee) is an identifier ofthe constant which defines 
the first (respectively the last) employee. 

3. Choice of words 
Now, let us exarnine the guides which concern the choice 0/ words 

according to the types of identifiers. For example, we advise the use of a 
verb as a procedure identifier to make the active aspect of this procedure 
explicit (execution of a processing when requested). 

Other mIes aim at /acilitating the understanding 0/ the semantic, for 
example, with the use of the renaming feature to define the specific meaning 
of a general notion in a particular context. 

Example 10.3. Some rules 

procedure Work_To_Be_Done{X : in Element} 
renames Stack.Pushi 
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By this statement, each request for Work_To_Be_Done provokes a call 
to the subprogram Stack. Push. The calls to the procedure 
Work_To_Be_Done (Y) permits a better understanding of the action 
performed, while the call Stack. Push (Y) leaves a semantic fuzzyness 
which risks creating interpretation faults. 

Here we have only given some guidelines relative to the improvement of 
understanding to give the reader an idea of such rules and their contributions. 
Once again, an exhaustive list of guidelines would require an entire book. 

10.3.3.3 Expression Improvement 

The designer introduces numerous faults when the model is expressed. 
We will only quote one example, which is again illustrated at the 
programming level. This concerns a trivial case: typing faults. The proposed 
rules do not prevent these faults, but they facilitate their detection. 
Moreover, the compiler can automatically do most of these detections. 

Let us consider the rule: 'Do not use constant values in the body of 
program entities (subprograms, packages, tasks, etc.) and explicitly declare 
these constants by identifiers' . According to this rule, the following program 
extract: . 

Hundred: constant integer .- 100; 

Rate := Value / Hundred; 

is preferable to 
Rate := Value / 100; 

Indeed, if we type Hunderd instead of Hundred, this fault will be 
detected by the compiler, which is not the case when a keypressing error 
creates 1000 instead of 100. We could retort two arguments: 

First point. A keypressing fault could have taken place during the 
statement of the constant (Hundred : integer constant : = 100;) 
where 10 was typed instead of 100. This argument is true, but we estimate 
that: 

1. This risk is smaller because the designer is concentrated on one single 
idea during this statement (the definition of a constant) whilst several 
elements intervene in the assignment of the expression: definition of an 
eventual complex expression, variable which will be assigned by the 
result. 

2. The detection of a keypressing fault is easier in the declaration of the 
constant as the simple reading of Hundred: integer constant : = 
10; would make react areader whilst he or she would perhaps not react 
to a statement like Rate : = Value / 10;. 
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Second point. 'The proposed guidelines impose an increase in the size of 
code, which is harrnful to performance'. It is false in general. For example, 
the explicit statement of a constant does not have any impact on the code 
generated, as all the compilers substitute the constant' s value to its identifier 
in the expression where the constant identifier intervenes. 

This example also illustrates that certain guidelines can have 
simultaneous effects on the understanding and on the expression. Indeed, we 
have pointed out that the use of constant values in the program' s bodies is 
negative for its readiness, while the use of an identifier of a constant gives 
this constant a semantic and thus facilitates its understanding. 

10.4 FAULTREMOVAL 

After having avoided the introduction of faults thanks to valid methods 
whose essential aim is mastering the design, we are going to ex amine the 
obtained system to detect the presence of residual faults. 

Some verification methods necessitate the specifications, some others 
methods are led uniquely from the designed system (without referring to its 
specifications). All these methods do not have the same demonstration 
strength; they are spread out from a 'partial functional simulation' to a 
'complete formal proof'. They apply to the system, which has not yet been 
fully designed or implemented by an implementation technology (hardware 
andlor software), or sometimes even to the final product. 

We are going to successively examine the verification techniques wh ich 
make use of the specifications (sub-section 10.4.1), and then the techniques 
without specifications (sub-section 10.4.2). Each time, we will suppose that 
the initial model is that of the specifications and the final model that of the 
system obtained by the design process. However, it is c1ear that our 
reasoning applies to any sub-stage of the intermediate transformation, 
between level land the following level 1+ J. We provide a panorama of the 
principal verification approaches without entering in the detail of use of the 
techniques introduced. However, to make this chapter c1earer, we will detail 
one of these approaches. Furthermore, section 10.5 develop the functional 
test methods by using some examples, and section 10.6 introduces some 
formal proof methods. 

10.4.1 Verification with the Specifications 

Three groups of techniques explained in the following sub-sections can 
be imagined for design verification with a specification model: 
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• by reverse transformation of the design model and comparison with the 
specification model, 

• by double transformation of the design and specification models into an 
intermediate model, 

• by double top-down transformations of the specification model into two 
design models. 

10.4.1.1 Reverse Transformation 

This approach goes back from the design model of the system towards 
the specification model by a transformation, and then compares the result 

with the specifications (see Figure 10.4): V = D -I 
The V ascending process has to be different from the descending design 

process, in order to avoid committing the same fault twice. Furthermore, this 
ascending process can be very complex as the specification and design 
models are often of a very different nature. For example, how can a 
structural electronic model constituted of interconnected transistors be 
transformed into a finite-state machine model? Nonetheless, situations exist 
where this transformation can be obtained automatically. This is the case 
when the system is designed as an assembly of interconnected modules, each 
module being described by a functional logical model (for example an 
automaton) and the composition of the modules being made of synchronous 
communications. Example 10.5 (cf. next sub-section) illustrates this 
automatic transformation mechanism by automaton composition. 

Figure 10.4. Verification by reverse process 

On the contrary, in other cases the reverse transformation is made 
difficult by the use in modules of constructions whose composition is 
difficult. This is the case of the manipulation of data or constraints (see 
Example 10.5). The inverse transformation operation is impossible to 
automate if informal annotations are used in the design model. This situation 
is very frequent because the models only consider one point of view (or 
abstraction) of a system. The other aspects have to be added in an informal 
manner. For example, the behavior of a subprogram, which should be 
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developed in the next design stage, is simply described by a comment or 
even just its identifier, such as: 

Average_Computation(First_Value,Second_Value, 
Average_Of_The_Two_Valuesl 

This informal information is however indispensable and will intervene in 
the following design stages where their meaning will therefore be formalized 
as design model. However, as they are by nature informal, these pieces of 
information cannot be automatically exploited in a reverse transformation. 

Finally, even if we can obtain a reverse transformation automatically, we 
must then confront the obtained model with the original specification model. 
It is then often necessary to compare two different formulations of one 
system: the specifications and the result of the reverse transformation. This 
functional comparison is not always easy. The comparison of two automata 
can be simple if they are structurally equivalent: we find the same states and 
arcs. It is slightly more difficult when they are not structurally equivalent. A 
common standardized and canonical form must be used. 

This is a design proof if the reverse transformation and the model 
comparison are formal. We insist again on the fact that, in practice, this 
analysis is generally difficult to perform. 

In the domain of integrated circuits, some methods use extraction 
process. We start from the electronic layout structure and identify the gate 
networks and other logical modules, as well as their interconnections. Then, 
we extract the logical combinational and sequential functions to end up with 
the original logical forms. The results are then compared with the logical 
specifications (Boolean expressions or logic diagrams). 

Example 10.4. Full-adder: logical extraction 

Once again, we consider the simple adder already studied in Chapter 5, 
with three inputs (a, b, c) and two outputs (S: surn, C: carry). Starting with 
formal specifications in the form of logical expressions (S = a $ b E9 c, C = 
Maj(a, b, c) = a.b + a.c + b.c), we have performed the design ofthis circuit 
in two stages, as shown in Figure 10.5: 

• evolution towards the functionallevel by using two 'half-adders', 

• evolution towards the logical gate level, ending up with a circuit using 
several NAND and XOR gates. 

This logical design should be followed by an electronic level (by 
replacing, for example, the gates by MOS transistor structures), then finally 
by a technologicallevel, leading to a layout, that is to say the flour planning 
geometrie definition of the final integrated circuit. 

Now, we will proceed to a reverse operation: analysis of the logical gate 
circuit, and extraction of the logical functions of the two S and C outputs of 
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the adder. This extraction can pass through the intermediate stage noted as 
'functional' used during the design. It is also possible to directly return to the 
specification level. We find: S = a'.b.c + a.b'.c + a.b.c' + a'.b'.c' and 
R = a.b + a.c + b.c. These two logical expressions are finally compared with 
the logical expressions of the specifications. This comparison is rather 
simple here: the canonical comparison model can be the truth table. 

S=aEBbEBc :=:\3:s Specifications I C = Maj (a, b, c) 
c C , 

~=a"b a 1/1 c ~ S Functional I b ADD a -+ I/lA 
U=( •• b)~ HI'hAr S:;c level , 
:~bhc Logicallevel I 

Figure JO.5. Logical design of an adder 

Example 10.5. The drinks machine 

Figure 10.6 shows a design structure of a variant of the drinks distributor. 
After a design stage, the structure has three interconnected modules: the 
MoneYJhanger, the Selection module and the drinks Distributor. 

Coin_Entered 

(CE) Money Changer 
Cancellation (ct 

Coin_Returned (CR) 

Coin_Stored (CS) ...... ---...... 
Do_Not_Deliver (DNO) 

r-''-----.......I.--'-''L Switch_ OiCSeleclion_Button 

Request (REQ) Deliver (OEL) 

Drink_Selected Selection (SW) 
(OS) Turn_ On_Seleclion_Button 

(TU) 

Provide (P) End_Distribution (END) 

Distributor CofTee_Available (CA) 

Figure 10.6. General structure 
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The behavior of each module is described here by a finite state machine 
(see Figure 10.7 and Figure 10.8). An arc without an original state figures 
the initial state. The arcs between the modules in Figure 10.6 indicate the 
signals exchanged between the modules or with the synchronous external 
environment. The character '?' defines that the signal is waited to go through 
the transition, whilst the character '!' states that the signal is sent during the 
firing of the transition. 

Money Changer 

CE 

Figure 10.7. FSM of the Money_Changer module 

REQ DND p END 

Selection Distributor 

DS 

Figure 10.8. FSMs of modules Selection and Distributor 

Figure 10.9 provides the product's complete interface with its 
environment. The 3 external inputs of the product are: Coin_Entered (noted 
CE), Cancellation (C), Drink_Selected (DS). The 5 external (or primary) 
outputs are: 

Coins_Returned (CR), Coins_Stored (CS), Switch_OfCSelection_Button 
(SW), Tum_On_Selection_Button (TU) and Coffee_Available (CA). 
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Drinks 
Machine 

Coin_Returned (CR) 

Coin_Stored (CS) 

Switch_ OICSelectioß_ 
Button (SWj 

Turn_ On_Selection_ 
Button (TU) 

Coffee_A vailable (CA) 

Figure 10.9. Input/output signals of the machine 

Chapter 10 

Finally, we suppose that the functional definition of this distributor has 
been established during the specification stage. This is provided as a Finite 
State Machine in Figure 10.10. 

ini! 
CE ---.. 
--+ 

C 
--+ 

DS 
--+ 

Figure 10.10. Behavioral model of the specification 

The real behavior stemming from this design can be obtained by the 
composition of the automata of the three modules. Several methods exist to 
carry this composition out. We will use in this example an approach based 
on simulation. The initial global state of the system is GI = (MI, SI, BI). 
Then, we exarnine the states reached when an input signal is applied. If, for 
example, the signal Drink_Selected (DS) appears, we go to the global state 
G2 = (MI, S2, BI), the signal Switch_OfCSelection_Button (SW) is sent at 
the output, and we then pass to state G3 = (MI, S3, BI). In this state, the 
Selection module sends the internal signal Request (REQ) to the 
Money_Changer module and we go to state G4 = (M6, S4, BI). The 
Money_Changer sends Do_NoCDeliver (DND) which waits for the 
Selection module. We then go to the state G5 = (MI, S8, BI), and the signal 
Switch_On_Selection_ Button (SW) is activated. Finally, we come back to 
the initial global stable state: GI = (MI, SI, BI). 

Let us synthesize this functioning extract. From the state noted as GI, the 
signal Drink_Selected (DS) leads to G2 where the output Switch_OfC 
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Selection_Button (SW) is sent, then we go to state G3. In this state, a 
sequence of states, internal to the product, takes place which passes from G4 
to G5. The signals exchanged between the internal modules are not visible 
externally, as for alt internal transitions. Only the sending of the signal 
Turn_On_Selection_Button (TU) followed by the return to GI is perceptible. 
Considering the specification level, that is an external viewpoint, this 
internal evolution is equivalent to one single transition from G3 to GI. 
Figure 10.11 synthesizes the studied extern al behavior. 

Figure J o. J J. Extract of the resuIting global behavior 

This analysis can be followed on to provide the global behavior by 
making an abstraction of the internal signals and transitions which are non
perceptible from the outside. 

The obtained behavior has therefore got to be compared to the behavioral 
specification model. The graph in Figure 10.10 provides this model. It 
shows that from the initial state, the signal Drink_Selected (DS) has no 
effect: there is no arc labeled ?DS which leaves from this state. The starting 
of the automaton's composition which we have just carried out indicates a 
different behavior: the selection button's light switches off and then on! It is 
fairly common that the design leads us to specify, or rather choose, 
behaviors which have not been planned in the specifications and which 
normally corresponds to functional redundancy. The real problem is to know 
if the designed system' s actual behavior is acceptable to the client. 

The operation of reverse transformation (from the designed system 
towards the product specifications) will be more complex, if, for example, 
we complete the coffee distributor by the management of coins of different 
values. Indeed, the 'data part' (leading to data calculation) wh ich completes 
the 'control part' (pure automaton) renders the analysis process difficult. 

10.4.1.2 Double Transformation 

The second class of verification consists in transforrning, on the one hand 
the specifications, and on the other hand the system in an intermediate model 
which is more convenient to perform comparison (see Figure 10.12). 
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Figure 10.12. Verification with intermediate model 

As an example, if a Petri net is used as specification model, and if the 
design model is a logical gate network, we can decide to take Finite-State 
Machines (FSM) as intermediate model (Figure 10.13). From the Petri net, 
we can deduce a FSM called a 'marking graph', for example by simulation. 
Furthermore, we can extract the FSM from the logical model of a gate 
circuit. Now, we have to compare these two resulting FSMs. We are 
therefore brought back to the problem raised in the previous paragraph. 

Figure 10.13. Example 

10.4.1.3 Top-Down Transformation 

The third approach operates using a second top-down transformation V 
led in parallel with the design phase (see Figure 10.14). 

v 
~ __ ~ . properties 

System . simulation 

Figure 10.14. Top-down verification 

The result of this second transformation is: 
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• a simulation sequence, ordered list of input and output vectors, or 

• a set of functional static or dynamic properties that the system must 
satisfy. 

These two examples are examined in the two following sub-sections. For 
both situations, a means must be provided to compare the results of the two 
transformations. 

Simulation sequence 
The idea of this method is to deduce a sequence of couples (applied 

inputs I expected outputs) from the specification model. This simulation 
sequence is also called test sequence. To compare the two results, the input 
sequence is then applied to the design model (the system), which in return 
provides an output sequence compared to the expected outputs. If they are 
the same, we assurne that the system is correct, that is to say that it conforms 
to its specifications. Of course, the value of this conclusion depends on the 
quality of the applied sequence. Indeed, if the input sequence only exercises 
some of the aspects of the system' s behavior, the conformity to this behavior 
only proves the good design of these aspects! This approach supposes that 
the system model is executable. It is adynamie analysis, as discussed in 
Chapter 6. We qualify this approach as functional test as it uses the 
specification model, which is a priorifunctional. Often, by extension, the test 
sequences are defined from structuro-functional models, that is to say 
models which exploit a knowledge of the system organized into 
interconnected modules. According to the level of structural knowledge 
about the analyzed system, we speak of: 

• black box test (no structural knowledge), 

• gray box test (the system is organized into interconnected modules), 

• or white box test (we know the whole structure). 

We will come back to the functional test in section 10.5 by analyzing an 
example. The structural test will be studied in Chapters 12 and 13 for the 
verification of the manufacturing and production stages, as it has been 
developed to check these stages. 

We should note that simulation still constitutes today the most used 
approach in all domains: 

• either on a executable model (executable on a computer) of the designed 
system' s, by applying significant functioning sequences and by 
comparing the results provided by the computer with those expected (e.g. 
we simulate an electronic circuit at logic or MOS level), 

• or on a physical model (called a mock-up) wh ich is subjected to tests. 
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Property satisfaction 

The functional test seeks to stimulate all the behaviors of the system 
specifications. The approach known as property satis/action aims at 
demonstrating that some specific properties deduced from the specifications 
are satisfied by the designed system. 

Consider that a level crossing control system reacts to the detection of 
trains approaching and leaving by acting on the barrier by actions 'rise' and 
'go down'. The difficulty in defining a test sequence is that one or more 
trains can arrive in the railway section which separates the two sensors 
('approach' and 'leave' sensors). Therefore, it is necessary to test all the 
possible cases: theoretically, the number of cases is infinite! In fact, the two 
properties, which we need to verify, are the following: 

The barrier is closed when afirst train enters in the section. 

The barrier stays closed as long as a train is still in the section. 

The verification of the two previous properties is critical. The checking 
of the following one is useful: 

The barrier is up is no trains are in the section. 

Another example is that of a company' s accountancy management 
system. The possibilities that such a system offers can be very complex. 
However, we would like to know if the following assertion is true: 

Any order delivered has to be paid be/ore being classed. 

A last property example concems a gas pump management system: 

The pump counter cannot be reinitialized as long as the 
previous dient has not paid. 

In these three examples, we see that we do not seek to demonstrate the 
conformity of the system' s behavior with regard to the whole set of its 
specifications. We wish only to prove that the designed system satisfies 
certain important and particular characteristics. Therefore, these techniques 
should not be opposed to the test techniques. Indeed, in section 10.5 and in 
Chapter 12 we will see the difficulty experienced in demonstrating the 
exhaustivity of test. The formal demonstration of some critical properties is 
therefore a supplementary tool. The methods used to demonstrate these 
properties naturally depends on the specification model and the design 
model. Some examples of proof methods are given in section 10.6. 

10.4.2 FauIt Removal without Specifications 

Fault removal techniques without specifications aim at checking that the 
designed system satisfies generic properties, that is properties independent 
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of the specifications (see Figure 10.15) . In general, we seek to show the 
existence or the absence of undesired properties such as, for example: 

• a functioning deadlock: the system blocks in astate and no Ion ger reacts 
when input signals occur, 

• the system is not living: the property 'we can go from any state to any 
other state by an external sequence' is no longer true, 

• the functioning is non-determinist: e.g. an input can provoke different 
effects from the same internal state. 

Figure 10.15. Verification without specifications 

These properties define potential errors independent from the system' s 
functionality. The faults at the origin of these bad properties are varied and 
will probably necessitate a human diagnosis. 

A non-living system pos ses ses non-accessible dead parts, which is a clue 
of a redundant design. For example, one branch of an if statement (then or 
else parts) can never be run. This situation rnight or rnight not be due to a 
fault. Indeed, redundancy is not always the expression of a fault. For 
example, redundancy is becorning more and more frequent due to the reuse 
of hardware or software components which were bought or developed for a 
previous application. However, the designer should know that certain parts 
of a reused component cannot be used and therefore justifies the reason for 
this redundancy. Indeed, dead parts mayaiso be due to a design fault. 

The non-deterrninism of functioning can arise from a design with faults . 
This is the case with hazard phenomena in sequential systems: the 
functioning is different according to the temporal values of the component' s 
reaction. These values depend on the non-functional environment: the time 
wh ich passes, temperature, etc. This situation arises also for real-time 
programs whose executive environments can behave in a way which seems 
hazardous. Indeed, some functioning parameters they use are not perceptible 
and controllable by the applicative software. For example, the attribution of 
the processor to a task can be interrupted by the occurrence of an external 
event. This corresponds to a situation which is defined during the design. 
This situation can also be due to a preemption mechanism of the real-time 
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kernel when this software considers that the time allocated to the task is 
excessive. Hence, this mechanism is not managed by the application whose 
behavior seems hazardous. This type of property analysis can be carried out 
on 'state graph' models or mainly on Petri net models if the design implies 
parallelism and competition. 

Example 10.6. Graph properties 

Imagine a sequential system' s graph with 6 states (Figure 10.16). 
Without knowing the specifications or the product' s application, we can 
analyze some properties of the graph. We notice that it has connexity 
problem: if we split the graph into two graphs, SG 1 = {I, 2, 3} and SG2 = 
{4, 5, 6}, it is impossible to pass from SG2 to SG 1. Additionally, state 4 
(weIl state) leads to a blocking, because the system behavior cannot leave 
this state. ConsequentIy, we should question this system's design as it is not 
living. This example is considered in Exercise 10.6. 

Figure 10.16. Example of graph properties 

10.5 FUNCTIONAL TEST 

In sub-sections 10.4.1 and 10.4.2 we introduced diverse cIasses of fault 
removal means. We also gave an overall view of the principles of these 
techniques. In this section, we refine the junctional test technique 
introduced in sub-section 10.4.1.3. Remember that the functional test 
consists in applying a sequence of input values to a designed system; the aim 
of this input sequence is to provoke all the different behaviors described in 
the specifications. The output values obtained by the system' s execution (on 
a simulation model, a mock-up, or the final product) are therefore compared 
to the ones predicted, that is to say derived from the specifications. 

10.5.1 Input Sequence 

One first question is: 'how can we find the input sequence which 
provokes all the behavioral possibilities?' 
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When the specification describes sequential behavior, for example using 
a finite state machine, the test sequence has to pass by all the states and all 
the arcs of the state graph. 

Example 10.7. Coffee machine: input sequence 

Consider the coffee distributor designed in sub-section 10.4.1.1 (Example 
10.5) whose behavior specification was described in Figure 10.10. 

An example of a functional test with 11lines is given in Table 10.1. This 
sequence corresponds to two aborted cycles (by request to cancel) followed 
by a complete cycle of coffee distribution. 

Num. Input Output 
1 Coin_Entered -
2 Cancel Coins_Returned 

3 Coin_Entered -
4 Coin_Entered -
5 Cancel Coins_Returned 

6 Coin_Entered -
7 Coin_Entered -
8 Drink_Selected Switch_OfCButton 

9 - Coins_Stored 

10 - Coffee_A vailable 

11 - B utton_Lights 

Table 10.1. A functional test sequence of the distributor 

We now suppose that the distributor accepts different types of coins: 5c, 
lOc, 25c, and 50c. This modification can be taken into account by 
associating a parameter Value_Coin with the input Coin_Entered. The 
output Coins_Retumed now receives the parameter Value_Coin. To give the 
change, this output is activated as many times as necessary. 

Without wanting to propose a complete new specification, we provide an 
extract in Figure 10.17 which defines the actions !Switch_OfCButton, then 
!Coins_Stored, then !Coffee-A vailable, etc. which should be carried out only 
when the amount provided is superior or equal to the value of a coffee. 

This extract is preceded by apart which accumulates the value of the 
coins entered in the machine (Figure 10.18). The functional test which 
integrates this new functionality becomes more complex. It is theoretically 
imaginable to try all the possible combinations of coins to obtain the exact 
price of the coffee (exhaustive test). In addition, here the user can put more 
money in than necessary before selecting the drink. Then, a larger number of 
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combinations can follow, even if the total number of coins acceptable by the 
distributor is limited. 

• 
9 

Figure 10.17. Functioning extract ofthe distributor 

AmOUDt Provlded:= AmOUDt Provlded ~C' E d 
- + Valiie CoiD • om_ ntere 

- (Value_Coln) 

Figure 10.18. Moneyaccumulation 

In fact, the specification only considers two cases: 

• AmounCProvided < Value_Coffee, and 

• AmounCProvided ~ Value_Coffee. 

If the coffee costs 75c, we can imagine a sequence which consists in 
putting in 25c, selecting the drink, then waiting for the coin to be returned, 
then putting in 2 coins of 50c, selecting the drink and waiting for the return 
of 25c and a coffee. This sequence seems to be sufficient. Indeed, it 
provokes all the possible specified behavior. However, a question is raised 
concerning the real demonstration of this property. If the system's designer 
made a fault when implementing a mechanism that only deli vers coffee if 
the amount provided is strictly superior to the amount for the coffee, this 
sequence cannot show this fault! 

When input data intervenes in the specifications, the technique which 
consists in identifying the value domains which provoke different behaviors, 
and choosing ODe value for each of these domains as a test input, has limits 
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according to the detection of faults in designed systems. This is, however, a 
very popular method of test sequence. 

To improve the test efficiency, engineers often add tests 'to the limits' of 
the value domains. Thus, in our example, the value of AmounCProvided 
defines two domains represented in Figure 10.19. 

Therefore, we will test the designed system with a value for each domain 
(for example 50c and 1$),0$ as the inferior limit of domain 1, and 75c as the 
limit between the two domains. The upper limit of the second domain 
corresponds to the saturation of the box which stores the coins. 

This sequence's improvement does not, however, cover all possible 
design faults. Indeed, if we suppose that the 1$ coins have been added as 
acceptable by the distributor and that the designer has added a speciallogic 
treatment for these coins, a test based on the AmounCProvided is not 
sufficient to reveal the faults having eventually affected this treatment. The 
functioning of the distributor can be different, according to wh ether we 
insert 2 coins of 50c or one coin of 1$. 

Domain 1 Domain 2 

0$ + 7Sc ... 
E 

SOc 1$ 

Figure 10.19. Value domains 

10.5.2 Output Sequence 

The output sequence associated with the input sequence is normally 
deduced from the specification. However, in certain cases, the outputs are 
not given by the specifications. This absence of information can arise if the 
designed system was destined to precisely provide the unknown results. For 
example, if a physician or a biologist cannot undertake areal 
experimentation in order to know the effects of the studied phenomenon, 
he/she would ask for a software simulation of this phenomenon. The 
expected outputs (produced by simulation) are not known apriori. Hence, 
the functional test that we have considered cannot be applied so easily. We 
could therefore attempt to estimate the outputs produced by associating them 
with intervals, for example. This approach belongs to the likelihood group of 
techniques discussed in Chapter 8 to illustrate functional redundancy and 
static and dynamic functional domains. These techniques are c10se to the 
verification without specifications discussed in sub-section 10.4.2. For our 
example, the lack of information concerning the specifications is partial: it is 
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relative to the outputs of the simulated phenomenon. Likelihood techniques 
express properties on the expected values. 

Moreover, we can observe that a test sequence is not only a juxtaposition 
of an input sequence and an output sequence. It is a sequence of couples 
(inputs/outputs). To illustrate this, refer to the following example of the 
coffee distributor. 

Example 10.8. Coffee machine: input/output sequence 

The possible values of the couples (Coffee_Available, Coins_Returned) 
make 4 configurations appear (expression of the static domain): 

DSI DS2 DS3 DS4 

Coffee_A vailable NO NO YES YES 

Coins_Returned NO YES NO YES 

Coffee-A Coins-R 

YES YES 

YES NO 

NO YES 

NO NO 
Amount_ Provided 

OS 7Sc 

Figure 10.20. 1/0 domain couples 

The behavior defines relationships between the input (Figure 10.19) and 
output domains (marked above); they are detailed in Figure 10.20. This 
analysis shows that the test sequence has to cover 4 domains which concern 
the amount provided before the coffee selection: 

- 0$ no coffee and no coin returned, 

]0,75c[ no coffee and the coins are given back, 

- 75c coffee served and no coins given back, 

- 75c coffee served and change given back. 

Therefore, we see the necessity in testing the cases of 0$ and 75c, which 
does not appear explicitly when the input and output domains are studied 
separately. 
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Considering the value of the returned amount refines this analysis. This is 
represented by Figure 10.21. When 50c is inserted, this amount must be 
introduced, and 25c has to be given back. In practice, we do not always 
consider one single input value per input/output domain. Figure 10.21 
defines the associated input/output values. It is clear that this graphical 
representation is only possible here because of the simplicity of the 
relationships between the input and output values. 

YES YES x cent* 

25c 

YES NO 0 

NO YES 75c 
50c 

NO NO o 

* : x = Amount_Provided - 7Sc 
os SOc 75c 1$ 

Figure lO.21. Domains and relations 

10.5.3 Functional Diagnosis 

A functional test sequence allows the presence of faults to be revealed by 
the failure of the designed system. This failure is detected by a comparison 
between the expected output values and the values produced at the system' s 
execution. However, this does not give any information on the fault at the 
origin of the failure. The diagnosis attempts to answer this question: 

where is the fault which affects the system? 

In this section we are going to give some pieces of information regarding 
functional diagnosis testing, that is to say techniques which try to localize 
the fault at the functional level. The diagnosis test will be reconsidered in 
Chapters 12 and 13 concerning its structural aspects. 

A first method consists in returning to the causes of the erroneous outputs 
to discover the infected function. In practice, this backward analysis turns 
out to be very complex, due to the sequential character of the majority of 
systems (such as the illustrative coffee distributor used here). In such case, 
failure sterns from a sequential process which activates the fault, then 
propagates it towards an output (a mechanism already analyzed in the first 
part). It is therefore necessary to go back in time to analyze the system's 
successive states without knowing until which previous state to return to! 
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This approach is also difficult to apply, due to the fact that the system is 
generally designed from sub-systems (referred to here as modules) 
interacting. The failure can therefore be due to one of the module' s 
erroneous behavior, but also to the interaction between several modules! 

Take the example of the coffee distributor. Its erroneous behavior can 
arise from a design fault in the interactions between the three modules 
'Money_Changer', 'Selection' and 'Distributor'. In practice, two difficulties 
combine, making the diagnostic extremely difficult: 

• go back to the system's history, 

• and identify the interaction problems between modules. 

A technique wh ich reduces this complexity consists in instrumenting the 
system by adding redundant actions which facilitate the observability of the 
system's internal evolution and communication between modules. These 
techniques participate in what we have named as 'easily testable systems'. 
These techniques will be developed in Chapter 14 for the production and 
maintenance test. 

At the design level of one module, some techniques are proposed: 

• the use of pre-conditions defining what is expected at the module input, 

• the use of post-conditions defining what is expected at the output, 

• in a more general way, the use of assertions on input/output relations. 

To illustrate this approach, we consider the example of a subprogram 
which returns the 'minimum' and 'maximum' values of a list of given 
values. We can affirm that: 

minimum ~ maximum. 

This concerns a post-condition. It does not give the means to ca1culate 
the values produced (which is a design problem), but it gives constraints on 
its behavior (here on the value of its outputs) when this subprogram 
intervenes in a program' s design. If, during this program' s execution, the 
'minimum' and 'maximum' do not satisfy the post-condition, this proves the 
presence of an error in the subprograrn. In addition, this example shows that 
the detection is not carried out on the complete system' s externaioutputs but 
on evaluation of the design modules. 

However, it should not be conc1uded that the subprogram in question is 
faulty. The fault can concern a bad utilization of this module. For example, 
we provided an empty list to the subprogram. In conc1usion, even if it does 
not localize automatically the fault which is at the origin of the faHure, this 
technique facilitates, nonetheless, the diagnostic by bringing useful 
information on the localization of the internal error which has appeared. 
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10.5.4 Analysis of an Arithmetic Unit 

Example 10.9. Arithmetic unit 

We consider an additionlsubtraction umt m a 'floating' normalized 
decimal scientific system (mantissa in the interval [0, I D. It has been 
structured by the design into 5 modules shown in Figure 10.22. This 
'combinational type' example completes our illustration of a coffee 
distributor which is essentially sequential. 

Mu(El,El) 

M'l M'l 

+/-

Carry 

NormalizatioD 

Overllow I 

Figure 10.22. Example of a floating arithmetic circuit 

The algorithm implemented by this structure proceeds in three phases. 

1. First of all, the two numbers must have the same exponent. For this: 

~ we compare the exponents (module 'EI - E2'), 

~ then we adjust the smallest number on the largest number by lEI - E21 
shifts to the right of its mantissa. 

2. Then, we carry out the algebraic operation (+ or -) on the two mantissas, 

3. Then, we normalize the result and detect a possible overflow. 

The module 'sign' pHots the operation to carry out on the mantissas and 
elaborates the sign of the result. 
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Such a design can be partially verified by a functional testing. This is 
done by making a ca1culation on a supposedly executable system (mock-up 
or simulation) and by comparing the obtained result with theoretical value. 
Furthermore, no knowledge about the circuit' s internal organization is 
exploited by this test. For example: 

0.1 10 +123 _ 0.354 10+125 = _ 0.353 10+125 

We ignore apriori the faults detected (or covered) by this elementary 
functional test but they are probably reduced. In addition, a final non-correct 
result certainly indicates the presence of an error, but it does not permit the 
diagnosis of a fault. 

An exploitation of the stmcture into modules of the designed system can 
enrich the verification and permits a more precise diagnosis in case of error. 
Therefore, this type of simulation is of the 'gray box type' as we observe 
certain intermediate values. Thus, the simulation of the previous operation 
will give the output values of each of these modules as weIl as a final result: 

• EI - E2 = -2, therefore the MI mantissa has to be adjusted by two shifts 
to the right, M,' I = 0.001, Max (EI,E2) = E2 = 125, 

• the operation control is a subtraction whose result is negative (there is a 
carry) -0.353, therefore the final signal has to be corrected, 

• finally, there is no need to normalize the obtained result. 

Such a simulation is rich in information for the localization of the module 
or the link between the modules affected by a fault. A study of this example 
is proposed in Exercise 10.7. 

10.6 FORMAL PROOF METHOnS 

Functional testing aims at showing the system correctness by exercising 
its behaviors and examining their effects on the outputs. It is the most 
popular method. In this section, we introduce less popular techniques, based 
on formal proof of properties, which provide additional information in order 
to improve the confidence in the system correctness. 

10.6.1 Inductive Approach and Symbolic Execution 

10.6.1.1 Inductive Approach 

The formal proof by inductive approach aims at demonstrating a 
conc1usion on the system behavior, taking some hypotheses into account. 
For instance, these hypotheses specify mIes on the inputs, and the conc1usion 
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concems the expected outputs. Hypotheses and conclusions define a 
property on the system. This method is weIl known in mathematics to 
demonstrate a theorem. Assuming- that an hypothesis is true, we must show 
that the proposed conclusion is satisfied when the system is executed. For 
instance, when a train approach is detected (hypothesis), the baITier must go 
down (conclusion). 

The formal demonstration of some properties is very useful, because the 
client of a product often requires that critical properties be guaranteed. As 
shown in the previous section, functional testing provokes numerous 
activations of the system, without giving a formal proof of its COITectness 
(excepted in small system for which all cases can be tested). So, the 
demonstration of a small number of properties is a useful complementary 
work. If we note H the hypothesis and C the conclusion, we have to 
demonstrate that H ==> C when the system is executed. 

Example 10.10. Sum ofthe N first integers 

Consider the following pro gram which computes the sum S of the N first 
integer: 

S : = 0 i 
I : = 0 i 
while (1<N) loop 

I := I + 1; 
S := S + I; 

end loop; 

The hypothesis is N >= 0 and the conclusion is S = N * (N + 1). This 
deduction proves the COITectness of the pro gram. Indeed, we have: 

S = 1 + 2 + ... (N-1) + N 
S = N + (N-1) + ... 2 + 1, so 

2*S = 
S = 

(N+1) + (N+1) + ... 
N*(N+l)12 

(N+l) + (N+l), that is 

To make this demonstration easier, we introduce assertions Ai in the 
system structure. Al is the hypothesis and the last assertion is the conclusion. 
For instance, consider the following annotations of the previous program: 

-- Assertion Al: N ~ 0 
S : = 0; 
I : = 0; 

-- Assertion A2: I ~ N and S 
while (1<N) loop 

Assertion A3: I < N and S 
I := I + 1; 
S := S + I; 

end loop; 

o 

1*(1+1)/2 
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-- Assertion A4: I = N and S = N*(N+1)/2 

To demonstrate Al ==> A4, when the program is executed, we will make 
partial demonstrations (like lemmas), considering all the possible 
functioning cases. Taking the program control flow into account, we must 
show that: 

1. Al ==> A2 after the execution of 's : = 0;' and 'I : = 0; '; 

2. A2 ==> A3 when l<N, 

3. A3 ==> A3 when l<N after the execution of 'I : = 1+1;' and 's : = 

S+I; " and finally 

4. A2 ==> A4 if I ~ N after A2. 

Demonstration: 

1. Is evident. 

2. Is evident, as 1= S = o. 
3. Let Ib and Sb the values of I and S before the execution of the loop 

statements (I ~ =1+1; and S: =S+I;). The hypothesis is: 

1b<N and Sb = Ib*(lb + 1)/2. 

Due to the execution, 1= Ib+ 1 (relation 1) and S = Sb+1 (relation 2). Due 
to the loop condition, I<.N (first part of the conc1usion). We must now 
demonstrate S = 1*(1+ 1). The hypothesis is Sb = Ib*(lb+ 1)/2 (relation 3). 
Due to the relation 1, Ib = I-I, so: 

Ib*(lb+l)/2 = (1-1)*(1-1+1)/2 = (/-1)*112. 

Moreover, Sb = S-I (relation 2). So, relation 3 implies S-I = (1-1)*1/2, that 
is: S = (/-l)*I12+1 = (1-1)*1/2 + 2*112 = (I -1+2)*112 = (1+1)*1/2. 

So, S = 1*(/+1)/2 which is the second member of A3. 

4. A3 is expressed by Ib<N (relation 1) and Sb = Ib*(lb+ 1)/2 (relation 2). 
Due to the execution, 1= Ib+l (relation 3) and S = Sb+l (relation 4). We 
assurne that P-N (relation 5). Due to the relations 1 and 3, l-l<.N, that is 
I<.N+ 1. This conc1usion and the relation 5 imply that I = N which 
conc1udes the first part of the demonstration. The second part 
(S = N*(N+ 1)/2) is then demonstrated as previously (item 3), knowing 
thatl=N. 

5. A2 = ((/~ and (S = 0». As the Boolean condition of the while 
statement is false, then (I2N). We conc1ude that I = N, which is the first 
part of A4. As I = 0, then N = 0, so the second equality is true, as S = o. 
Thanks to these partial implications, we deduce that Al ==> A4, that is, 

the conc1usion is implied by the hypothesis. 
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The demonstrative power of this technique is very important. However, it 
has two main drawbacks: 

• the engineer must express the intermediate properties, 

• he/she has to handle the deductions Ai ==> Ai+ 1. 

10.6.1.2 Symbolic Execution 

Some tools exist to process these deductions automatically. For instance, 
Praxis provides such a tool based on a subset of the Ada language features. 

The inductive process can be treated by a symbolic execution. The values 
of the variables are not propagated through the system structure, as they are 
unknown. Instead, symbolic variables are propagated. Thus, symbolic 
expressions are deduced which can be reduced. 

Example 10.11. Small extract 

Consider for example, the following pro gram extract: 
b := a; 

c := a + b; 
if (a = 0) then d.- 2*c; 

else d.- -c; 
end if; 

Let A be the symbolic value of a. After the execution of the program, we 
obtain the value of d: 

1. d = 2*c and a = 0, or, 

2. d = -c and a:;c O. 

To obtain the first condition, we process b : = a; and c : = a + b; . 

So, b = A, c = A+A and thus d = 2*(A+A) and A = O. 

Reducing the expressions, we obtain «d = 0) and (A = 0» (relation 1). 
In the same way, the second branch of the i f statement provides: 
«d = -2*A) and (A :;C 0» (relation 2). 
During the second step, we must demonstrate that: 
(hypothesis on A) and «relation 1) or (relation 2» ==> (conc1usion). 
For instance, the style of the variable adefines constraints on its values. 
The conc1usions can be constraints expressed by the values of a and d. 

10.6.2 Deductive Approach and FTM 

10.6.2.1 Deductive Approach 

As previously, an hypothesis, intermediate assertions Ai, and a 
conclusion are defined. However, whereas the inductive approach aims at 
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demonstrating that Ai ==> Ai+ 1 after the execution of a code fragment F, the 
deductive approach operates backwards. 

• from the conc1usion Ai+ 1, using a backward execution of F, we deduce 
the condition Ci which must be true before F is executed. 

• then, we demonstrate that Ai ==> Ci. 

The main problem with this method concems the backward processing of 
the condition Ai+ 1. Studies established for some design languages have 
shown the way Ci is obtained when each feature of the language is executed. 
We will illustrate this process examining some features of the Ada language. 

Example 10.12. Sequence 

The feature expressing the sequence (noted ';') does not pose any 
problems: Ci = Ai+ 1. Consider the following program extract: 

-- Al: x > 7 and y < -2 
z := x - Yi 
-- A2 : z > 0 

From A2 and the assignment statement, we deduce Cl = x>y. Then, we 
deduceAI ==> Cl. 

Example 10.13. Conditional statements 

Conditional statements needs the study of two branches. Let us consider: 
Al: (abs(x) > z + 4) and (z > 1) and (x > 0) 

if (x < 4) then y:= 2 - Xi 

else y:= Xi 

end ifi 
-- A2: y > 1 

If y>1 and we executed y : = 2 - Xi, therefore 2-x>1, that is l>x. This 
branch was executed if x<4. So, x<4 and x<l, that is x<1 (relation 1). 

If y> 1 and we executed y : = Xi, therefore, x> 1. This branch was 
executed if x~4. So, x~4 and x> 1, that is x~4 (relation 2). 

Now, we must show that Al ==> (relation 1) or (relation 2). This is true 
as 'Z> 1 => abs(x) > z+4 > 1 +4 = 5. So, x>5, as x>O. 

10.6.2.2 Fault Tree Method 

The Fault Tree Method (FfM) introduced in Chapter 7 is based on a 
deductive approach; the results of the reasoning process are presented as a 
tree of Boolean expressions using the operators 'and', and 'or', and 'not'. 
The root expression is the concIusion to be demonstrated. The intermediate 
nodes are Boolean conditions obtained by analyzing the system structure. 
The leaves are assumptions (such as preconditions) whose values are known. 
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Figure 10.23 represents such a tree with a conclusion, two intermediate 
nodes and five assumptions. 

Figure 10.23. Fault tree example 

The fault tree method and the associated representations are used here not 
to specify the causes of a faHure but the reasons of an expected conclusion. 
Let us consider for example, the following procedure specification: 

procedure Example (Data: in Type_One; Result: out Type_Two). 

Type_Two defines a Boolean condition on the acceptable set of values. 
For instance, Result is in the range [Vrnin, Vmax]. By a deductive approach, 
we analyze the procedure body using the conclusion on the result. We obtain 
a tree such as the one in Figure 10.23. Then, we must deduce from the 
constraints defined by Type_One, constraints on A3, A4, A5, A6 and A7, and 
finally, demonstrate that the conclusion is always true as Al and A2 = true. 

10.7 EXERCISES 

Exercise 10.1. Verification ofthe adder 

Consider the three-bit adder discussed in Example 10.4), and a design 
fault which consists in replacing in each half-adder the NAND gate with a 
NOR gate (see Figure 10.5) . Study the faHures induced by this fault 
according to each of the three previous verification approaches: 

1. by inverse transformation and comparison (functional extraction from the 
logical gate structure), 

2. by double transformation with an intermediate model, 

3. finally, by double descending transformation. 

Exercise 10.2. Programming style (C language) 

We consider the following function written in C language: 
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Min_Max (int table [5], int B) 
{ 

int i; 
int j = table [0]; 
for (i = 1 ; i<5 ; i+l) 

{ 

% IfB is true, we are finding the min% 
if (B) 

{ if (table [i] < j) j table [i] 
else { if (table [i] > j) j table [i] } 
} 

return j ; 

Chapter 10 

} 

Analyze this funetion by pointing out the style elements which risk 
leading to understanding and expression faults. 

Exercise 10.3. FSM synthesis 

Build the graph in Figure 10.11 (Example 10.5) whieh deseribes an 
extraet of the eoffee maehine's real behavior. 

Exercise 10.4. Functional test sequence 

Refei to the eoffee distributor study. The expression of our dient' s needs 
ean be summarized to 'make money by providing eoffee'. Mter an initial 
study, we propose the following informal speeifieation to hirn: 

"To obtain a eoffee, the user has to introduee at least 1$, then validate by 
pressing on the 'Coffee' button. The ehange is then given and the eoffee 
served. If the user has not provided enough money before validating, the 
money is returned and the eoffee is not served. The money entered is also 
returned if we press on the 'Caneellation' button before 'Coffee'. 
Furthermore, the distributor eontains a eertain number of eoffee doses. The 
money introdueed has to be returned if there are no more doses in reserve." 

Using this informal specification, deduee a funetional test sequenee of 
the system to realize. 

This sequenee firstly serves the designer and the dient for the 
verifieation of the designed system. By defining the input/output 
relationships, the test sequenee also provides the distributor' s utilization 
scenarios. From this point of view, the definition of the test sequenee after 
the specifieation of the produet and its presentation to the c1ient eonstitute a 
means of dialogue which permits the verifieation and the good 
understanding of needs. 

Exercise 10.5. Property research 

Using the previous exercise's statement, deduee a fundamental property 
which the system's behavior must satisfy. Verify that this property is true. 
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Exercise 10.6. Properties of functional graphs 

We return to the graph in Figure 10.16 (Example 10.6). Study its 
properties: 

1. when we delete state 4, 

2. when we add an arc which goes from state 5 to state 1. 

Exercise 10.7. Verification of afloating point unit 

Here, we are interested by the verification of the circuit presented in 
Figure 10.22 (sub-section 10.5.4) according to a simulation approach. 
Envisage several scenarios and study their pertinence (capacity to reveal 
faults). 

Exercise 10.8. Inductiveformalproof 

Let A and B be two positive integers, and Q and R the quotient and the 
remainder of the division of A by B. Q and R are defined by the property: 
A = Q * B + R. Consider the following program annotated by the assertions 
Al, A2, A3: 

-- Al: A>O and B>O 
R:= Ai 
Q:= Oi 
while R>=B loop 

-- A2: A = Q * B + Rand R>=B 
R:= R - Bi 
Q:= Q + 1i 

end looPi 
-- A3: A = Q * B + Rand R<B 

Show that Al ==> A3 after the program execution. Is this demonstration 
a proof that the program is correct? 
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Prevention of Technological Faults 

Stemming from the design stage, the model called system has to be 
transformed into a final product with the aid of technological means which 
permit its execution in the context of its environment. Two technologies are 
used in the products studied here, hardware technology and software 
technology. In the majority of cases, these two technologies cohabit, their 
respective weight being dependent on criteria which are often non
functional, such as their speed performance (which favors electronic 
hardware) or adaptability (more easily obtained by software). We do not 
discuss these choices, but we focus only on the problems of dependability 
induced by the use of these two technologies. 

This chapter refers to what has been said in Chapter 7 regarding 
reliability and its evaluation. Examining the implementation stage, it 
continues Chapters 9 and 10 dealing with fault avoidance in the specification 
and design phase. Our study focuses on the prevention of technological 
faults. Their removal will be tackled in Chapter 12. 

11.1 PARAMETERS OF THE PREVENTION OF 
TECHNOLOGICAL FAULTS 

Technological faults affect a product' s functioning after its creation, 
during the production stage, and during its active life. In Chapter 3, we have 
already seen that these faults are created by several groups of factors: 

• the product's physical characteristics: technology, manufacturing, 
structure and assembling, 
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• the environmental characteristics: ageing, temperature, vibrations, 
shocks, dust, and also frost, aggression by moistures or 'pirates' , etc. for 
hardware, and the evolution of execution resources for the software. 

First of all, we give some examples from both technologies in order to 
understand the problems, their differences, and their solutions. 

11.1.1 Hardware Technology 

As said in Chapter 7, the study of hardware faults is essentially based on 
statistieal data. This leads to representations by functions, curves and 
estimators of the product's reliability criteria. Time (the cause of wearout) 
constitutes a fundamental parameter of this criterion: reliability function 
decreases with time. 

Technology has an important impact on component' s reliability: a given 
CMOS technology has a better intrinsie reliability than others, for example, a 
better resistance to shorts in the thin oxide structures forrning the MOS 
channels, to cuts in metal lines, to crystalline defects whieh affect a 
transistor, to electro-rnigrations of metal inducing short-circuits, etc. We 
know that the reduction of the component' s geometrie dimensions (shrinking 
factors) may have negative effects on the reliability of these components by 
amplifying the punctual faults such as local defaults in the serni-conductor' s 
crystalline structure. 

Of course, the real component sterns from a technologieal manufacturing 
process which also influences its reliability. Badly regulated manufacturing 
equipment can degrade this reliability. Other important parameters of the 
final reliability are the product' s structure and the comrnunieation signals 
between modules. Finally, the assembling (connectors, breadboards, etc.) of 
the modules influences also the final reliability. 

Finally, environmental conditions have a large influence on the product's 
reliability. In electronics, we note the preponderant influence of the 
temperature. Are also accounted for in the environment' s parameters that 
influence the reliability the parameters of the circuit load, such as the 
electrical consumption: its increase reduces reliability. Attempting to 
improve a final product' s reliability therefore demands the mastering of each 
ofthese parameters. 

11.1.2 Software Technology 

The impact of software technology on product' s dependability is often 
unknown or underestimated. Indeed, software is not influenced by time or by 
an increase in the extern al temperature. However, once again we find 
'technologieal' and 'environmental' aspects quoted for the hardware 
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technology, as we are going to show in an example. 
Consider a 'real-time' application which uses several periodic tasks Ti (of 

period Pi) which acquire data from external sensors, treat these data and act 
on actuators. Suppose that Ei is the duration of Ti operation. If the task 
management is implemented according to a technique called 'Rate 
Monotonic Scheduling', we can show formally that the verification of a 
relationship coupling the Pi and the Ei guarantees that all the data could be 
treated before their deadline. This condition is: 

N 
LEi / Pi < Ln 2, where N is the number of periodic tasks. 

i=l 

On the contrary, if we choose a different implementation technology, for 
example an on-line task management, using any real-time kernei, the system 
can only be verified aposteriori, with many difficulties in establishing 
exhaustive tests for the real-time applications. The choice of static (of Rate 
Monotonie type) or dynarnic scheduling to implement this set of periodic 
tasks therefore has an influence on the trust that we can place in the 
software. This example illustrates the impact of the choice of the 
implementation on the dependability of software applications. 

The optirnization capacity of the compiler used constitutes an example of 
the factor associated with the manufacturing or production of the executable 
code: according to its performance, the generated code will be faster or 
slower, and thus the real-time application' s behavior can change, until 
becorning non-conform to its specifications (hence a failure appears). 

Figure 11.1. Software implementation technology 

Finally, concerning the influence of the environment' s characteristics, we 
can again consider a real-time software application. At run-time, this 
application interacts with a Run-Time Exeeutive software (or exeeutive 
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kerne/), both software pro grams being executed on a hardware system (for 
example a rnicroprocessor). This structure is illustrated in Figure 11.1. The 
behavior and performance of the run-time executive have an impact on the 
execution time, and therefore on the application's behavior. As a software 
application can have a very long life cyc1e, its hardware and software 
execution environment can vary several times during this life. Thus, during 
an avionics or automotive system's usefullife, the processor and executive 
software will be changed due to the unavailability of previous versions, 
improved performance or cost reduction of new versions. The impact of 
these changes on the product' s dependability should be considered during 
the first realization, in order to avoid failures in the future versions. 

11.1.3 Prevention of Technological Faults 

Although technologie al faults occur during operation, their eventuality 
must however be analyzed from the first stages of the product life cyc1e. For 
example, to reduce the appearance of breakdowns makes one choose a high 
reliability electronic technology, right from the design stage. 

Figure 11.2 shows that the protection actions against technological faults 
start at the specification, and continues during design, production, and finally 
during operation. Two complementary approaches allow the product' s 
reliability to be improved when faced with these technical problems: 

• at the executable product' s characteristics level, in order to increase 
reliability, 

• at the environmental characteristics level, in order to preserve the level of 
the previous reliability. 

Actually, product' s technological and environmental characteristics are 
linked: we choose a technology wh ich answers to the constraints of the 
environment. We separate the two approaches here because in many cases 
they are not situated at the same level of action or human responsibility. 

In this chapter we do not consider the structural approach which, by 
using on-line and off-Une redundancy, reduces the probability of failures 
appearing, without reducing the technological faults. This approach of 
continuity of service acts in masking the faults effect, and does not therefore 
belong to fault prevention but to fault tolerance studied in Chapter 18. 

Finally, we note that the prevention of technological faults is 
complementary to the fault suppression actions exarnined in the next chapter. 
These two approaches are often interwoven, in particular by the quality 
control wh ich analyzes certain components (techniques c1assified in the fault 
removal approach), allowing an ulterior improvement in the final production 
(fault prevention). 
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Figure 11.2. Prevention of hardware faults 

11.2 ACTION ON THE PRODUCT 

11.2.1 Hardware Technology 

11.2.1.1 Reliability Law Comparison 
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Obtaining high reliability products starts firstly with research and use of 
techniques which act on the technological parameters in order to improve the 
survival of the final product. We know al ready that the different 
technological processes wh ich have succeeded during time have brought a 
considerable improvement to the product's intrinsic reliability. The 
estimated mean time of correct functioning of today' s computers reaches 
tens of thousandths of hours, whilst it was only ab out half an hour for the 
ENIAC in the 40's! 

As reliability is a probabilistic parameter according to time, its estimation 
necessitates measurements on sampies representative of the population 
analyzed (see Chapter 7). From these measurements, we deduce curves 
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which are used to compare the products associated with one designed 
system. Thus, in the case shown by Figure 11.3, product P2 has a better 
reliability than product P 1, as its survival probability is always superior 
during time. This improvement results without doubt from the choice of a 
better technology, anel/or a better manufacturing process, anel/or a better 
assembly, anel/or due to better utilization conditions. 

R 

1 . __ ...... _ ............... _ .. __ ............. _ ......... -.... -.... -----. 

P2 better tban Pt 

P2 

o time 

Figure 11.3. Increase of product reliability 

The comparison of the reliability of the two products is not always easy, 
as the reliability curves can cut each other. The example in Figure 11.4 
shows two products whose reliabilities cross at time T: P2 has a better 
reliability from t = 0 until t = T, then it is P 1 which has a better survival 
probability. Consequently, the choice between these two products depends 
on the mission's duration: for a mission with duration inferior to T, we 
would choose the P2 product. After this, the P 1 product is more interesting. 

R 

1 

o T time 

Figure 11.4. Compared reliabilities of two product 

11.2.1.2 Reliability Mastering 

All industrial domains impose reliability standards on the components 
used, the severity of which varies from domain to domain. Naturally, the 
most drastic are the avionics, space and nucIear domains. The price to pay 
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(technological and human means, as weIl as the time taken to tune and test) 
for these reliability requirements is therefore very high! This cost affects the 
design, manufacturing, and also the on-site implementation phases. 

Design Choices 
During design, the final product' s reliability is influenced by the choice 

of appropriate technology. For example, the use of a CMOS technology 
which reduces the appearance of flaws and which has less susceptibility to 
parasites. Better reliability can be obtained by design rules which impose 
constraints on the minimal dimensions of electric lines, transistor channels, 
on the gaps between lines and technologicallayers, etc. 

Thus, an electronic component can have different reliability levels 
according the technological features involved and the way they are used. 
Retuming to the ENIAC example, the vacuum tubes were not used in their 
fuH power, in order to reduce the number of breakdowns. This property was 
already astutely exploited, many years ago, in the Hammond electronic 
organs whose reliability at that time was reputed to be excellent. 

Production Actions 
During manufacturing, reliability is mastered by the use of sophisticated 

technical means, precise settings of the manufacturing machine's 
parameters, quality control methods at different levels of the chain, special 
soldering and assembly techniques, etc. 
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Figure 11.5. Reliability & control evaluation 

Several operations are led by the integrated circuit manufacturer in order 
to evaluate and improve the reliability of the integrated circuits produced. 
We can identify 4 operation categories illustrated by Figure 11.5: reliability 
evaluation, quality control, process control and production testing. These 
operations often use test techniques introduced as fault removal means. 
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However, these techniques are generally applied to product sampies, not to 
remove the defective elements, but to improve the production process in 
order to prevent the occurrence of faults of future products. 

• The reliability evaluation means subjects sampies representative of the 
population of product' s components to accelerated tests, by an increase in 
the temperature and/or the power supply. 

• The quality control techniques consist of a refined technological analysis 
of components taken in the manufacturing chain, in order to determine 
the population's quality, and to determine the causes of failures. 

• The process control techniques apply tests to the manufacturing 
equipment in order to verify their good functioning. 

• The production testing means apply physical, chemical, optical and 
electrical tests to the components during the diverse stages of the 
production chain, and just before they are released to customers. 

Reliability evaluation applies principally non-destructive or destructive 
accelerated tests in order to estimate the parameters of the survival law of 
the population of components. The possible use of destructive test shows 
clearly that the aim here is not to detect a particular non-reliable product 
from the manufacturing chain, but to reveal a bad reliability of the ensemble 
of the products. In the automobile domain, crash tests have the same 
objective: to verify the good resistance to shocks during the development of 
the car model, and not of the particular car intended to a client. 

Refined physical and chemical complementary tests allow mortality 
causes to be diagnosed and also to improve the production' s reliability. 
These tests are also used by the quality control operations. 

The quality control integrates information coming from diverse sources, 
in order to verify the product' s quality. This information arises from 
measures carried out on the process itself as well as on the products which 
stern from it: complete quality control of all incoming materials and 
monitoring of all wafer and assembly processes. 

Therefore, we subject all or part of the product's components to 
reliability assurance tests and quality assurance tests. These tests include 
life tests, mechanical tests, thermal tests, lead fatigue, and solderability tests, 
as shown by the example in Figure 11.6. Some compliance tests may be 
applied by independent organizations, in order to verify that the circuits 
satisfy or not given reliability requirements. 

The checking and the characterization of integrated circuits are carried 
out by varied investigation means. For example: 

• extemal inspection with a microscope, 

• radiographic inspection, 



11. Prevention ofTechnological Faults 

• control of the rate of leak ratio in sealed packages, 

• detection of free partieies in the cavities of the packages, 

• opening the packages and inspecting the dies, 

• control of the mechanical quality of the connection wires and dies. 
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Temperature Cycling 
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Figure 11.6. Quality Assurance Test of ASICs 
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The process control becomes a standard in all the production of 
integrated circuits. It helps the optimization of reliability through defect 
reduction: implementation of a variety of partic1e monitors at each stage of 
the manufacturing process to prevent, detect, and eliminate the incursion of 
foreign materials into the process. Wafer scanners use laser beams to detect 
microscopic partieies on the wafer surface. Laser-based particle counters 
measure the number of partieies generated, while local air-borne particle 
counters placed at strategie locations near processing or handling areas 
measure partieies in the air surrounding the wafers. High sensitive particle 
test chips are also used to measure process defect densities and validate 
improvements. When a too high partic1e level is detected, partic1e analysis 
tools are used to identify their cause by in-depth analysis. 

Production testing partieipates in fault removal, and for this reason it will 
be analyzed in Chapter 12. However, it contributes also to the increase of 
reliability of manufactured products by signaling the manufacturing process 
problems. These tests, therefore, can also be used as fault prevention 
techniques. The aim of such screening tests is to remove faulty circuits but 
also weak circuits able to present infant mortality failures. 

11.2.2 Software Technology 

In the case of software, the degradation phenomenon does not exist. 
However, faults related to the programming technology used (e.g. of the 
language) can arise. In order to prevent these faults, the choice of 
programming language has to firstly be carried out with precaution. 



266 Chapter 11 

Secondly, the use of certain of the chosen language's features can be 
forbidden. Only one restrained version of the language is accepted. 
Following this, mIes impose the way to use the remaining features. Finally, 
the evaluation means of the written program' s dependability are put into 
place by sampie analysis. Regarding the programming process, their 
conclusions allow improvements to be proposed. These four means of fault 
prevention associated with the programming language are developed in the 
following sections. The prevention of faults relative to the run-time 
environment of these languages will be studied in section 11.3 .2. 

11.2.2.1 Programming Language Choice 

The realization of a system by using a software technology necessitates 
choosing a programming language. Once the program has been written in 
this language, the implementation is then led by successive stages 
(compiling, linking and execution) on which the engineers have few actions. 
A well-argued analysis of the languages has to be done. The choice of a 
language has to be justified by dependability criteria. For example, the Ada 
language is today frequently chosen in numerous domains (aeronautics, 
space, nuclear, etc.), not for its original features (genericity, protected 
objects, etc.), but for its intrinsic dependability implied by its features. 
Without going into an exhaustive study, we simply quote here two examples. 

Firstly, Ada offers greatly varied features which permit, for example, to 
avoid to confuse two conceptually distinct types having the same 
implementation. 

Thus, the statements 
type Lift_Levels is new integer range 0 ... 9; 
type Digits is new integer range 0 ... 9; 

define two distinct types which do not allow a type expression to be 
assigned to one variable of the other type, although these two types are 
implemented in an identical way. In addition, even if these two types inherit 
values and operations from the general type integer, they are still distinct. 

We give a second example. Numerous programming faults are due to the 
use by a component of elements whose access is forbidden. These elements 
have strictly restricted access rights to other components. The Ada language 
offers several encapsulation mechanisms, which allow elements to be made 
private. These elements can, for example, be variables or subprograms. 
Packages, tasks, and subprograms are examples of features which permit 
such a protection. For instance, a subprogram Child can be included in a 
subprogram Father. Therefore, the Father is the only one which can call 
the Child. 

Procedure Father is 
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procedure Child is 

begin 

end Child; 

begin 

Child; subprogram call 

end Father; 

11.2.2.2 Restriction of the Features 

Onee the language has been retained, its features have to be studied in 
order to exc1ude those whieh lead to an increase in the risk of introducing 
faults. This reduction of the number of language features is therefore a fault 
prevention action. Here again, we eannot go into detail with an exhaustive 
study in this book. We will exarnine only two features by showing why they 
are dangerous and therefore why their use should be prohibited. 

Example 11.1. Shared variables 

The programming of multi-tasking applieations ean often lead to the 
implementation of communieation between tasks by shared variables. The 
behavior induced by the use of features allowing this programrning ean be 
hazardous. We consider two variables VI and V2 local to two tasks Taskl 
and Task2, and a shared variable s. The first task inerements the shared 
variable whilst the seeond deerements it as shown in the following extract: 

task Taskl is 
Vi: 

begin 

Vi : = S; 
Vi := Vi + 1; 
S := Vi; 

end Taskl; 
task Task2 is 

V2: 
begin 

V2 := S; 
V2 := V2 - 1; 
S := V2; 

end Task2; 
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Figure 11.7 shows three possible sequences of the execution of these two 
tasks. If the initial value of S equals '3', its final value is '2' in case 1, '4' in 
case 2, and '3' in case 3. In order to avoid meeting such hazardous 
functioning, communication by shared variables will be forbidden, even if 
the chosen language authorizes it. 

The problem encountered here arises from the use of the copies Vl and 
V2 of S, local to tasks Task1 and Task2. Exercise 11.3 shows that reading 
or writing directly in a data structure, without carrying out such copies, leads 
to other difficulties when the data structures are complex. Exercise 11.4 
shows that hazardous phenomena also occur when simple data structure are 
used without local copies (s : = S + 1 and s : = S - 1). 

Vl:=S; 

V2:=S; 
Vl:=Vl+1; 

S:=Vl; 
V2:=V2-1; 

S:=V2; 

: Vl:=S; 
I 

V2:=S; i Vl:=Vl+1 

Vl:=S; i 
V2:=V2-1; i S:=Vl; 

i 
Vl:=Vl+1; S:=V2; i 

! 
S:=Vl; i 

V2:=S; 

V2:=V2-1; 

S:=V2; I 
\.. Time ) \.. Time )~,:",-- __ T ...... ime ) '--__ y_----.J '--_ ...... y_--- _ y ___ oJ 

Case 1 Case 2 Case 3 

Figure 11.7. Use of shared variables 

Example 11.2. Goto statement 

The goto feature is offered by the majority of programming languages. 
Its implementation on hardware does not pose any problems. However, its 
use is imperatively forbidden for dependability reasons. The probability of 
being the cause of faults is high, as this feature does not allow a dear vision 
of control flow. Indeed, it creates a rupture in the interwoven structure of the 
control flow. On the contrary, this structuration is favored by: 

• statements such as 'if ... then ... else', and 'for', which offer static 
overlapping shown in the left part of Figure 11.8, and 

• the subprogram whose call mechanism proposes a dynarnic overlapping 
symbolized in the right part of Figure 11.8. 

The rupture of this structuration by the goto feature is represented in 
both cases by Figure 11.8. This rupture is in total contradiction with the two 
abstraction concepts indispensable to the understanding of the programs: 'is 
composed of' and 'makes use of'. 
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if... then 
.. . 
for ... Ioop subprogram ... ... subprogram if ... then ... I ... . .. - L "otoq 

... .1 .. . 
caUP2 gotoL 

l:J 
.......... 

eodP2:" 1 
L: . .. 

end if end PI. 
". 

end loop; 

~ 
... 
L: . . . 

end if; 

Figure 11.8. Structured control flow 

11.2.2.3 Imposing a Programming Style 

The way to use the authorized features is often restrained by utilization 
guidelines. The aim of these guidelines is to limit the risk of technological 
faults that some uses induce with a high probability. 

For example, the use of the statement return X; by a function to return 
a value to the calling program cannot be placed as the last statement of the 
body of the function . Then, each use of this statement creates a rupture in the 
control flow; hence, several uses multiply the number of output points of the 
function, making it more difficult to understand. Consequently, a guideline 
specifies that the return statement must be the last one in a function body. 

We consider the data type FIoat as a second example. Due to rounding 
errors, two distinct numeric values can be conceptually identical. This is the 
case of 0.999 ... 999 and 1.0. If the use of the 'Float' type has not been 
excluded, the comparison between the two real numbers has to be done by 
integrating these errors. We will use for example: 

if abs(VI-V2) < Epsilon 

instead of 
if VI == V2 

% the two values are equal 

11.2.2.4 Programming Process Improvement 

Programming automation 
The production is principally a human activity where source programs 

are concerned, whilst it is mainly automated for hardware products. 
Therefore, we seek firstly to prevent faults by automating or by systemizing 
the programming stage. For example, a tool can carry out the transformation 
of a design model from a determinist finite automaton into a program. 
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Example 11.3. A simple automaton 

We consider the example of the automaton in Figure 11.9. We suppose 
that 'Activate', 'Stop', 'Sleep', 'Action', and 'Complete' are 5 services 
offered by the component. This component accepts to provide these services 
according to its current state. 

~------------~. ~--~ 

Figure 11.9. Automaton 

This behavior is transposable in a systematic way into Ada language by: 
task body Example is 

type Set_of_States is (Sleeping, Waiting, Acting, 
Terminating) ; 

Current_State: Set_of_States .- Sleeping; 
begin 

loop 
select 

when Current_State = Sleeping 

or 

=> accept Activate do 

end Activate; 
Current_State:=Waiting; 

when Current_State = Waiting 
=> accept Stop do 

or 

end Stop; 
Current_State:=Terminating; 

when Current_State = Waiting 

or 

=> accept Action do 

end Action; 
Current_State:=Acting; 

when Current_State = Acting 
=> accept Action do 
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or 

end Action; 
Current_State:=Acting; 

when Current_State = Acting 

or 

=> accept Complete do 

end Complete; 
Current_State:=Terminating; 

when Current_State = Terminating 
=> accept Sleep do 

end select; 
end loop; 

end Example; 

end Sleep; 
Current_State:=Sleeping; 

This translation can easily be systematized: 
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• introduction of a data type (Set_of_States) which enumerates the 
automaton' s states, 

• introduction of a variable (Current_State) which defines the current 
state, and which is assigned by the initial state, 

• introduction of an infinite iteration (loop) which allows us to return to 
the selection statement, 

• according to the current state, accept the services associated with the arcs 
which leave from this state (when Current_State = => 
accept ... ), carry out the associated action (do ... end), then make 
use of the new current state indicated at the extremity of the arc 
(Current_State : = ... ). 

The pro gram produced is undoubtedly not optimal. For example, the 
automatie translation leads to the writing of the assignment 
'Current_State : = Acting;' after having accepted the service 'Action', 
whilst the state already had this value (when Current_State = Acting). 
The automatization itself is not justified by the search for an optimized 
program but by the absence of faults in this program. 

Programming assessment 
As the programming cannot be entirely automated, the pro grams 

produced have to be analyzed in order to improve this activity which still 
remains essentially human. 

This analysis is firstly done on pro gram sampies during development. 
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However, we do not possess information about potential faults at the origin 
of these possible future failures. For this reason, we evaluate if the 
constraints imposed on the programming style have been respected: non-uses 
of forbidden features, respect of the utilization mIes for the authorized 
features. If one of the constraints is not respected, we point it out to the 
engineer so that he or she can modify his/her way of working. We know, 
indeed, by experience that this non-respect creates a risk of faults. This work 
can be carried out on pro gram sampies as we suppose that the bad work 
methods are still practiced. 

If we possess information regarding the failures of the already 
operational programs, the analysis of fault causes allows constraints or 
guides to be added to the programming process. Therefore, we advise to 
record failures and to maintain a database containing the circumstances and 
analysis of causes. 

11.3 ACTION ON THE ENVIRONMENT 

11.3.1 Hardware Technology 

For a given technology, we increase the reliability by mastering the 
parameters of the application's non-functional environment. As these 
parameters are numerous and varied, it follows that the control means are 
also very varied. Thus, as we have already pointed out, the temperature is a 
fundamental parameter of the reliability of electronic components: 

the reliability decreases when the temperature rises. 

There are laws wh ich permit, for a given technological population, the 
reliability at a 01 temperature to be determined from established databases at 
02 temperature (Henry's abacus quoted in Chapter 7). Different techniques 
planned during design, production, and possibly during the application's 
implementation, allow the temperature to be controlled and therefore 
increase or guarantee a certain level of required reliability: 

• a passive or 'natural' control, for example the rotation of an artificial 
satellite which avoids having the same side exposed to the sun, 

• an active or 'artificial' control by the product' s air condition: this is the 
case of microprocessor cooling techniques by aradiator and an air fan, or 
computer cooling by water used for ECL technology. 

In the same manner, perturbations arising from the environment, such as 
particles or electromagnetic phenomena, have to be analyzed very early on; 
they lead to various solutions: 
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• interna! by the choice of technologies which are not sensitive to these 
perturbations, 

• or external by the use of shielding techniques. 

It should be known that the alpha particles constitute a real problem for 
DRAM type memory, by provoking the loss of stored data by charge or 
discharge of the memory points which are of capacitive type. These 
temporary faults are qualified as soft faults (in opposition to permanent 
faults which are said to be hard faults); they can affect industrial 
applications. In particular, they have been reduced by the use of a passive 
protection, a layer of resin applied on the integrated circuit which traps these 
partic1es. The importance of the efforts made by companies working for 
aeronautic and space applications in order to counter problems of the EMC 
(Electro-Magnetic Compatibility) should also be known. International 
standards that must be satisfied by electronic equipment are being put into 
place, which allows higher robustness against radiation. 

Beyond particular points dealing with temperature or radiation, all 
operating conditions should be mastered during the creation stages, then 
controlled during the operation by supervision and maintenance techniques. 

11.3.2 Software Technology 

The production of an executable pro gram from a program source, and its 
execution in operational phase are entirely automated. The tools used for this 
are the following: a compiler, a linker and a Run-Time Executive or Kernel. 
They are regrouped under the term of Run-Time Environment. Obtaining 
these tools does not require big efforts from the source program designer. 
He/she selects them rapidly with the purchase price as the principal criteria, 
and then the ergonomy of the interface or the quality of the documentation. 
Dependability issues are generally not considered. In the same way, a Run
Time Environment has to be chosen with care, taking the demands for 
dependability into account. We are going to present three criteria which 
should be studied: 

• the existence of Run-Time Environment verification means, 

• the research and exc1usion of language features whose diverse 
implementations lead to hazardous behavior, 

• the definition of constraints on the implementation of the language's 
features in such a way which wams against the effect of perturbations 
altering hardware resources. 
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11.3.2.1 Confidence in the Run-Time Environment 

The trust attributed to a chosen Run-Time Environment language has to 
be justified. Indeed, the presence of a fault in a compiler, a linker, or an 
executive can induce a failure in the application. This trust can be 
established by tests in which the inputs are constituted of a set of programs 
which manipulate the possibilities of the programming language. Due to the 
multitude of the possible feature combinations offered by the language, the 
realization of exhaustive tests constitutes an enormous and non-direcdy 
productive work for the firm. Not being able to carry out these tests, this 
firm disposes of two complementary solutions: 

• use of a language whose validation procedure for run-time environments 
already exists and which is accessible (this is the case, for example, with 
Ada language), 

• keep as much as possible, during several projects, an already used 
environment whose list of usage situations creating erroneous programs is 
maintained. This information arises from the rnanufacturer and from the 
environment's user groups. This has to be added to the knowledge of the 
engineers who are responsible for the pro gram development. 

In this last case, even if the environment present flaws, they are identified 
and we can have faith in the use of language from which have been 
forbidden the yet recorded dangerous configurations. We should point out 
that, contrarily to the first solution (environment validation procedure), it is 
the compiler' s clients who (unfortunately) are frequently the testers. The 
need for dependability therefore justifies the fact that a company refuses to 
use the 'last compiler which has just come out' . 

11.3.2.2 Hazardous Features 

Certain features of languages are not conceptually dangerous. For this 
reason, they have been preserved after their study which was exposed in 
section 11.2.2.2. However, these features have to be exciuded, due to the 
variable behavior they induce in the executable program, according to the 
realization choices of the Run-Time Environment. 

Pay attention! The real effect of a feature on an executable program's 
functioning can vary. This happens not only when passing from one 
environment provider to another, but also for two environments which come 
from the same provider. These two environments can be distinguished by 
different hardware platforms or by different versions on the same platform. 

We consider real numbers as a first example. Their rnathematical 
definition is very precise. However, a computer cannot transpose this 
definition. For example, the series SN = I/I + 1/2 + 1/3 + ... + 1/N is 
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mathematically divergent whilst it converges when it is translated in the 
form of a program. Indeed, when N is big, lIN is assimilated to 0.0. In 
addition, the value to which the program converges depends on the 
definition of calculation means offered by the Run-Time Executive. 

We consider a second example of a program which uses shared variables. 
We suppose that no interleaving exists between the used features as 
described in sub-section 11.2.2.2. Therefore, there are no design faults. 
However, its implementation on a distributed system can be carried out 
using several exemplars of the variable. A copy for each machine executing 
at least one task which makes reference to this variable will indeed increase 
the performance. However, the integrity of the copied values is not always 
guaranteed. Only the 'synchronization points' between tasks generally 
ensure bringing all the diverse copies up to date. It seems that this situation 
cannot be meet in the case of a simple variable (contained in a memory 
word) and memorized on a single machine. Exercise 11.4 shows that this 
problem can also exist in this case, even on a mono-processor system. 

11.3.2.3 Implementation Constraints 

In the case of software technology, restrictions can be made to the way a 
feature is implemented on a given hardware platform. These constraints 
apply for example to the code generated by the compilation of a language 
statement. They aim at obtaining a unique behavior and to support the 
perturbations of the execution resources. Once again, the demands of 
dependability will eventually go against the demands for performance. 

To illustrate these constraints, consider the example of the classical 
multiple branching statement (statement Case of Ada language, or Switch of 
C language). 

Example 11.4 

case Choice is 
when Choice 

when Choice 
when others 

endi 

1 => Treatment_li 

N => Treatment_Ni 
=> Treatment_othersi 

Two techniques are generally used to implement this statement. 

The first one, called 'branching by address table', uses a table, which, at 
every 1 value of the Choice variable, makes the address correspond to 
where Treatment_I code starts. If Choice can take more than M values, 
with M>N, the addressing table contains the addresses of the start of 
Trea tment_Others for the M-N last cases. This solution produces a high-
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performing final executable code, as the addressing is direct according to the 
1 value of the Choice index. 

The second solution treats this statement as a set of nested i f: 
if Choice = Choice_l then Treatment_I; 
elsif Choice Choice 2 then Treatment_2; 

elsif Choice 
else Treatment_Others; 
end if; 

The execution of the code thus generated is a lot slower. Indeed, before 
starting the execution of Treatment_I, it should be stated that: Choice "# 

Choice_l, then Choice "# Choice_2, then Choice "# Choice_3, ... , 
and finally Choice "# Choice_I-l. 

However, if the value of the Choice variable does not belong to the 
value intervals (Choice_l, ... , Choice_N), nor to (M -N) other possible 
values (branch Treatment_Others), due to a previous erroneous 
calculation or due to a fault in the memory containing the value of Choice, 
therefore: 

• with the first solution, the branching will be carried out anywhere (at a 
memory address outside the table, non-specified), 

• with the second solution, the erroneous value of the Choice variable will 
provoke the execution of Treatment_Others. 

In the first case, the program' s real behavior will be hazardous, In the 
second case, it is known apriori. Therefore, the Treatment_Others can be 
reserved to an error treatment. 

11.4 EXERCISES 

Exercise 11.1. Component choice 

A product can be realized according to two non-redundant and 
functionally equivalent structures which use components of reliability laws 
with constant failure rate. The first solution SI has: 

- 12 components with a failure rate of 10'7, 
- 1 component with a failure rate of 10'6, 
- and 3 components with a failure rate of 10'5. 

The second solution S2 has 4 components with a failure rate of 10'6. 

Which one is the best choice from the reliability point of view? 
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Exercise 11.2. Comparison ofthe reliability oftwo products 

Two products, PI and P2, have exponential reliability laws of respective 
failure rates Al = 10-5, and A2 = 10-7, at a temperature of 18°C. We suppose 
that the failure rate is multiplied by 10 for an increase of temperature of 
20°C for the product PI and of 10°C for P2. Furthermore, the products have 
a maximum temperature of good functioning of 100°C for P2 and of 120°C 
for PI . 

For which temperature range does the PI product have a better reliability 
than the P2 product? 

Exercise 11.3. Shared FIFO 

The asynchronous communication between real-time application's tasks 
is programmed by using a FIFO list (First In - First Out). This list is 
implemented by a data structure composed of an array named Buffer of 
size Buffer_Size with two indexes Write_Index and Read_Index. 
These indexes respectively represent the index of the first free place in the 
array, and index of the next character to read. In the zone of the array 
between Read_Index and Wr i te_Index-l, values are stored as shown in 
Figure 11.10. 

IFIFOI 

T WrireJ 1 • Read_Index ·1 

D A~Y_M" wri,~ ""~..., 
Figure 11.10. FIFO management 

We suppose that there is always at least one element in the array and that 
it is never full. This array is managed like a circular buffer. Thus, the access 
operations Write and Read are programmed by: 

Procedure Write{X : in Element) is 
begin 

Buffer{Write_Index) := X; 
Write_Index .- (Write_Index mod Buffer_Size) + 1; 

end Write; 
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Procedure Read(X ; out Element) is 
begin 

X ;= Buffer(Read_Index); 

Chapter 11 

Read_Index ;= (Read_Index mod Buffer_Size) + 1; 
end Read; 

Determine the state of the array when: 

1. two calls to wri te happen at the same time (the statements of the body 
of the procedure Wri te are executed in an interwoven way); 

2. a call to wri te and a call to Read happen at the same time (the 
statements of the bodies of the procedure Wr i te and Read are executed 
in an interwoven way). 

What would you conclude about this programming of an asynchronous 
communication between two tasks? 

Exercise 11.4. Hazards in shared variable implementation 

We consider a multi-task application which uses a shared simple type 
variable, that is to say memorized in one single memory word. We will also 
suppose that all the modifications of this value are carried out directly, 
without local copies in the tasks, contrarily to what was presented in seetion 
11.2.2.2. No design or programming problems exist therefore, and this 
communication mechanism between tasks seems to be without risk. Its 
utilization should even be encouraged due to its performance. This exercise 
aims at showing that faults are introduced by the implementation of this 
mechanism. 

We study the implementation of reading and assignment statements for 
this variable. We will suppose that the microprocessor offers decrease and 
increase statements which act uniquely on the registers. By studying the 
code generated by the compiler for the extracts of two tasks, show how this 
brings us to the problem discussed in section 11.2.2.2. 

Program: 
Task 1 ; 

1++; 

end Task1. 
Task 2 ; 

1--; 

end Task2. 
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Removal of Technological Faults 

We continue our exploration of the principal groups of protection 
methods by now considering dynamic analysis techniques, called here off
line testing techniques. Test sequences are applied to an executable product 
during the production and operation stages. This chapter dealing with the 
removal of technological faults extends Chapter 11 dedicated to prevention 
of technological faults. However, the techniques presented here also allow 
the detection of certain functional faults stemming from previous 
specification and design stages, faults which occurred despite the protection 
means used during these stages. We note that these residual faults should 
have been detected earlier, as their detection in the production, or, even 
worse, in the operation phase, may question the design and technology 
choices. This chapter is principally concemed with hardware products. In 
Chapter 13, we will complete this presentation of on-line testing with the 
study of several simple structural test methods for hardware and software 
systems. 

Section 12.1 provides a general overview of off-line testing and the 
relationships between the product and the tester. In section 12.2, we focus 
our study on the specificity of logical production and maintenance testing. 
Finally, the problem of generating tests on logical circuits at the gate level is 
considered in section 12.3. 

12.1 OFF -LINE TESTING 

Test plays a major role amongst the fault removal approaches. In Chapter 
10, we have already discussed this point, in regard to the design stage. 
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12.1.1 Context of Off-Line Testing 

Here we focus on the production and operation stages (Figure 12.1) 
which imply different test methods known respectively as production 
testing, and maintenance testing. 

Problems 

(~) 
Solutions 

PreveDtioD 
;;,'-;,'-;;:::::::.::.=::::::=-_-----

Removal 
VerificllIioll 

Removal 
VerirlCllIioll 

Validtllioll 

PreveDtioD 

Removal 
PrO/NCtto" tntIIt6 

Toleranu 

RemovaJ 
Mo;"tnr_ tndI,I 

Figure 12.1. Production and maintenance testing 

Test is originally an experience led extemally on a real system to confirm 
of invalidate a hypothesis or to distinguish between several hypotheses. This 
word has been first developed in the biological and psychological domains. 
We thus apply stimuli, that is to say a set of sequences constituted of input 
vectors, and we observe and interpret the output responses by comparison 
with the expected values. In our context, we will subject a product to an 
experiment in order to determine if it functions correct1y or not, and 
eventually identify the fault or faults affecting it. 

Two kinds of tests exist: 

• The detection test, which answers the question: 
does the product function correct1y? 
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• The diagnosis test, or localization test, or debugging, which answers the 
question: 
wh ich faults affect the product? 

These two test categories are different. They are traditionally linked 
according to a scenario illustrated by Figure 12.2 which includes detection, 
diagnosis (or localization), and correctionlrepair operations. 

~ diagnosis I ~ correctionlrepair I 
Test 

Figure 12.2. Test mechanism: detection - diagnostic - correction 

Finally, the application of a detection or diagnosis test is generally 
carried out on a product disconnected from the process to which it is 
normally linked during the operation stage. Therefore, we say that this is off
line testing. This is not the only way to proceed, and we will meet other 
techniques which test products during their functioning in their natural 
environment: this other test approach will be referred to as on-line testing. It 
will be examined in Chapter 16, as it is often the first step of fault recovery 
in fault-tolerant systems. 

12.1.2 Different Kinds of Tests and Testers 

12.1.2.1 Test Equipment 

The basic context of the test of electronic circuits is given by Figure 
12.3. The circuit, called the device under test (or DUn, is connected to an 
extern al entity called the tester, or test equipment. This tester applies a test 
sequence to the product and observes how the product reacts. According to 
the circumstances, the tester is a human operator, a physical system or a 
software system. 

Tester 

Figure J 2.3. The tester 
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This situation correspond to off-chip testing, because the resources are 
allocated externally. On the contrary, on-chip testing uses embedded test 
resources. We will exarnine this new and developing approach when 
studying the Built-In Self-Testing (BIST) techniques (in Chapter 14). 

12.1.2.2 Test Variety 

Investigation techniques allowing a circuit to be tested are numerous. We 
can act on the circuit and observe the results by contact probing (electrical, 
and mechanical), or non-contact probing (electron-beam or laser). 
Investigation means can be internal (special test connectors and pads, 
scanning by electron-beam or laser) or external (normal input/output pins or 
special pins used for testing purpose only). 

In electronics, we often meet the word 'test' in numerous different 
situations. In order to show this diversity, we take the particular case of the 
production of electronic equipment used in an aeronautic application. This 
equipment comprises integrated circuits designed and manufactured by a 
serniconductor manufacturer. Figure 12.4 illustrates the different stages of 
this particular cyc1e and the verification and quality assurance actions 
conducted by the various agents involved in this process. These tests can be 
useful in fault prevention as weH as in fault removal. We have already noted 
the tight links existing between these two dependability approaches. 

Design 
Veri.fication 

ReUability Evaluallon 

Quallly Control 

Reliability Testing 
(acceler3led) 

De/eet Analysis 
Physical Testing 

Component 
Design 

Je 
Manufacturer 

Alpha & Beta 
Tests 

Component Process 
Fabrication Control 

Production Testing 

Input Testing Equipment 
Manufacturer 

IC Integration I 
Production Testing 

User 
Maintenance Testing Mointenonce I 

Figure 12.4. Examples of different test operations 



12. Removal ofTechnological Faults 283 

These verification operations are firstly carried out during the design 
stages of the components considered here. These operations have already 
been presented in Chapter 10. Before the final commercialization, the 
components are subjected to compliance test to ensure their adequacy to the 
specifications. Then, these components are released to a "friendly" user 
(Alpha test), then, the scope of their use is enlarged to a still controlled 
group of users (Beta test). Additional conformity tests can be processed by 
external organizations or clients. 

The IC manufacturer subject manufactured components and production 
machines to a certain number of tests during the manufacturing process and 
after manufacturing to ensure that the components will be of good quality 
and reliability. On the one hand, these operations concern the reliability 
evaluation and the quality control (by means of reliability accelerated 
testing, defect analysis, physical testing), and the process characterization 
and control already introduced in Chapters 7 and 11, regarding fault 
prevention. On the other hand, we meet the production testing, which is 
analyzed in this chapter. All the tests carried out in the normal 
manufacturing chain are applied to the majority of products, if not to all of 
them, and they have to be non-destructive. On the contrary, the quality 
control tests, and reliability evaluation tests are applied to significant 
sampies of the components. They can be destructive, notably when we want 
to identify the fault at the origin of an observed failure. 

The manufacturer of the final equipment integrates the components after 
having subjected them to tests specific of the application. As for Ie 
production, compliance, alpha, beta, and conformity test procedures can be 
applied to the produced equipment. Then, the manufacturer naturally carries 
out a production test of his/her final equipment. Finally, a maintenance test 
is applied to the equipment during its active life, for example by the airline 
company using the equipment. 

We complete this presentation in the following sections by considering 
only production and maintenance testing. 

12.1.2.3 Production Testing 

The production tests of the electronic components are the responsibility 
of the manufacturer of the serniconductors. 

We essentially meet four types of such tests and therefore technological 
investigation means illustrated by Figure 12.5: the parametric test, the 
continuity test, the logicalor functional test, and a group of diverse 
techniques called here 'others'. 

1. The parametric test considers the electrical aspects of the circuit, 
according to various power and load conditions: supply, drive and leakage 
currents through the pins, impedance values, noise immunity, and dynamic 
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aspects of component switching. For example, we measure the currents and 
voltages of a sequence of input/output signals, and we draw waveforms 
wh ich are then compared to those of the data sheets. From a dynamic point 
of view, we can analyze the functioning of a component at different 
temperatures (-55°C, 25°C, 125°C). The IDDQ testing measures the supply 
current of eMOS circuits. Defect-free CMOS circuits have very low levels 
of current during quiescent states. On the contrary, these current levels are 
higher in the presence of a silicon defect. SO, IDDQ testing detects the 
physical defects that create a conduction path from the power supply to 
ground, hence producing an excessive current. 

2. The continuity test ensures that the electrical links between the 
components are correct: chips and their packages, printed circuit boards, 
motherboards, and various kinds of cables and connectors. 

3. The logical test (also called functional test) checks the logical function 
wh ich has to be ensured by the circuit; this is the type of test which is the 
main subject of this chapter. 

3. Other types of tests can also be applied to components: visual inspection, 
mechanical pin tests, corrosion tests, etc. 

Types of tests Impedances, eurrents, 
• ~ load influenee, etc. 

~ Parametnc L ., Speed, signal patterns, ete. 

~ Continuity ~ . Impedances: connectors, 
~ Logical or function~ backplanes, 

~ Others ~ Printed Orcuit Boards, ../l ~ ",ppo'" d, IC, "" 

mecbanicaJ. visual check the funelion 
inspection 

Figure 12.5. The four categories of production testing 

Some of these tests are sometimes carried out with environmental 
constraints such as the temperature or the electric supply; however, these are 
non-destructive burn in tests . Figure 12.6 gives an example of test cyde of 
an ASIC production. This test cyde integrates a screening for infant 
mortality by a 4 hours electrical bum-in at 125 °C and at elevated voltage. 

Furthermore, we find the term schmoo plots wh ich defines a logical test 
wh ich is applied by making certain parameters vary, such as the power 
supply voltage andlor the signal frequency. From this experiment, the correct 
functioning domains are deduced. 



12. Removal ofTechnological Faults 285 

The integrator of the electronic components used in the final product' s 
manufacturing also subjects these components to input (incoming) tests. 
These electric or logical tests are often of 'burn-in' type, in order to 
eliminate the weak components. Therefore, they enter in the category of fault 
prevention already considered in Chapter 11. 

WAFER FABRICATION 
ELECTRICAL TEST (100% components) 

Funetional Test 

oe Pararnetric Test 

AC Test at low VDD 

ASSEMBLY 
BURN-IN (100% components) ~ 4 H at 125°C. + Elevated Voltage ..... ~I---t 

ELECTRICAL TEST: oe Parametrie Test 

Functional Test 

AC Test at low VDD 

Critical Path Test 

!JASSEI>? RO" return to Bum-In 
Gudged by % of defectives and fail category) 

yes 

INWAREHOUSE INSPECTION 

Figure 12.6. Example oftest flow for ASIC devices 

12.1.2.4 Test Equipment 

-

Each of these test categories implies a very specific and complex test 
equipment (or tester) aiming at storing and processing information, driving 
(and extracting) signals to (and from) the tested product thanks to various 
circuits: bed of nails, high definition probes and electronic interfaces, 
switching matrices to propagate the signals, and so on. These testers are 
often very expensive: we can quote costs of testers around 5M$! They are 
used in various production domains: electronic components, automatic 
systems, computing systems, communication systems and computer 
networks, etc. Certain of these testers are products manufactured and sold by 
specialized companies; others are specifically developed for particular 
applications (for example, proprietary Automatic Test Equipment in the 
aeronautical domain). 

Of course, the complexity, costs and the importance of tests and testers 
have lead to the elaboration of standards for the description of test sequences 
and their application by the testers. 

We quote the STIL standard (Standard Tester Interface Language 
normalized IEEE P1450) which is a language describing test patterns and 
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application protocols in standard generic form and the IEEE P1500 
(Embedded Core Test) which is used for application of tests to embedded 
cores: test-description language, test-control mechanisms and peripheral 
access mechanisms. 

Another example of the standardization of test equipment is the VXI 
(VME eXtensions for Instrumentation) which is a multi-vendor industry 
standard (IEEE 1155-1992). This standard is supported by numerous 
instrument and test equipment manufacturers (like Tektronix and HP). It 
perrnits the connection of numerous instruments such as waveform 
generators, analog-digital converters, relay matrices and drivers, digitizing 
counter/timers, specific simulation and fault injector modules, etc. It is 
notably employed in the auto motive and avionics test application. 

In the integrated circuit test domain, we find a large number of 
companies which manufacture specific testers: 

• Testers designed to address design verification and prototype test: 
companies such as ASIX, Cadic, HP, HPL, Hilevel Technology, IMS, 
Tektronix, Texas Instruments, etc. 

• Production testers: Advantest, Ando, Fujitsu, GenRad, Megatest, 
Mitsllbitshi, Sentry, Tektronix, Teradyne, Toshiba, Trillium, etc. 

12.1.2.5 Maintenance Testing 

Some test production equipment and methods are employed for 
maintenance testing. However, the test objectives and constraints are 
generally different. In particular, the investigation means is more reduced 
than during production, and we are mainly interested in diagnosing the faults 
detected in order to proceed to repair them efficiently. These characteristics 
will be defined in the next section in relation to logical tests. 

LOGISTIC ASPECTS 
Stock management 
Equipment management 
Man-power management 

MAINTENANCE Work management 

SYSTEM TECHNICAL ASPECTS 
Experimental approach 
Model-based diagnosis 

Figure 12.7. Computer Aided Maintenance 

The maintenance calls for various operations: research of documentation, 
fault diagnosis, management of replacement parts, repair, and final system 
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test. Two categories of Computer Aided Maintenance (CAM) computing 
tools assist the maintenance team (Figure 12.7): 

• Logistics: management of human resources, stock and budgets, 

• Technical: rnaintenance techniques assisted by computer or systems 
which help the diagnosis. 

Various classifications of the maintenance testing approaches have been 
proposed, according to the point of view considered: knowledge about the 
system and/or the faults and failures, type of information (certain or 
statistical), type of involved techniques (inductive or deductive), etc. We 
adopt a simple classification based on two groups: the experimental 
approaches, and the model-based approaches. 

Experimental approaches 
The experimentalapproaches, also called empirical associations, are 

based on knowledge of faults or errors, failures and their relationships. These 
relationships between observed symptoms (failures) and the list of possible 
causes (faults/errors), and sometimes tests to be executed to precise the 
actual cause, are stored in a knowledge database. 

When a failure occurs, an expert system or a human operator determines 
the real causes using the database. As this analysis does not require any deep 
knowledge on the product behavior or structure, it is called surface or 
shallow reasoning. The term reasoning by association is also used. 

The main problem with this approach deals with the definition of the 
knowledge database. 1t is constituted from two sources of information. 
Firstly, it uses experimental feedbacks from exploitation: the maintenance 
agents communicate information about real failures and their causes found 
by their own analysis. Secondly, this knowledge is produced by an analysis 
of the product before its use. This analysis involves two kinds of methods: 

• 1nductive methods such as the FMEA. Starting from supposed fault (a 
fault model is supposed known), the induced failures can be determined. 

• Deductive methods, such as the Fault tree Method (FTM). Starting from 
imagined failures, their causes as faults or errors are determined. 

In practice, the two methods are used together: the database contains 
initial pieces of information obtained by an analysis of the system; this basic 
knowledge is then extended by experimental feedback from operation. 

Model-based approaches 
The model-based approach es do not explicitly assurne any fault or error 

model. Hence, no relationships between failures and faults exist apriori. 
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These relationships are established for each failure to be diagnosed, using 
the system modeling: specified behavior, designed structure, etc. 

The occurrence of a failure and the determination of the causes are 
established by a comparison of the modeling of the actual behavior or 
structure and the corresponding modeling of the faultless system. For this 
reason, this approach is also called diagnosis based on deep knowledge, or 
diagnosis based on structure andfunction. 

To make the diagnosis easier, a diagnosis algorithm, or diagnosis 
process, is provided. 1t defines firstly, modeling tools, such as the diagnosis 
fault tree introduced in sub-section 12.2.4. 1t defines secondly, tasks or steps, 
an example of which will be given in section 13.7 of Chapter 13 dealing with 
structural testing, as this diagnosis method needs knowledge on the system 
structure. Certain tasks can use for instance the application of fixed or 
adaptive test sequences. 

To conclude, experimental approaches are mainly used when 
associations between faultlerror models and failure models, such as in 
Electronics. The model-based approaches are efficient when such 
associations cannot be provided as database. The term experimental 
approaches refers to established knowledge, and does not imply additional 
experiments on the product, such as test sequences which can be used in 
model-based approaches. 

We must also mention that the techniques based on these approaches can 
be used off-line, that is after a failure occurrence in a system which is 
stopped, or on-fine, that is during operation (self-diagnosis). In practice, both 
approaches are often used together, and are partially implemented in the 
system (for instance, error detection only), and handled off-line. 

12.2 LOGICAL TESTING 

We will now focus on the logical test issues during the production and 
maintenance stages. 

12.2.1 Logical Testers 

12.2.1.1 The Three Basic Families of Testers 

In order to simplify our study, we suppose: 

• that the test has one single sequence (called input sequence) constituted 
of n input vectors applied to the product « ei», 

• and that the tested product responds to this sequence by an output 
sequence of n output vectors « Si ». 
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Each vector ej is called elementary test vector. The test sequence is the 
list of all test vectors. Sometimes, the test sequence represents the input 
sequence only. The test can be constituted of several sequences with or 
without previous product initialization, and their length (number of vectors) 
is not necessarily the same. We should note that numerous products do not 
satisfy the simplistic rule of '1 input vector - 1 output vector' . For example a 
microprocessor does not respond immediately to each applied input vector. 
To deal with this case, we introduce the notion of 'no value' ,as one of the 
normal output values. In addition, the tester may only look at output data at 
certain times during aperiod; this is usually called strobing technique. Thus, 
we do not observe the outputs in a continuous manner. For example, when a 
test vect'or is applied to a microprocessor, it can provoke a sequence of 
interna! operations (it is the . case when a microprocessor executes an 
instruction); then, the output data given by the microprocessor is sampled at 
the end of this sequence (hence, after a certain number of c10ck pulses). 

Three different logical test approaches exist: with a reference list 
(illustrated by Figure 12.8-a), with a standard (or referent) product (Figure 
12.8-b), and by signa tu re analysis (Figure 12.9). 

Tester Input Sequence 
Tester 

Input Sequcnce ... ~ 
? /" 1 ß..j 

" ~ 
.... 

SP.l ... Oulput Sequcncc P jI 

~ " '+ R .' I" , / 
~~ "Output Sequences ,~ 
~ e e Reference 

a) Test v.ith refererx::e list b) Test v.ith referent r:rOOlO 

Figure 12.8. Test with reference list and referent product 

Tester Input Sequence 

Figure 12.9. Test by signature 
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12.2.1.2 Test with Reference List 

The tester applies a test sequence and compares the output sequence 
delivered by the product with a predefined reference list (stored in the 
tester's memory). This is known as a determinist test whose sequence is 
obtained either automatically (algorithmic test generation) or manually 
(thanks to the designer's 'know-how'). This approach is the most efficient, 
but it is not the most used due to the difficulty in determining the test 
sequence; this has been mentioned in Chapter 10 for design verification. 

12.2.1.3 Test with Referent Product 

The tester simultaneously applies the input vectors to the tested product 
and to a standard product (or referent product) which is supposedly fault 
free. The comparison between the two obtained output sequences allows the 
tester to decide if the tested product functions correctly. The applied test 
sequence is often random, or pseudo-random. The random aspects of these 
sequences can also be constrained by information about the product' s 
functioning or structure: for example, we choose the inputs which are the 
most frequently applied to the product during its useful life, or sub
sequences allowing to enter in aburied part of a multi-level sequential 
system (case of a microprocessor), etc. 

The expected outputs do not have to be known apriori, contrary to the 
previous approach. This technique is greatly used, as it is simple to carry out. 
The advantage of not requiring knowledge about the expected outputs is 
important. In Chapter 10 we have already explained the difficulty to obtain 
these output values in some cases. However, this technique is based on the 
trust that we can bring to the standard referent product. Moreover, it is not 
always possible to dispose of a reference exemplar of the tested product. 

12.2.1.4 Test by Signature Analysis 

With the test by signature analysis, the tester does not have any precise 
reference about the expected product' s output values. It treats these values 
by a reducing mathematical transformation (compaction) to extract a 
signature whose likelihood establishes the correctness of the product' s 
functioning. This technique originates in the test by observation of 
characteristics of some signals of analog electronic equipment. Thus, to test 
a television set, we can ex amine with an oscilloscope the waveforms of 
signals present in certain predefined places, in order to detect certain faults. 

This technique offers the advantage of being able to reduce the length of 
the output sequence to analyze. The complexity of the tester is drastically 
reduced. This is why this approach develops today in the frame of integrated 
test Built-In SeifTest (BIST) examined in Chapter 14. 
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This technique applies also to software systems. The signature is defined 
by property on some data. When the property is tme, the program is 
considered as correct, and when the property is false, the program is said to 
be incorrect. For instance, the type of an output parameter defines a 
property: the output values must belong to the range specified by this type. 

The main drawback of signature analysis approach is a sometime large 
limitation in the fault coverage. Indeed, the satisfaction of the defined 
property does not guarantee the absence of faults in the product. For 
example, let us consider a product regulating the temperature of a car 
radiator. The type is an integer included in the range [0, 100]. If a fault 
blocks the data delivered by the sensor at 20DC, the sampled value satisfies 
the type property, while the actual value is 105DC, leading to a failure of this 
regulation product. 

12.2.2 Test Parameters 

The main test issue is the determination of the test sequence. Several 
parameters allow choosing test methods appropriate to assigned objectives 
and to existing or affordable means. These parameters characterize: 

• the test sequence generation: facility of the generation of the test 
sequence, cost of the associated means (humans and tools), 

• the test sequence quality: its length or number of test vectors (wh ich 
conditions the test duration), and its efficiency in terms of fault coverage 
rate (that is to say the percentage of faults revealed by the test). 

As previously mentioned, two distinct missions can be assigned to the 
tester: detection and diagnosis . The detection test identifies the product' s 
state as 'good' or 'bad'. The diagnosis test refines the analysis and 
deterrnines the elements affected by faults. Hence, it is more complex: the 
test sequences are much longer, and their obtaining is more difficult. 

The test sequences are determined by automatie or manual test 
generation methods. These methods can be split into two distinct groups: 

• with fault model, when we try to detect the effects of faults and to 
diagnose the faults relevant to a given model, 

• without fault model, when no precise hypothesis is made on the type of 
faults considered. 

The notions of faults associated with a technology have been introduced 
and explained in Chapter 5. We should remember that the traditional term 
'fault model' in reality often covers classes of eITors (regrouping classes of 
faults) called error models. Thus, the basic fault model for logical circuits is 
the single stuck-at '0' or at '1' faults of the inputs and outputs of the logical 
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gates which constitute the circuit studied. 
The methods of the first group often apply to systems, whose detailed 

structures are known, for example, the electronic circuits whose 
implementation technology is mastered by the manufacturer. We can 
therefore judge the quality of the test (test evaluation) by the coverage 
criteria, which is relative to a precise fault model. 

The fault coverage of a test sequence is the ratio between the number 
of faults detected and the total number of faults contained in the fault 
model. 

For example, if we consider the previous simple stuck-at 0/1 fault model 
of a logical circuit with a total of w gate inputs and outputs, the coverage of a 
test detecting d faults is c = d / (2.w); each line can be stuck either at '0' or at 
'1' . 

On the contrary, the second approach (without fault hypothesis) concerns 
the products for which we do not know any precise and representative fault 
model; this is frequently the case with software. The test sequences are 
therefore not determined from faults which can affect the structure, but from 
specifications which define the expected behavior. We will discuss this with 
regard to the efficiency of such sequences in section 12.3.1.2. 

Some logical test methods with fault models for hardware and software 
products will be introduced in Chapter 13. Again, a complete and detailed 
presentation of the hardware and software test methods would necessitate an 
entire book. 

The off-li ne test therefore concerns the production and utilization stages. 
In these two stages, the problems raised and the solutions used are not 
exactly identical. We are going to successively ex amine the production test 
associated with the production phase, then the maintenance test associated 
with the operation phase. 

12.2.3 Production Testing 

As already noted, the production test essentially concerns the production 
of hardware systems (complete circuits or equipment). Due to the constraints 
imposed by the production rates of electronic components, the manufacturer 
generally applies a detection test which is as short as possible. This is a test 
with fault model obtained using a fIXed sequence. The expected input 

vectors ei and output vectors Si are known. We note Vi = (e;. Si). The n 
vectors of the sequence are applied one per one, and each time we compare 
the output delivered by the product with the expected output. The product is 
reputed to be 'good' when it passes the n vectors with success. On the 
contrary, it is reputed to be bad as soon as it provides a different response 
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than the expected value. This test, sometimes called GO-NOGO, provides 
therefore two sets of products: those qualified as 'good' and those qualified 
as 'bad' (see Figure 12.10). 

Test Sequence 

i+KO 
OK ~ 

correct 
answer 

V n-l 

Va 

wrong 
answer 

I:::::::J ... 
Good Bad 

Figure 12. /0. Detection testing 

Let us note that a different approach could be taken to test with adaptive 
sequences, which are defined dynamically, taking the previous results of the 
test into account. The adaptive testing is essentially used for diagnosis and 
will be discussed in sub-section 12.2.4.3. 

coverage (%) 

100 I--...,.--r----""*---
70 acceptance 

level 

o 
o 1 2 length of the 

sequence 

Figure 12.11. Fault coverage 

For a production, the yield is the statistical percentage of good products 
on the total number of manufactured products. The average duration of the 
test depends on the proportion of defective manufactured products. 

Production constraints lead electronic component manufacturers to 
demand test sequences with limited duration (e.g., a component' s test should 
not go over 10 seconds). Then, there is a (negotiated) reduction of the fault 
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coverage which may become inferior to 100%. Figure 12.11 shows that the 
sequence length can be reduced from i (optimal value of the test at 100%) to 
j<i vectors, if we accept a reduced coverage to 70% of faults. 

Consequently, the product buyer has to be very careful and verify: 

• the number of components which are effectively tested (we speak here of 
test at 100% when all the components leaving production are tested), 

• the fault coverage of the applied test, 

• and the fault model considered. 

Example 12.1 illustrates the notion of efficiency of a test sequence 
according to the fault coverage. Example 12.2 analyzes the influence of the 
fault coverage on the production yield. 

Note. The length of the test sequence, and therefore the cast of the test 
applied to the product, can be one of the reasons justifying big differences in 
component prices. A component from the same production chain could have 
a higher price than another one, due to the fact that it has been subjected to a 
deeper test. Therefore, the client pays for the justified supplementary trust 
he/she can place in this product, that is to say its dependability. 

Example 12.1. Test coverage of a NAND gate 

Let us consider a 3-input NAND gate (Figure 12.12) and a 'single stuck
at 011' fault model. We firstly analyze the exhaustive test sequence 
constituted of the 8 input vectors, from 000 to 111. Each input vector tests 
some of the 2x4 single stuck-at 0/1 faults. 

Figure 12.12. Three-input NANO gate 

The fault tahle (or coverage table) of Table 12.1 shows all the faults 
detected by the 8 input vectors: on each row, the symbols 0, 1, and -, 
respectively indicate the detection of a stuck-at 0, a stuck-at 1, or no 
detection of the corresponding line (columns a, b, c, and d). For example, if 
the input vector (011) is applied, we detect the stuck-at 1 of input a, and the 
stuck-at 0 of output d, as the output equals 0 instead of the expected 1. 

It should be noted that, for the moment, the determination of faults 
detected by a vector is done by a simple comparative analysis of the 
functioning with and without faults. More efficient methods will be 
presented in the next chapter. 



12. Removal ofTechnological Faults 295 

Input vectors Test coverage 

abc a b c d 

000 - - - 0 
001 - - - 0 
010 - - - 0 
01 1 1 - - 0 
100 - - - 0 
101 - 1 - 0 
1 10 - - 1 0 

111 0 0 0 1 

Table 12.1. Fault table 

From this table, we can deduce the coverage curve corresponding to any 
given test sequence. For example, the left part of Figure 12.13 shows the 
coverage curve of the exhaustive sequence. The first vector (000) detects one 
fault of the 8 possible faults. The following vectors (001 and 010) testing 
exactly the same fault, the coverage is not improved: it remains at 118, We 
must wait for the last test vector (111) to reach a 100% fault coverage. 

Let us now examine the optimal test sequence which has 4 test vectors: 
<011, 101, 110, 111> (the determination of this optimal test sequence will be 
considered in Chapter 13). The second part of Figure 12.13 shows that each 
vector in this sequence brings the detection of new faults. 
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Example 12.2. Production test coverage vs. yield 

The test of the components of a given integrated circuits manufacturing 
chain has the following characteristics: 

• all the components are tested with a fixed test sequence, 

• the fault model is the set of the permanent stuck-at '0/1' of the 
inputs/outputs of the logical gates, 

• the sequence covers 70% of these circuit's faults: c = 70%. 

From this data we deduce that, if the statistical yield of this production is 
y = 95%, a probability exists p = (1 - c).(l - y) = 0,3 x 0,05 = 0,015 that a 
component affected by a fault is however declared as 'good' when the test is 
issued. This result is the number of statistically defective components whose 
faults have not been detected. Exercise 12.3 comes back to this study. 

12.2.4 Maintenance Testing 

12.2.4.1 Corrective, Preventive, and Evolutive Maintenance 

We have already pointed out in Chapter 7 that the maintenance is an 
operation integrated into the utilization stage of the product: the product' s 
functioning is stopped for a test, and eventually, a correction or repair action 
is made if a fault is detected and if the product is repairable. 

The decision to carry out maintenance operations depends on the product 
use. In certain cases, we decide to test the product because a failure has been 
noticed during its operation. For instance, we ask for repairing a household 
appliance or a hi-fi equipment which is defective. This is known as 
corrective maintenance. On the other hand, in other cases, a policy of 
systematic and periodic maintenance is practiced, even if the product does 
not show any sign of failure. This is the case for example in avionics where 
the equipment is checked systematically with strict and predefined 
scheduling after a given period expressed in number of flight hours. This is 
known as systematic preventive maintenance. The maintenance action can 
also be decided after the occurrence of some events detected on-line, for 
example when the temperature becomes excessive. This case corresponds to 
conditional preventive maintenance. 

Maintenance often has a far wider meaning than just a simple test, 
notably in the software domain. This implies operations which tend to 
improve or make the product evolve according to new constraints (e.g. 
increased performance) or new functionality (e.g. offering new services). 
This is known as evolutive maintenance. 
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12.2.4.2 . Detection and Diagnosis 

Everything that has been said in the previous paragraph regarding 
manufacturing tests is of course valuable in the case of maintenance tests. 
However, the detection requirements (measured for example in terms of fault 
coverage) are often greater whilst the time available to test is also greater. 

In addition, it is often necessary to push the investigation further in order 
to diagnose the fault or faults which affect the repairable products, before 
repairing them. This is known as diagnosis (or localization) testing. 

The diagnosis testing supposes knowledge about a more or less refined 
fault model, according to the nature of desired investigation: MOS transistor 
level, IC level, PCB level, etc. 

This kind of test is more complex to obtain and its duration is much 
longer than the detection test. Indeed, this test must not only signal failure 
but also provide information which allows the internal cause to be deduced. 
The detection test tries to cover a maximum number of faults with the 
minimum number of test vectors. In the case of Example 12.1, the vector 
(111) covered four faults (stuck-at 0 of lines a, b, and c, and stuck-at 1 of 
line d). All faults detected by an input vector are said to be pattern 
equivalent faults, that is faults provoking the same failure. When dealing 
with diagnosis test, we want to split these faults into separate classes. For 
example, is it possible to distinguish between the 4 previous faults? 
Unfortunately, as we will study latter, some faults cannot be distinguished 
from the outside of a circuit: such faults are said to be system equivalent 
faults. This is the main issue of diagnosis techniques. 

Traditionally, and for reasons of operation duration, the maintenance test 
has two successive stages: 

• detection testing, which allows the 'good' or 'bad' functioning of the 
product to be known rapidly, 

• diagnosis testing applied if the previous test reveals a failure, in order to 
find the faults responsible and then correct them. 

Figure 12.14. Maintenance testing 

When the diagnosis test is made, the products which present faults are 
repaired by technicians who change the defective components. After this 
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repair, it is advised to re-apply a detection test in order to ensure that the 
repair has not introduced new faults. This test is called a non-regression test. 
Figure 12.14 illustrates the complete maintenance cyde which presents the 
four previous operations. 

12.2.4.3 Fixed and Adaptive Diagnosis Testing 

Two different test categories allow fault diagnosis: 

• fixed diagnosis testing illustrated by Figure 12.15 a), 

• adaptive diagnosis testing illustrated by Figure 12.15 b). 

The fIXed diagnosis testing records all the product' s responses (output 
values) in the form of a vector, called signature, containing n elements. Each 
element of this vector corresponds to the response of one test vector: if the 
product's outputs are correct, we write 'good' (noted OK), if not we write 
'bad' (noted KO), coding when possible the different forms of incorrect 
responses. If the signature contains 'good' elements only, the product is 
correct. On the contrary, it is necessary to analyze the signature to localize 
the fault or faults with the help of a diagnosis tree that will be described in 
sub-section 12.2.4.4. 

answers 
OKIKO 

VI oklko 

V2 oklko 

V3 oklko 

Signature 

V .. :1 oklko 

V. oklko 

Diagnosis 

a) fixed sequence 

Diagnosis 

b) adaptive sequence 

Figure 12.15. DiagnQsis testing 

The fixed diagnosis testing is often questionable. To illustrate the 
criticisms, imagine a doctor who asks his/her patient a fixed list of 
predefined questions. Such a diagnosis method can lead to questions that are 
irrelevant, or without any answer. In reality, a doctor adapts his questions to 
the previous patient' s answers to obtain rapidly a precise diagnosis. This 
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tecbnique is known as adaptive diagnosis testing. Tbe tester reacts to tbe 
product' s good or bad response at eacb applied test vector: tbe next vector 
depends on tbis response. Tbis approacb is more efficient in terms of test 
lengtb, as tbe diagnosis tree is developed as tbe test progresses, but tbe test 
sequence is a lot more difficult to elaborate. 

12.2.4.4 Diagnosis and FauIt Tree 

Basic principles 
In tbis sub-section, we consider a product, a fault model, and a test 

sequence. Tbe first test vector of tbis sequence detects a sub-set of tbe fault 
model. Before tbe application of tbis pattern, eitber tbe product is faultless 
eitber one of tbe fault of tbe fault model is present. We note F tbe fault set 
plus tbe fault free case. Tbe application of tbe test to tbe product splits tbis 
initial F set of tbe model into two complementary classes: faults detected by 
tbis vector (noted D lin Figure 12. 16-a) wben tbe product gives an incorrect 
answer (noted KO, tbe test 'fails'), and faults not detected by tbe vector, or 
faultless product (noted D l' in Figure 12.16-a), in tbe opposite case (noted 
OK, tbe test 'passes'). For tbe moment, we suppose tbat an incorrect answer 
given by tbe product does not allow distinguishing between tbese non
detected faults. After tbese two test vectors are applied, tbe faults detected 
are tbe union of tbe two sub-sets D1 and D2 (Figure 12.16-b and -c). Tbe 
coverage of a test sequence is 100% if all tbe faults belong to at least one set 
Di. However, tbis test sequence execution cannot identify tbe existing fault. 

~F ~F ©F D2 

01' 02' D' 

a) Pauern I b) PUllern 2 c) Pallerns I + 2 

Figure 12.16. Fault detection 

Tbe diagnosis fault tree technique extends tbe previous approacb by 
using tbc pieces of information provided by tbe fault partition made by all 
tbe vectors. Hence, after application of tbe two first test vectors, tbe F set is 
split into 4 sub-sets (see Figure 12.17) according to tbe consecutive results 
oftbe two tests: 

• DlnD2 for a test result <KO, KO> (tbe two tests failed), 

• DlnD2' for a test result <KO, OK> (tbe first test failed and tbe second 
one passed), 
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• D1 'rJ)2 for a test result <OK, KO> (the first test passed and the second 
one failed), 

• D1 'rJ)2' for a test result <OK, OK> (both test passed: no fault revealed) . 

Figure 12.17. Fault partition 

These four cases can be represented with a diagnosis tree (Figure 12.18), 
which is here a binary tree. If aleave of this tree contains only one fault, the 
signature of the test answer leading to this leave identifies this fault. On the 
contrary, if aleave contains several faults, they are said to be pattern 
equivalent, i.e. relatively to the test sequence. Another test vector rnight split 
these faults. If no test vector can separate this sub-set into smaller parts, 
these faults are said system equivalent according to the external 
controllability and observability. A diagnosis sequence is a complete 
distinguishing sequence if all resulting faults classes contain system 
equivalent faults. 

Notes. Sometimes, some parts of the diagnosis tree are 'impossible', that 
is to say, some sub-set intersections are empty. Consequently, a diagnosis 
tree can reveal 'impossible' leaves. We will encounter such cases later. 

F 
Pattern 1 pass7 ~I (KO) 

Fault sub-set Dl DI' 

Pattern 2 °1 \KO °1 ,\0 
Fault sub-set DI'n D2' DI'nD2 DlnD2' DlnD2 

Figure 12.18. Fault tree 

Example 12.3. Diagnosis of a AND gate 

Let us consider the 2-input AND gate represented in Figure 12.19. 
If the ab = 01 vector is applied, the normal output equals '0'; observing a 

'1' at the output can result from a stuck-at' l' fault of the a input or a stuck
at '1' of the output c. In order to know which one of these two faults is 
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present, a second test vector must be applied, for example '10': if the output 
again presents an error (value '1') the fault affects c, if not it affects a. We 
note that it is impossible to distinguish the stuck-at '0' faults of a, band c, as 
the output has the same value no matter the vector applied at the input. 

I : ----IDt--' I 
Figure 12.19. AND gate 

General diagnosis tree 
Whatever the type of diagnosis used, whether fixed or adaptive, the test 

sequence carries out a partition of the considered model' s faults into several 
distinct classes. The diagnosis sequence is complete if each class contains a 
single element or a group of system equivalenffaults. Till now, we supposed 
a simple OKiKO answer to each test vector. In the general case, more 
complex situations may occur, with several classes of bad answers to each 
test vector. The combination of all the situations corresponding to the 
applied test vectors develops in the form of a tree wh ich possesses as many 
layers as there are test vectors. Bach node, (application of a test vector), has 
as many outgoing arcs as there are possible answers. 

Sei of 
possible faults 

OKOK KOKO 

.@ OKKO KOOK ~ 
-@~ i 4 

Fault partition 
into 4 sub-sets 

Figure 12.20. Fault partition implied by a test vector 

Thus, for a circuit which has two outputs zl and z2, four cases are 
possible during the application of any test vector (Figure 12.20): 

• the two outputs are correct (situation noted as "OK OK' in the figure), 

• the first output zl is good and the second z2 is erroneous (,OK KO'), 
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• the first output z1 is erroneous and the seeond is good ('KO OK'), 

• the two outputs z1 and z2 are erroneous ('KO KO'). 

Eaeh of these responses eorresponds to disjoint situations: disjoint event 
sets, with or without the presenee of faults. This operation is illustrated in 
Figure 12.20 by a set partitioning: the set F of established possibilities 
before the application of test i is split into 4 smaller sets (Fj, j = 1, .. , 4) 
aeeording to the produet' s response to the test veetor. The union of these 
resulting sets reconstitutes the initial set F. 

The suecessive applieation of n test veetors therefore partition all the 
initial possibilities (no fault or each one of the fault model) into increasingly 
redueed different c1asses. We will analyze an example in Chapter 13. 

12.3 PRINCIPLES OF LOGICAL TEST GENERATION 

This seetion establishes the prineiples of the determination of test 
sequenees for logic circuits modeled with gates. We first expose in sub
seetion 12.3.1 the general problems of the logical test. Then, in sub-seetion 
12.3.2 we propose an intuitive test generation method, based on path 
sensitizing, to find the veetors detecting a fault of a eombinational eireuit 
deseribed by gates. In sub-sec ti on 12.3.3 we present methods allowing to 
evaluate the fault eoverage of test sequenees (jault grading); they are 
eomplementary to the test sequence generation methods. Sub-seetion 12.3.4 
synthesizes the two previous approaehes to define an algorithm for 
automatie test pattern generation. Finally, in sub-seetion 12.3.5 we diseuss 
the problem of sequential cireuit testing. 

12.3.1 Logical Testing 

12.3.1.1 Maiß Approaches 

The aim of this seetion is to introduee the different approaehes used to 
determine the test sequences, and to show their relative difficulties. Whether 
automatie or manual, test sequenee generation is an operation which is often 
eomplex, even for eombinational logie systems (without memory). 
Numerous methods of test sequenee generation have been imagined and 
applied. They ean be ordered according to several criteria: 

• The modeling level of the produet to test: 

~ funetionallevel, 

~ struetural level, 
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» structured-functionallevel. 

• The refinement level of the fault model employed (the absence of fault 
model being a limit case). 

• The method to determine the test sequence: algorithmic, randorn, etc. 

From a practical point of view, five approaches deserve our attention: 

• Exhaustive test (without accurate fault model), 

• Functional test (without accurate fault model), 

• Toggle test (without accurate fault model), 

• Random and pseudo-random test (without accurate fault model), 

• Algorithmic structural test (with fault model). 

The exhaustive test is a systematic approach. It consists in applying all 
possible vectors of the input domain! Therefore, this is a 2n -vector sequence, 
which increases in an exponential manner to test a combinational circuit with 
n inputs. This type of test is only interesting for circuits having a reduced 
number of inputs. In the case of sequential circuits, that is to say circuits 
whose behavior depends on an internal state, the sequence can be 
prohibitive, as all the state values must be taken into account. For example, 
the test of a simple 32-bit counter would require more than one hour with 
elementary tests of 1J.lS. 

The functional test already evoked for detecting functional faults during 
the design stage (Chapter 10) is the universal test tool, whatever the nature 
of the product. If, for example, the circuit is an adder, we would execute the 
addition of two numbers and we would compare the result with the exact 
value of the calculation. The structural model and the fault models are not 
used. Universally and intensively used, this simple method is far from 
satisfying the specialists, as the fault coverage is unknown. 

The Toggle Test is a variant of the simulation which analyzes the 
structure and seeks to make each component, line or variable evolve in all its 
states: for example, each line will have at least once the value '0' and the 
value '1'. With regard to the simulation, the improvement comes from the 
structure's exploitation and the activation of the components. However, we 
can show that the Toggle Test does not guarantee 100% coverage of the 
traditional hardware fault models in electronics (this will be done in 
Example 12.4). 

Random and pseudo-random test select test patterns randornly, or by 
using some heuristic, and use fault simulation to determine the faults 
detected by each vector. Test vectors are selected and added to the test 
sequence if they detect any previously undetected faults. The test generation 
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process is stopped when some required fault coverage level or computation 
time limit is reached. This method finds test patterns for the easy-to-detect 
faults quickly, but it becomes less and less efficient as faults are removed 
from the fault list and only the hard-to-detect faults remain. 

In the algorithmic approach, a specific Automatie Test Pattern 
Generation (A TPG) algorithm is used to generate a test for each fault of a 
fault model associated with a structural model of the circuit. Most of the 
ATPG algorithms can be proven to be complete; that is to say, they are 
guaranteed to find a test for a fault, as long as such a test exists. This is the 
only efficient approach to reach high fault coverage rates. 

Note. An efficient combined method for solving the A TPG problem uses 
firstly statistical methods to find test vectors for the 'easy-to-detect' faults on 
the fault list, and then switches to an algorithmic method to find test vectors 
for the remaining 'hard-to-detect' faults. 

12.3.1.2 Functional and Structural Testing 

Testing methods can be split into two groups, taking the considered 
system model into account: funetional or struetural model. Their 
comparative advantages and disadvantages are illustrated in Figure 12.21 
and discussed afterwards. 

Functional testing 

Knowledge: functional modd 

110 sequence 
* , Comparison with the functioning 

of the executable product 

Structural testing 

Knowledge: structural model 
faultmodd 

Test generation from the structure 
with fault coverage 

I-+@+O 
Advantages: Simple, general, no interna! 

knowledge nor fault models 
Drawbacks: unknown efficiency 

o 

Advantages: mastering of fault coverage 
Drawbacks: complexity, fault model pertinence 

Figure 12.21. Functional and structural testing 

The funetional test sequenee aims at processing all possible functioning 
cases of the system, and thus detects all possible faults by revealing their 
effects on the product behavior. However, only a sub-set of all possibilities 
are generally activated, assuming that they are representative of the wh oie 
functionality. For instance, all the values of a float parameter cannot be 
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exercised. So, the float domain is split into functioning classes and only one 
value of each class is used for test purpose. Unfortunately, it is possible that 
two different parts (circuits or programs) of the system structure are used to 
run two different values of the same class!. Thus, one part only will be 
exercised and not the second one wh ich can contain many undetected faults. 
More generally , the efficiency of a functional test sequence concerning the 
detection of actual faults in the product is not known. 

Thanks to the fault coverage notion, the efficiency of a structural test 
sequence can be assessed by a grade. However, the pertinence of the 
considered fault model must be discussed. Besides, the choice of a very 
refined fault model impacts the test sequence generation: high difficulty to 
obtain the test sequence which has generally a prohibitive length. For 
example, it is extremely difficult to master the test generation of a computer 
at MOS level! In conclusion, a comprornise has to be found between the 
degree of the fault model's high precision and the test complexity (difficulty 
of obtaining the sequences and length of these sequences). 

The production and maintenance tests are essentially faced with 
technological faults. The structural approach completes the junctional 
approach introduced in Chapter 10 for the design test. In numerous cases, the 
test engineer starts with the functional verification sequences developed by 
the design engineer. Following this, he or she completes this sequence by a 
structural test approach. 

Fault model 

Figure 12.22. Context of structurallogical test 

In the following sub-sections we develop the problem of obtaining a 
structural test at the gate level. We consider a logical circuit structured into 
gates and a fault model which can affect it (Figure 12.22). We assume that 
each fault is a single stuck-at '0' or '1 ' of gate inputs and outputs. The tester 
applies certain values to the primary inputs (that is to say external to the 
circuit) and it observes the values produced at the primary outputs (that is to 
say external to the product). From this hypothesis, the detection test problem 
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consists in finding a sequence of input vectors which, by observing the 
primary outputs, allows the following question to be answered: 

1s the circuit without fault, or is it affected by one of the fault model? 

The length of the obtained test sequence is important, as it has 
consequences on the time spent to test a product. Unfortunately, the 
determination of minimal test sequences having a high coverage is 
intractable for complex circuits. Thus, we often accept reduced fault 
coverage, in order to obtain sequences of a reasonable length. 

12.3.1.3 Fundamental Steps of the Test Process 

The complete test development and application cyc1e has three steps as 
illustrated in Figure 12.23: 

1. test pattern generation, using any method, manual or automatie (ATPG), 
algorithmic or random, with or without a fault model, 

2. test validation, based on test evaluation (quantitative approach) or fault 
grading, which allows the efficiency of the previous sequence to be 
checked by using independent methods (generally by fault simulation) 
from those used for test generation, 

3. test application with the help of a tester, as already mentioned. 

The two first steps are frequently used in an iterative manner. The 
generation of a test sequence is therefore an incremental process which 
gradually builds the test sequence. 

The following sub-sections enter into more detail about the test 
generation and fault grading methods of circuits at the gate level. 

CD 
n 
® 
n 
® 

• Test Pattern Generation 
~ sequence 
high internal knowledge 

• Test Validation 
~ coverage: fault grading 
high internal knowledge 

• Test Application 
low system knowledge 

.. ManuaJ I Automatie (A TPG) 
Aigorithmie I Random Methods 
with I without fault model 

.... Fault simulation: 
~ level: electrical, logic, functional ... 

Technique: exhaustive, fault sampling 
Feedback from the user 
Fonnal methods (Identification) 

.. Test equipment 
Test procedure, language 

Figure 12.23. The three test steps 
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12.3.2 Determination of Input Vectors Testing a Fault 

The goal is to find a set of test vectors which ensure the required fault 
coverage. It should be known that the generation of a test sequence of a 
combinational circuit is a 'NP complete' mathematical problem. 

Amongst the structural methods of the detection test generation, the path 
tracing approach (or path sensitizing) is the best known.1t allows vectors to 
be found which detects a given fault. This approach was popularized by ffiM 
with the D-Algorithm proposed by J-P. Roth in the 1960s. It was then 
diversified and improved by numerous techniques such as Lasar (Logic 
Automated Stimulus And Response), Podem (Path Oriented Decision 
Making), Fan, Tops, Socrates, etc. 

What is remarkable with these path tracing methods is that, associated 
with design methods facilitating the test (exarnined in Chapter 14), they have 
been extensively used for computer testing for more than 30 years! 

In Chapter 13 we will study an intuitive method based on path tracing. 
This method allows the fundamental problems of test sequence generation to 
be c1early understood, such as problems linked to fault controllability and 
observability in logical structures. 

Whatever the method used, the research of circuit test vectors do not 
necessarily converge. Indeed, some circuit faults are not detectable 
externally to the product; hence, the product tolerates these faults which do 
not directly lead to a failure. In that case, the product has passive 
redundancy, already been described and illustrated in Chapter 8. Passive 
redundancy can result from a voluntary action such as the Triplex fault
tolerant structure (analyzed in Chapter 18), but it can also and very often be 
introduced in a totally unintentional manner by the product creation process. 
In Chapter 13 we will show some examples of the negative influence of 
passive redundancy on test detection and diagnosis. 

12.3.3 Fault Grading 

12.3.3.1 Principles 

In the previous sub-section, we considered methods to obtain input· 
vectors detecting given faults. Fault grading is an approach which aims at 
finding the coverage of a given input test sequence, that is, to evaluate this 
test sequence. Two main groups of methods have been proposed: 

• methods by structural analysis which study the faultless circuit and 
deduce all the faults whose presence produces failures, 

• methods by fault simulation which compare, by simulation, the faultless 
circuit' s behavior with the circuit affected by faults of the fault model. 
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The techniques based on structural analysis determine all the faults 
detected by a given input vector (or sequence). Therefore, the fault coverage 
is deduced automatically. A simple approach will be discussed in detail in 
Chapter 13. It is based on a backward circuit analysis, from the primary 
outputs towards the primary inputs, in order to find all the detected faults. 
Even if the technique presented is specific to a gate model and a stuck-at 
fault model, its study is interesting to understand the general issues. 

Fault simulation regroups a large variety of techniques based on 
structural simulation with faults injected from a fault model : the tools are 
called fault simulators. The principle of this approach, often called fault 
injection, is illustrated in Figure 12.24. It consists in applying the test 
sequence to be evaluated to a simulated model of the system studied, and 
injecting faults from the fault model. If the obtained output with a fault is 
different from the faultless circuit's output, this fault is noted as 'detectable' . 

Testsequence 
Fault 

Coverage: 
relative namber 

.of detected faults 

Figure 12.24. Fault grading by fault simulation 

This approach is greatly used, as it is relatively simple to implement and 
can be adapted to numerous situations (system modeling and fault model). 
However, it involves a lot of processing and memory size; hence, it requires 
high performance computers and uses long run times. Indeed, it is necessary 
to apply the test sequence for each fault of the fault model injected in the 
system modeling. This leads to the simulation of millions of events. 
Numerous variants of fault simulation algorithms and implementations have 
been proposed in order to improve its performance (parallel processing, etc.). 

In the next sub-sections, we analyze the fault grading methods based on 
fault simulation (sub-section 12.3.3.2), and we introduce the principal 
computing methods implementing fault simulation (sub-section 12.3.3.3). 

12.3.3.2 Fault Grading by Fault Simulation 

The methods presented in this section are used in today' s IC Computer 
Aided Design tools. There are three main families of fault grading 
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approaches based on fault simulation techniques: 1) probabilistic, 2) 
deterministic, 3) and statistical. These three families are compared in Table 
12.2 according to 4 criteria: cost, speed, accuracy and diagnosis efficiency. 
The assigned grades are justified afterwards. 

ProbabiUstie 

eost Low High Medium 

Speed Fast Siow Fast 

Accuracy Fair Best Good 

Diagnosis Good Best Poor 

Table 12.2. Comparison of fault grading approaches 

1. Probabilistic fault grading (PFG) 

The probabilistic fault grading method provides an estimation of the 
fault coverage rather than an exact determination. It is a fast and relatively 
inexpensive method elose to conventionallogic simulation. The associated 
tools can be used on the same platform as the one used for design, which 
elirninates the needs for netlists and test vector conversions. The principle is 
based on an analysis of values wh ich appear in different nodes, that is to say 
the interconnection lines between the system' s structural elements such as 
the gates, flip-flops, etc. The node activity is evaluated in terms of 
controllability and observability. The diagnosis provides a list of nodes 
which have a weak activity. The approach can be implemented as an 
interactive tool: the engineer uses this tool, searching to improve the 
testability of the less active nodes. However, since it makes no use of the 
strobe placements used by the physical tester which tests the real component, 
PFG may provide wrong information: a fault may be deelared as observable 
when, in fact, it will not be observed due to a lack of strobing at the 
necessary time. 

The analysis of the results provided by the PFG shows that the results are 
almost sirnilar to the results obtained by more accurate methods. However, 
this small difference may be unacceptab1e for high fault coverage 
requirements. 

2. Deterministic fault grading (DFG) 
Deterministic fault grading is the most accurate of the three studied 

methods. It compares the simulation results of a faulty design (a copy of the 
design with a fault injected) with the outputs coming from the original 
design. If differences are found between the results of these simulations, the 
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injected fault is declared as detected. The ratio of detected faults to the total 
number of potential faults is used as a measure of coverage. This technique 
requires a lot of time and computing resources, as each possible stuck-at 
fault is injected into the design model and processed by a new 
simulation. Several different variants to DFG have been proposed to improve 
its efficiency. These methods include various simulation algorithms: 

• grouping of equivalent faults, also known asfault collapsing, 

• and making use of customized hardware platforms (accelerators). 

Fault collapsing is a general technique used for reducing simulation time 
by identifying equivalent faults and simulating only one fault for each 
equivalence class. Before the fault-collapsing, it is often interesting to check 
if any of the nodes remains at either a '1' or a '0' during the test period. If a 
node always stays at '0', then a stuck-at '0' on the node cannot be detected. 
Similarly, a stuck-at' l' cannot be detected on anode that is always at a '1' 
level. No-activity faults and any collapsed faults that depend upon them are 
usually counted as non-detected. Checking for no-activity nodes can 
significantly reduce execution time during early stages of a test-pattern 
development where these kinds of faults are very likely. 

In general, the implementations on general-purpose processors tend to 
run slower, but at a lower cost. Test accelerators are customized hardware 
wh ich ron much faster, but the hardware costs can be prohibitive. 

Other factors can improve the accuracy of DFG implementations. These 
include propagation delay simulation, an increased number of simulation 
events, and actual strobe-placement information of the real test. 

With respect to diagnosis information, DFG is efficient to providing the 
actual status (detected or not) for each potential fault in the design. Various 
reporting formats are typically provided for determining which parts of the 
design require the most improvement. In some implementations, information 
is also available which indicates effectiveness of each test vector to detect 
faults. Reordering the vectors and removing the unnecessary ones may 
optimize test patterns. 

Fault dictionaries associate vectors (or sequences) with their detected 
faults. They may be generated from the results of DFG, helping in the 
diagnosis of probable causes during failure analysis of failed devices. 

3. Statistical fault grading (SFG) 
A strong reduction in the cost of DFG can be obtained by applying 

deterministic fault simulation to sub-sets of the potential faults of the given 
fault model. By choosing a random sampie of these faults, statistical fault 
grading provides a close approximation of the DFG results, while requiring 
only a small fraction of the ron time. The confidence interval of the results is 
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determined by the size of the taken sampie. 
In theory, SFG provides the speed and cost advantages of PFG, while 

providing accuracy offered by deterministic techniques. However, since only 
small portions of the potential faults are actually investigated using SFG, 
diagnosis information is very limited. 

If the purpose in fault simulation is to simply obtain an accurate measure 
of the effectiveness of the test patterns, a DFG run might be appropriate. 
However, if the aim is to make use of the results to increase fault coverage to 
a certain target level, several iterations may be required. The low cost and 
fast run times of PFG are better suited to this type of activity. In most cases, 
cost and time are very important factors, but potentially inaccurate results 
cannot be tolerated. Therefore, a combination of both PFG and DFG is 
advised. 

12.3.3.3 Fault Simulation Implementation 

Fault simulation is the base to most fault grading methods. The 
implementation choices of the fault simulation have an impact on the 
performance of the fault grading tools. We will introduce the four main 
approaches: serial, parallel, deductive, and concurrent fault simulation. 

1. Serial Fault Simulation 
The less complex fault simulation algorithm is serial jault simulation. 

Essentially, it involves automating aseries of logic fault simulations. Prior to 
performing them, it is necessary to first process a conventional logic 
simulation of the faultless system modeling by the test sequence inputs, to 
get and store the fault-free states of the test nodes at the strobe time-points. 
Then, faults are selected one at a time from the fault model. Each fault is 
applied to the circuit modeling and a logic simulation of the faulted circuit 
modeling is performed. The faulted test values are compared with the stored 
reference values. If a difference exists, the fault is flagged as detected. Then, 
the pro gram proceeds to the next fault. If the faulted logic simulation reaches 
the last strobe, the fault is undetected. 

The method has the advantage of easy implementation as hardware or 
software tools. It has the dis advantage of longer run times than most of the 
more sophisticated methods. 

Several improvements that can be made to optimize serial fault 
simulation in term of speed. The first improvement deals with the 
optimization of the logic simulation algorithm and data structure (memory 
size, execution speed). Serial fault simulation can also be used as a first 
approach prior to development of a faster and more sophisticated method. 
Indeed, all of the front-end and back-end coding for fault-data input, fault 
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selection, fault injection and initialization could be developed and debugged 
for serial simulation. This serial simulation version can then be used as a 
prototype to verify the answers of more sophisticated versions that folIows. 

2. Parallel Fault Simulation 

Parallel fault simulation takes advantage of the fact that each of the 
faulty circuits has the same topology as the reference circuit. Only the node's 
states are different. The basic idea is to group together the states of the 
reference circuit and several faulty circuits into a single word, a 'state word'. 
Then, the simulator treats globally these words in one pass instead of treating 
each case separately. This method was originally designed for simulators 
with simple unidirectional gate-level simulation. However, it can be 
extended to handle more sophisticated components. 

Parallel fault simulation was used in some of the earlier generation of 
fault simulators (TEGAS, LASAR, Hll..O-2, FMRSIM, and EBNR 
programs). There are several limitations to this method. An increasing 
number of circuits running in parallel may reach the point from wh ich the 
performance decreases. This c1assical phenomenon associated to parallel 
processing is due to two effects: 

• All of the parallel faulty circuits have to be simulated until the last circuit 
of the group has its fault detected, or until the testing is completed. With 
serial simulation, analysis of each faulty circuit can be stopped as so on as 
its fault is detected. 

• The more circuits are analyzed in parallel, the greater is the likelihood 
that an entire state word will have to be computed and updated for only 
one of the faulty circuits. In extreme cases, parallel simulation becomes 
like a group of serial fault simulations. 

Ignoring the topological constraints that parallel fault simulation 
imposes, the industrial experiences shows that the method is still limited in 
speed to at most about 30 times faster than serial fault simulation. In fact, 
depending upon the circuit and the test pattern, it may be less than an order 
of magnitude faster than an optimized serial fault simulator. 

3. Deductive Fault Simulation 
Deductive fault simulation can simulate a relatively large number of 

faults in one pass. Instead of computing signal values for all considered 
faults, this method computes signal values for the fault-free circuit, and 
deduces the faults that will cause each signal to have a value different from 
the value of the fault-free circuit. This method is ideal for two-valued 
simulation (0/1), and it has been extended to handle the unknown value (0, 1 
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and x). For each analyzed element of the structure, the deductive simulation 
method determines the output fault-free values and local fault lists, from 
their input values and incoming fault lists. The fault-free values of an 
element output are computed whenever one or more of its input fault-free 
values change. The output fault list is computed whenever any of its input 
fault-free values or fault lists changes. 

One problem involved is that some faults on variables which propagate 
back to the same input variables (loops), must be deleted from fault lists. If a 
fault-free signal is unknown, no information about faulty value of that signal 
is maintained in deductive simulation. Therefore some loss of information 
may occur. 

4. Concurrent Fault Simulation 
The basic idea of concurrent fault simulation is to simulate the reference 

circuit, while at the same time simulating many faulty circuits. The 
efficiency is improved by simulating only the section of each faulty circuit 
that differs from the reference circuit. Its high efficiency is due to the fact 
that, in most cases, the node states of each of the faulted circuits are nearly 
identical to the corresponding states in the reference circuit. Since each 
partial faulty-circuit simulation will be quite fast, this method will only be 
efficient if many faulty circuits are run concurrently with the reference 
circuit in order to share the overhead of the reference circuit simulation. 

The concurrent fault simulation algorithm is potentially the most efficient 
and fastest method for fault simulation. Its main drawbacks are: 

• the implementation is more complex than for the other methods, 

• it may require much more computer memory to run efficiently, compared 
to other methods. 

5. Comparison 
The performance of fault simulation algorithms is important because it 

can consume many hours of CPU time for rather small circuits. A 
comparison of parallelfault simulation and deductivefault simulation shows 
that the second method is faster, but the first one is better for small, highly 
sequential circuits. 

Another important point is that the deductive fault simulation is more 
pessimistic than parallel and concurrent fault simulations. Parallel fault 
simulation and concurrent fault simulation are equivalent in accuracy. 
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12.3.4 Test Pattern Generation of Combinational Systems 

12.3.4.1 Optimal Test Sequence Generation 

The obtaining of an optimal test sequence in terms of number of vectors 
(length) is a complex problem. To understand this problem, we can start with 
the analysis of simple n-input gates; it shows that n+ 1 test vectors are 
necessary. For example, the minimal test sequence of a 2-input AND gate is 
<01, 10, 11>, and the minimal test sequence of a 2-input OR gate is <00, 01, 
10>. Example 12.4 performs such analysis for a 3-input NAND gate. From 
these basic experiments, it is generally not difficult to derive minimal test 
sequences of small circuits, such as in Example 12.5. 

In a more general manner, the research of a minimal cover in a cover 
table calls for operational research methods such as Branch and Bound 
methods. These methods are only of interest for understanding test problems. 
Indeed, they are very complex and the determination of a cover table is 
intractable for industrial circuits . Hence, we will propose a heuristic 
approach to test pattern generation in next sub-section. 

Example 12.4. Optimal test sequence 0/ a NAND gate 

We consider again a 3-input NAND gate test with a single stuck-at fault 
model (see Example 12.1 in sub-section 12.2.3). We had proposed a minimal 
test sequence: < 011, 101, 110, 111>. How can this sequence be obtained? 
The goal is to find a minimal set of input vectors detecting all the faults. For 
this, we start with the cover table (see Table 12.3) already obtained. 

Input vectors Test coverage 

abc a b c d 

000 0 

001 0 

010 0 

o I 1 0 
100 0 

101 0 

1 1 0 0 

1 I 1 0 0 0 

Table 12.3. Coverage table 

A test sequence with 100% fault coverage must provide a '0' and a '1' at 
least once for each column in this table. We see that, in order to test the 
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stuck-at '0' and the stuck-at '1' of input a, it is necessary to take the test 
vectors 011 and 111. We can easily see on the table that these two test 
vectors detect all faults except, the stuck-at '1' of b and c input. The test of 
these two remaining faults requires taking vectors 101 and 110. Therefore, 
there is only one optimal test sequence. 

Note. The minimal Toggle Test sequence for this NAND gate is <000, 
111>. This sequence obviously does not test all the considered faults: it only 
tests 5 of them: aO, bO, co, cf, and i (ao represents the stuck-at 0 of line a). 

Example 12.5. Optimal test of a small circuit 

Let us consider the simple AND-OR circuit of Figure 12.25. In order to 
detect all stuck-at faults of this circuit, each AND gate must receive at least 
the input vectors 01, 10 and 11, and the OR gate must receive the input 
vectors 00, 01 and 10. Additional constraints must be added to propagate the 
errors to the output f. For example, we must not apply 11 simultaneously to 
both AND gates. Exercise 12.6 invites you to make this study. The optimal 
test sequence has 4 test vectors: TS = <110, 011, 010, 101>. 

a __ -I 

b ....,--1 
f 

C __ -I 

Figure 12.25. AND-OR circuit 

12.3.4.2 Heuristic Test Pattern Generation 

Typically, the obtaining (automatic or semi-automatic) of a test sequence 
which ensures a given coverage rate (for example 80%) combines two types 
of methods which were introduced in the previous sections: the test 
generation and the coverage evaluation. 

Indeed, a test vector obtained for the detection of a given fault also 
detects a set of other faults. We look for this set of faults by a coverage 
assessment of the test vector chosen to detect the first fault. Then, we delete 
all these faults before restarting the search for another test vector to detect a 
fault not yet revealed. This process is repeated as long as necessary, that is to 
say until the fixed fault coverage objective has been reached. This procedure 
was introduced and used by ffiM. It was then used and irnproved by 
numerous other authors and companies. 
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Figure 12.26. Test sequence generation 

Figure 12.26 illustrates this algorithm with the alternative use of two 
tools from ffiM: D-ALG for the determination of a test vector wh ich detects 
a given fault, and TEST DETECT to look for faults covered by a given 
vector. At the beginning of the algorithm, the set of faults to test, F, is made 
up of all the faults of the fault model, and the test sequence is empty. We 
choose a fault Fi and, by using D-ALG, we look for an input vector TVi 
which detects it. This is the first vector of the test sequence. Then, this test 
vector is applied to TEST DETECT to determine all detected faults. All 
these faults are removed from the set of faults F. This process is re-iterated 
with another fault to test, until the set of faults to be tested is empty. 

With this method, the optimality of the obtained test sequence cannot be 
guaranteed. Heuristics allow faults to be chosen in a way that accelerates the 
test generation process and obtains shorter test sequences. 

This iterative process often starts with a functional test sequence coming 
from the product' s design stages (Chapter 10). The electronic circuit 
specialists affirm that these functional sequences typically provide coverage 
rate from 50 to 70 percent. 

12.3.5 Test of SequentiaI Systems 

12.3.5.1 General Problem 

In reality, very few logical circuits are totally combinational: this is the 
case of certain calculation circuits, codingldecoding systems, or code 
transformers. On the contrary, the majority of circuits are sequential, that is 
to say the outputs depend on the inputs and also on the internal state 
(notions of memory or time). Consequently, it is important to question about 
the adaptation of methods previously exposed, or to imagine specific 
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methods intended to sequential systems. Despite the numerous studies which 
have been carried out, none of them has led to efficient or accessible 
methods. We can quote the example of the method based on formal 
identification of an automaton (system behavior) to provide a test sequence 
at system level. This approach which makes not precise hypotheses on fault 
model was first studied in the 1960s for electronic systems. It is still studied 
at system level, for the conformance testing of communication protocols. 

Why is the sequential system test so difficult? 

On the one hand, the research of test sequences becomes very complex in 
the case of synchronous circuits (special variables called clocks control the 
time evolution of the circuits), and terribly much more in the case of 
asynchronous circuits (the circuits reacts asynchronously to events applied 
to the primary inputs). Unfortunately, some faults can increase the number of 
internal states, transforming a sequential synchronous system into an 
asynchronous system, and even provoking oscillatory behavior. 

On the other hand, these sequential system' s controllability and 
observability problems often lead to test sequences which have a prohibitive 
number of vectors! Indeed, a small changing in the event occurrence date 
may disturb the behavior. Consequently, the test sequence must take this 
large number of situation into account. 

Numerous methods have been proposed to test complex sequential 
circuits such as micro-controllers or microprocessors. They use functional 
approaches based on high level modeling tools, such as HDL. Functional 
fault models are implicitly or explicitly attached to these models. A classical 
example is the STG (State Transformation Graph), which can be deduced 
from a HDL description of a system. A path sensitizing method is then 
applied to this graph to determine a test sequence. 

The test of complex circuits, whether combinational or sequential, 
generally find empirical solutions based on functional sequences which are 
then improved using processes using together fault simulation and the 
manual research of new test vectors. The only satisfactory solutions to this 
problem use BIT type techniques presented in Chapter 14. 

Example 12.6 proposes a study of a simple synchronous circuit which 
links fault generation at state graph level and fault coverage at gate level. 

In the next sub-section, we will consider the very special case of RAM. 

Example 12.6. A MOORE synchronous sequential circuit 

Figure 12.27 shows an example of a Moore type sequential synchronous 
circuit whose outputs only depend on the circuit' s internal state. This circuit 
has one input x and one output z. It is described at a behaviorallevel and at a 
logical level. The behavioral model is a 4-state automaton. This model has 
been implemented as a logical circuit with 1 INVERTER, 5 NAND gates 
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and two D Flip-Flops. The coding of the 4 states is shown in the figure . 

• FSMlevel 

q yl y2 
1 0 0 
2 0 1 
3 1 1 
4 1 0 

x 

Figure 12.27. Test of sequential circuits 

In Chapter 5 (Exercise 5.3), we have analyzed this circuit and deterrnined 
some failures associated with two faults altering the logical structure. 

We consider now two functional test sequences associated with the 
automaton level which are defined from the initial state '1': 

• the first sequence of length 4 goes through an the graph's states: 
TSI = <0 1 1 0>, 

• the second sequence of length 9 goes through an the graph's arcs: 
TS2 = <01 101 1001>. 

A fault simulation at logical circuit level has been carried out with the 
help of the VeriFault program of the CAD Cadence industrial tool. It gave 
the respective coverage rate: 65% for the first sequence and 92% for the 
second one. We notice that a 'functional' type test sequence established at 
the automaton level does not test an the single stuck-at 0/1 faults. The 
structural approach at the logical or electronic level is necessary to complete 
the test and guarantee 100% coverage. Exercise 12.7 comes back to the test 
of this sequential system at the state graph level. 

Note. A 100% fault coverage rate is not a certainty of the total absence of 
creation faults and breakdown faults due to ageing. The meaning of this rate 
is relative to the system model and the fault model being considered. We 
detect an the considered situations which transform these faults into errors in 
this system model. 
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12.3.5.2 Test of Random Access Memory 

A Random Access Memory (RAM) is a special sequential circuit which 
stores words of fixed length. It has two access modes: write to enter one 
word at a given address, and read to extract one word from a given address. 
Logically speaking, a RAM can be represented as a collection of registers 
(first diagram of Figure 12.28). 

I-bit-cell 

prows 

qcolumns 

Figure 12.28. RAM representation 

So, a first simple functional test sequence can easily be imagined: aseries 
of known words are sequentially written, and then sequentially read and 
compared to the original words; then the same test is applied with the 
complementary pattern. This 'linear' test sequence of length N = 2n+1 is 
unfortunately not excellent to detect real internal faults. Indeed, a physical 
memory does not conform to the previous model. To rninirnize the silicon 
surface, it is organized as a square matrix (p rows x q columns) of 
elementary bit-cells (second diagram of Figure 12.28). 

The physical study of real circuits has revealed different classes of 
possible hard and soft faults creating different classes of errors: one cell, one 
row, one column, address errors, but also mutual influence between cells 
and, even worse, data sensitive errors which depend on the bits 0/1 which are 
stored in the neighborhood of a given cell. 

Several methods have been proposed to detect such fault classes. Their 
complexity in number of test operations (readlwrite) is generally relative to 
their coverage. Let us just mention some of these methods wh ich take the 
electronic technology into account to be closer to the real faults: 

• checkerboard 011: the matrix is written with acheckerboard pattern, read, 
and the operation is repeated with the complementary pattern; 

• marching: the matrix is initialized with a pattern (e.g. O's), then each bit 
is successively read, complemented, written back, and read again, in 
increasing order of the bits, and finally in decreasing order; 

• walking columns: the matrix is initialized with a pattern (e.g. O's), then 
the first colurnn is written to the complementary values, the matrix is 
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read, and this process is repeated by shifting the column pattern to the 
right; this technique can also be applied to a diagonal whose pattern is 
shifted to the right in the matrix; 

• galloping or ping-pong: the cells are partitioned into several groups 
called contamination group; for example, if the contamination group of a 
cell is the column, after initializing the matrix, each cell is successively 
complemented and, each time, all the cells of its column are read. 

12.4 EXERCISES 

Exercise 12.1. Signature testing 

A component tester applies a sequence of 1024 input lO-bit vectors to a 
device under test (OUT) having 10 inputs and one output. The circuit 
answers to this input sequence with an output sequence of 1024 bits. A 
sequential compaction treatment is applied to this output sequence in order 
to produce a 16-bits signature. So, the lO24-bit stream is split into 64 16-bit 
words noted Ai. These successive words Ai are 'accumulated' in a 16-bit 
register R by an XOR logical vector operation: R = R E9 Ai. 

1. Which c1asses of failures cannot be observed with this technique? 

2. From this, can we deduce the electronic component' s fault c1asses which 
have not been tested by the tester? 

Exercise 12.2. Toggle test sequence 

Consider an adder whose logical gate schema is given in Figure 12.29. 
Find the shortest possible input sequence which sets each gate 

input/output line to '0' and to '1'. 
We will refer to this exercise in the next chapter, in order to evaluate the 

efficiency ofthis toggle sequence. 

Figure 12.29. Full adder 

Exercise 12.3. Test 0/ components 

Imagine a component production chain whose yield is y = 90%. We 
suppose that we apply a test sequence to each produced component (test of 
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100% of the components). This sequence has n test vectors, each one having 
a duration of 1 time unit. The sequence has a coverage rate of c = 80% of 
faults of the fault model considered. We also assurne that the defective 
components are detected on average after nl2 test vectors. 

1. Determine and analyze the expression of the average test length. 

2. Calculate the rate of defective produced components wh ich are declared 
as 'good' by the test. 

3. We now suppose that only t = 70% of the produced components are 
tested. Refer to the previous two questions. 

Exercise 12.4. Fault coverage 

We consider a NOR gate with 3 inputs, a, b and c and one output d. 
Analyze this gate's functioning when affected by single stuck-at 0/1 faults of 
the a, b, c and d signals. 

1. Find the test sequence having the shortest length (this sequence will be 
called optimal test sequence). 

2. Trace the coverage curves of i) the exhaustive test sequence, ii) the 
optimal test sequence, iii) a toggle test sequence. 

Exercise 12.5. Simple fault diagnosis 

Continue the fault analysis of the NOR gate in the previous exercise in 
order to distinguish the different faults. 

Are certain faults non-distinguishable, that is system equivalent? 

Exercise 12.6. Optimal test sequence 

Analyze the circuit of Example 12.5 to find the optimal test sequence(s), 
according to a single stuck-at fault model. Justify any test vector choice. 

Exercise 12.7. Sequential circuit testing 

We consider the synchronous sequential system in Figure 12.27. We 
suppose that the initial state is state 1. 

1. Check that the input sequences proposed in paragraph 12.3.5, STI and 
ST2, respectively explore all the states and all the arcs of the graph. For 
each sequence, determine the sequence of the states and the outputs 
produced for each sequence. 

2. Follow the logical evolution of the signals on the logical circuit for the 
same test sequences. Is each line of the circuit set to '0' and to '1' 
(consequently is it a toggle test)? 

3. Comment on the problem experienced in detecting all the circuit single 
stuck-at faults. 
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4. Discuss the hypothesis conceming the initial state (state 1) of this 
sequential system. How can we guarantee that the system is really in state 
'1' at the beginning of the test? 
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Structural Testing Methods 

In the previous chapter we carried out a general presentation of the 
various methods, which allow the suppression of technological faults during 
the manufacturing and the operation stages of the lifecyc1e of the product. 
We will now magnify some of the technical aspects of structural testing, 
focusing on hardware and software technologies. 

In a first part (sections 13.1 to 13.5), we analyze some simple methods 
that are based on fault models. Thenl we consider the techniques of structural 
testing that do not explicitly make reference to fault models (sections 13.6 
and 13.7). Finally, section 13.8 presents mutation testing which covers both 
aspects, either with or without fault model. 

13.1 GENERATION OF LOGICAL TEST BY A GATE 
LEVELSTRUCTURALAPPROACH 

The functional test aims at exercising all possible behaviors of a system 
to detect the presence of faults by observation of the outputs. Hence, all 
faults activated by these behaviors are detected. Structural testing takes the 
structure of the system into account by analyzing all possible behaviors of its 
elementary components. We have already developed the interest of structural 
testing. We have also highlighted the precautions that must be taken 
concerning the interpretation of the coverage rate which provides a measure 
for the efficiency of test sequences. In this chapter, we go deeper into the 
structural testing methods for hardware and software technology. 

In accordance with the technology, these techniques are initially 
distinguished by the way that we observe the behavior of the components 
within the structure. 
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Concerning software technology, structural testing attempts to activate 
every possible component of the structure. This test is not apriori based on 
precise hypotheses about the faults or the errors that might affect the 
program. The activation is characterized by a property on the functioning of 
the components. Let us consider the simplest example of activation: "a 
statement has been executed". The considered component is the statement; 
the property on its functioning is the fact of being executed. The 
corresponding coverage rate will measure the efficiency of the sequence, 
which is equal to the number of components for which the property is true 
divided by the total number of components. The number of statements 
executed divided by the total number of instructions in a program is an 
example of coverage rate. 

On the other hand, the structural testing of electronic systems is mainly 
based on fault or error models. A good test sequence should be capable of 
activating the faults in the model that are present in the system, and of 
propagating an immediate or primitive error induced by this fault or 
associated to the error model. For example, a structural test sequence for a 
circuit modeled at gate level will have to detect the stuck-at 0/1 errors (error 
model) of each of the constituent gates. 

The second approach is much more precise than the first one, but it is 
based on strong hypotheses that must be valid. 

• First of all, it supposes that faults or errors do not affect the structure of 
the system, or modify it only slightly. For example, a connection between 
two components Cl and C2 cannot be suppressed and replaced by a 
connection between Cl and a component C3. 

• Secondly, it supposes the knowledge of a realistic error model. 

ln the case of logical level models of electronic systems, these two 
hypotheses are acceptable. First of all, the chosen faults do not affect the 
structure. They uniquely concern the functioning of the components, such as 
the logic gates. Furthermore, the misfunctionings are known and can be 
characterized by an error model (such as the stuck-at errors). Finally, 
experience has shown the relevance of these two hypotheses for 
manufacturing and operation phases. Unfortunately, these two cases are not 
true for software models or abstract models of electronic systems (HDL, 
Petri nets, etc.). For software technology, design faults modify the structure 
of the system in an unpredictable manner (there is no faultlerror model). 

Certain techniques attempt to benefit from the two points of view. The 
studies concerning mutation testing of software draw their inspiration from 
the approach adopted in electronics. For example, we measure the efficiency 
of a test sequence by evaluating its capacity to detect the replacement of a 
'+' operator by a '-' operator in an arithmetic expression. Thus, we do not 
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change the structure of the program but we conceive a known modification 
of the behavior of an operator. 

First of all we are going to study the techniques of structural testing that 
are based on error models. They will be illustrated by means of an error 
model of 'stuck-at' type that affects a structural model of a circuit at gate 
level. We are successively going to: determine the test sequences that allow 
us to uncover the presence of errors of this model that corrupt the system 
(section 13.2), evaluate the errors of a model that are detected in the system 
by a given sequence (section 13.3), define a diagnosis sequence that allows 
us to localize a particular error, which is apart of the model and affects the 
system (section 13.4), then study the influence of passive redundancy on the 
detection and the diagnosis of these errors (section 13.5). 

The next two sections (sections 13.6 and 13.7) assurne no faultlerror 
models. The principles of the techniques presented will be illustrated by 
software applications. Section 13.6 tackles the structural test without fault or 
error models, and section 13.7 introduces the diagnosis methods without 
fault or error models. 

Finally, we present the technique of mutation testing in section 13.8. We 
thus show how the techniques that are based on error models have 
influenced the testing of software applications. 

13.2 TEST GENERATION FOR A GIVEN ERROR 

In this section we present a test generation technique, which allows the 
detection of faults/errors that belong to a given model. We refine this 
presentation by considering a system modeled by logical gates (NOT, AND, 
OR, NAND, NOR, XOR) and affected by single stuck-at 011 faults. 

13.2.1 Principles of the Method 

An input vector applied to a circuit detects a fault that affects this circuit 
if it satisfies three conditions: First, this input must induce an active signal 
that reaches the component affected by the fault. Then, this signal must 
activate the fault by transforming it into a local error. Finally, this error must 
be propagated in the structure of the system, until it reaches at least an 
output where it will be observable by the extemal tester. In this way, we 
want to artificially provoke the activation of a fault as an observable failure. 

We will analyze a simple and intuitive procedure, calledpath sensitizing, 
for the search of the test vectors that detect a given fault f belonging to the 
fault model. This procedure, illustrated by Figure 13.1, has four stages: 

1. activation of the fault as a primitive error (f -+ e), 



326 Chapter 13 

2. backward propagation or tracing, towards the primary inputs, in order to 
find the input vectors producing the preceding activation, 

3. forward propagation along a chosen path, in order to allow the 
observation of the primitive error at the outputs of the circuit, 

4. justification or consistency operation which verifies that the local actions 
implied by the preceding steps are coherent in the whole circuit, and finds 
the input vectors that satisfy them. 

I i=i ===::;------'>: J 
I, I ,---

~~ .. -...... .. .. :1'f+ e ..... - d ... 

InpUl< 8 XO 1 Cl ';UlpU" 

._--~ ~~--, .. ····~e· .. · .. ·.J 
..... _ .. __ .. _-----_._----------------

Figure 13.1. Procedure for testing a fault 

The actual implementation of this procedure is explained below with the 
help of an example. It can lead to the exploration of adecision tree where 
several choices are possible: the choice between several error propagation 
paths, or the choice between several values of certain variables. When these 
choices exist, the previous four-staged procedure must be re-iterated. If no 
solutions are found at the end of the procedure, it means that the fault is 
undetectable. 

13.2.2 Activation and Backward Propagation 

First of all, we have to activate the fault f into an eITor e and find the 
input vectors that allow this activation. This stage is calledfault activation. 
When the fault is a single stuck-at 1 (respectively 0) of a line, we must set 
this line to 0 (respectively a 1). Hence, the fault is activated as an eITor. This 
means that without fault the line takes the value 0 (respectively 1), and when 
the fault is present this line takes the value 1 (respectively 0). According to 
the case, we can either retain the symbolic notation e, or specify the fault 
type by writing: 1-+0 or 0-+ 1. This eITor e is called primitive or immediate 
error. 

Next, we perform a backward propagation (or backward tracing) to 
attempt to propagate this knowledge back to the primary inputs. This 
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knowledge is defined as constraints, specifying expectations on line values 
to activate the fault. 

Example 13.1. Fault activation and backward propagation 

Consider the small circuit in Figure 13.2, and the fault f, stuck-at 1 of 
line d. To activate f, we must place a 0 value on this line, which is the output 
of the AND gate. This constraint is now propagated backwards, and we find 
three possible values to put on a and b: 00, 10 or 01. At the end of these two 
first stages, the fault has been transformed into an error on line d: an 
expected value 0 which becomes a 1 when the fault is present in the circuit. 
We see that the input c still has no constraint. 

Figure 13.2. Fault activation 

13.2.3 Forward Propagation 

Now, the primitive error must be propagated to the output so that it is 
observable by the extern al tester. Theforward propagation stage consists in 
expressing the local constraints which allow the propagation of the primitive 
error, from gate to gate, along one or several paths. When a propagated 
error, noted ei, reaches one input of a given gate, we have to do one of the 
following, according to the situation: 

• if we want that this error propagates through the gate, we must find 
appropriate values to apply to the other inputs so that ei passes and gives 
another error ej, 

• if we do not want that this error propagates through the gate, we must 
find values to apply to the other inputs in order to maintain the output of 
the gate at its fault-free value. 

The second case is desired if we want to control the error propagation 
along a predefined path. 

This error propagation mechanism is analog to the propagation of electric 
signals (raising or falling edges or pulses) through the logic circuit. Figure 
13.3 shows examples of error propagation constraints through logic gates. 

According to the type of gate that is crossed, the output error is 'in phase' 
(noted e) or 'in phase opposition' (noted e') with the input error (noted e) . 
The first case corresponds to the crossing of an AND or an OR gate, whereas 
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the second case cOITesponds to the crossing of an inverter gate such as the 
NAND or the NOR gate. For example, to allow an eITor to cross an AND 
gate, all other inputs must be set to value '1' (which is the neutral element of 
AND); therefore, the eITor passes through the gate and gives an eITor having 
the same characteristic (it is called 'in phase'). On the other hand, the XOR 
gate always allows an input error to pass through, the output eITor being of 
type e or e', according to whether the second input has the value '0' (neutral 
element of XOR) or '1' . 
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Figure 13.3. Error propagation constraints 

In a very general way, the errors can propagate themselves along several 
paths. The 'mother' eITor (primitive), which is produced by the first 
activation of the fault, thus gives birth to several 'daughter' eITors that 
propagate themselves along separate paths. When they re-converge on the 
same gate (reconvergent fan-out structure), we have to examine multiple 
eITor propagation across the reconvergent gate. Hence, a symmetrical gate 
(AND, OR, NAND, NOR) propagates two eITors 'in phase', and blocks two 
eITors in 'phase opposition'. For example, let us consider an AND gate that 
receives two eITors in 'phase opposition', 1-+0 and 0-+ 1. In the absence of 
a fault, the output has the value 0 (1 AND 0), and when the fault that 
provoked these errors arises, we also have 0 at output (0 AND 1). Therefore, 
this eITor is not observed at output. 

Example 13.2. Error propagation 

Let us consider again the example of the stuck-at 1 fault at line d of the 
small circuit in Figure 13.2. 

To reach the output, the primitive eITor e (0 -+ 1) must pass through the 
OR gate. We must therefore place a value '0' at the input ofthis gate, i.e. the 
primary input c. Hence, we obtain three test vectors: (abc) = (000, 010, 100). 
The induced failure is a 0 -+ 1 (z = 0 if the fault is not present). 
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Figure 13.4. Error propagation 

13.2.4 J ustification 

The three previous steps have led to the establishment of constraints on 
the values of certain primary inputs and/or intemallines of the circuit. The 
consistency or justification operation checks that these local constraints are 
compatible and find the value of the test vectors, if they exist. 

Example 13.3. lustification 

To illustrate the problem of compatibility or non-compatibility of local 
constraints, let us analyze the small circuit in Figure 13.5. We assume that 
an error e occurs at line a. The propagation of this error at outputfbrings the 
local constraints '1' and '0' noted in the figure. Nevertheless, these two 
constraints are incompatible, since the OR gate (noted A) cannot have an 
input value 1 and an output value 0 at the same time. Hence the justification 
procedure reveals an inconsistency. To conc1ude, no test vector may 
propagate the error as a failure. This error e is not detectable, because it 
corresponds to a passive redundancy. 

e 
3--............ 

e' 
1O---f 

c--~ 

Figure 13.5. Consistency 

13.2.5 Complete Study of a Small Circuit 

Example 13.4 

Now we are going to illustrate the previous four steps with a complete 
example. Consider the circuit in Figure 13.6, and the stuck-at 0 fault of li ne 
111, noted a in the figure. 
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a --,1,---'1 

b ...;2~-r--I 

3 
c 

8 
d -----I 

Figure 13.6. Gate structure 

13.2.5.1 First Step: Activation of the Fault 

Chapter 13 

f 

g 

To activate the fault as a primitive error, the test vector must produce a 
value '1' at line 111 without fault. Thus, the occurrence of fault a will 
provoke an error noted e at line 111: '1' without failure, which becomes '0' 
when fault a occurs. 

13.2.5.2 Second Step: Backward Propagation 

Now let us see how to satisfy this constraint from the primary inputs. We 
go back (by backward propagation) from line 111: 
111 = 1 -+ 15 = ° and 16 = 0, wh ich implies b = 12 = 0 and c = 13 = O. 

The situation after execution of these two stages is shown by Figure 13.7. 

f 

g 

Figure 13.7. Steps 1 and 2 

13.2.5.3 Third & Fourth Steps: Forward Propagation and Consistency 

Let us come back to error e. Two paths, P 1 (lines 11 - 10 - 13 - 17 = j) 
and P2, (lines 11- 15 - 18 = g) are candidates to propagate it, respectively on 
fand on g (Figure 13.8). We must successively try to propagate the primitive 
error through each path, then the two simultaneously, since we wish to find 
all the test vectors detecting this fault. If our objective is to find one test 
vector only, the procedure is stopped once a test vector has been found. 
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a 

b 
2 

3 
c 

8 
d 

Figure 13.8. Two propagation paths 

Path P10nly 
The error e must first of all cross an OR gate: e is observable as an error 

e1 at the output of this gate if line 19 has the value '0'. If it had the value '1' 
then the output of the OR gate would be '1', and the propagation of error e 
would be halted! An error e 1 is therefore produced at 113 at the input of an 
AND gate. To cross this gate, and finally reach the output, line 114 must be 
set to '1' . This last value blocks any propagation along path P2. Let us sum 
up the propagation constraints, which are called path sensitizing: 19 = 0, 
114 = 1. These constraints must now be propagated backwards to the primary 
inputs to complete the test vectors and see if some inconsistency situations 
occur (for example the same line simultaneously taking values '0' and '1 '): 

• 19 = ° implies 11 = ° OR 12 = 0, which is satisfied since 12 = b = 0; 

• 114 = 1 implies 112 = 1, requiring 17 = ° OR 18 = 0, which is satisfied, as 
c = 13 = 0, thus 17 = O. 

ConcIusion: the path Cl can propagate the error at output ffor four test 
vectors noted symbolically: (a b c d) = (- 0 0 -) . The fault provokes a '0' 
instead of' l' onf(failure). 

Path P20nly 
Error e has to cross a NOR gate giving g. This propagation requires that 

line 116 be equal to '0' . If not the output 18 would be forced to '0' and the 
error would not pass to g! Let us see ifthe constraint 116 = 0 can be satisfied: 
by going backwards in the circuit, this implies 17 = 1 and 18 = 1; however, 17 
has the value '0' since 13 has the value '0', thus it is impossible. Thus, no 
test vector allows detecting the fault at output g. 

Path P1 and path P2 
It is impossible to propagate the original error simultaneously through 

these two paths. Actually, we have just seen that the propagation condition 
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onj is that the line /12 is set to '1', and the propagation condition on g is that 
the line 12 is set to 'O'! Therefore, the error is not observable simultaneously 
at outputsjand g. 

To sum up, the fault a is detectable on output j by the four test vectors 
(a b c d) = (- 00 -). 

13.2.5.4 Notes 

The previous analysis has revealed a single decision level tree, which has 
three branches corresponding to the choice of two paths that are able to 
propagate the errors: P J alone, P2 alone, and P J+P2. As a general rule, other 
decision nodes can be induced by backward and forward propagation 
mechanisms. Thus, Exercise 13.2 proposes the analysis of a fault that is 
more difficult to test, because it implies several choices, and thus lead to the 
exploration of adecision tree of severallevels. 

The reader rnight have noticed that the followed procedure is not very 
efficient to treat this fault. Indeed, at the end of step 2 (see Figure J 3.7), we 
could have exploited the obtained values by a backward propagation: a logic 
'0' on line 12 implies a logic '0' on line 19; a logic '0' on line 17 implies a '1' 
on lines /14 and /16, which forces output g to logic '0'. Thus, the 4 test 
vectors are very easy to deduce. This re mark shows that the simple path 
sensitizing method presented can be improved. For example, the path tracing 
based PODEM method uses an implicit vector enumeration by an orderly 
search algorithm. Exercise 13.3, proposes to analyze and improve astrategy. 

13.2.6 Test of Structured Circuits 

Still restricting oUf study to the case of combinational circuits, we will 
now briefly exarnine the case of structured circuits. Let us consider a simple 
2-module structured circuit represented in Figure J 3.9. 

Observability 

;npub d ~M~ F ;npub 

Controllability 

Figure J 3.9. Structured circuit 

Each module is supposed here to be individually completely testable 
(completely controllable and observable); the question is now to test these 
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modules from the primary inputs and outputs of the whole system. Module 
MI is fully controllable from the inputs, but not necessarily fully observable 
from the primary outputs. Conversely, module M2 is fully observable from 
the primary outputs, but not necessarily controllable from the primary inputs. 
Therefore, defining a test sequence that will test the complete circuit is not a 
trivial issue. This testing problem is illustrated in Exercise 13.9 with a circuit 
made up of two full-adders in cascade to form a 2-bit number adder. 

13.3 DETERMINATION OF THE FAULTSIERRORS 
DETECTED BY A GIVENTEST VECTOR 

We are still considering a structured system and an error model, and we 
will illustrate the proposed method on a structure of logic gates and a stuck
at 0/1 error model. We assurne that we are given an input vector from which 
we want to know the errors that it detects. Applied to a complete test 
sequence, this technique allows the evaluation of its coverage rate: fault 
grading by structural approach. 

13.3.1 Principles of the Method 

We are going to study a simple and intuitive method based on a structural 
analysis of the circuit using a propagation technique conducted in two steps 
(Figure 13. 10): forward simulation, and backwardfault analysis. 

I o 

Figure 13.10. Determination of the coverage of a test vector 

1. We establish the values of all the lines of the circuit structure by a 
forward simulation. 

2. We go backwards in the circuit by means of a back ward fault analysis 
along the paths or the logical layers, and each time we establish the faults 
that are detected. 
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A conventional simulation implements the first step. The second stage of 
the method consists in going back from the primary outputs to the primary 
inputs across the logic gate structure, in order to identify the faults that are 
detected and those that are not detected. 

Figure 13.11 shows some examples of 'backward' analysis of logic 
gates. Output line c of the analyzed gate is supposed to be observed by the 
tester, and we are looking for the faults occurring in the circuit or the input 
errors that are detectable on c. Thus, in the case of an AND gate having (0 1) 
as input, we detect the stuck-at 1 of c, the stuck-at 1 of a, and nothing on the 
input b (this 'non detection' is noted by the symbol '-'). For the considered 
input configuration (0 1), we can say that, from an 'observational' point of 
view, the stuck-at 1 fault of ais 'equivalent' to the stuck-at 1 fault of c. 

a, b & c are known 

~ ~ 
-+ find detectable faults? 

: ~I·'" o 0 o I 
I l~ c 

P o~ ~ 
a b 1 1 

a c I EI:) I 
1 

0 
0 

Figure 13.11. Backward analysis 

The general principle of this method is therefore to exploit the 
observational fault equivalence by backward analysis of the logic structure. 
When a line cannot propagate any error, we also cannot detect any fault on 
all the components situated before this line. Indeed, a fault that is situated 
before this line will have to be activated by an error, and then this error must 
be transmitted up to the line in question. Now, by hypothesis, this error 
cannot be propagated further. This property allows the simplification of the 
analysis process, as we will see in the example that is treated later on. 

This method is applied quite easily if the circuit does not have any 
reconvergent fan-out structure, that is to say if it does not have any signal 
that diverges on different paths before returning to a same gate. If such a 
case occurs, this procedure poses some problems, and a particular treatment 
must be carried out in order to detect any faults that are situated before the 
divergence points. Figure 13.12 illustrates this problem. A stuck-at 0 fault at 
line d provokes an error noted e J which is propagated along the two paths 
and arrives at lines a and b (errors ez and eJ). These two errors will be 
neutralized by the AND gate, which provides output c = 0 with or without 



13. Structural Testing Methods 335 

the fault. Thus, this fault of line d cannot be detected, whereas 'backward' 
analysis by observational equivalence would discover that this fault is 
detectable, since the fault of line a is detectable. In such cases, we have to 
consider whether the failures situated backward from the divergences can 
produce multiple error signals. That case will therefore be treated separately. 

u 
v 

Figure 13.12. Reconvergent fan-out 

13.3.2 Study of a Small Circuit 

Example 13.5 

c 

Let us consider again the circuit of Example 13.4 represented in Figure 
13.13, and let us suppose that we apply the input vector (1000). 

Figure 13.13. Fault coverage example 

First of all, we note that this circuit has 3 cases of reconvergent fan-out: 

• the signal on line 12 takes 2 paths before reconverging on the OR gate 
giving the signal on 113: (14 - 19) and (15 - 111 - 110), 

• the signal on line 13 takes 2 paths before reconverging on the AND gate 
producing the output/: (16 -111 -110 -113) and (17 - 112 -114), 
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• the signal on line 13 takes 2 paths before reconverging on the NOR gate 
producing the output g: (16 -1l1 -1l5) and (17 -1l2 -1l6). 

In Figure 13.13 we have represented on each line the value obtained by 
normal forward propagation (step 1). From the values obtained by this first 
step, we go back from the outputsjand g, and we indicate the faults that are 
detected or are not detected in the circles (step 2). In this way, we detect the 
stuck-at 0 faults of lines 117, 114, 113, 112 and 111, and the stuck-at 1 faults of 
lines 118, 16, 15 and 13. We detect nothing on the other lines (marked -). The 
lines located before the divergence points are studied separately. The stuck
at 1 fault of line 13 propagates itself on a single path (which leads to j): it is 
therefore detectable. On the other hand, the stuck-at 1 fault of line 12 will 
create 2 eITors at 14 and at 15. These two eITors propagate themselves and 
arrive in phase opposition on the OR gate creating the signal on 113: they 
therefore neutralize each other and this failure is not detected on output g. 

13.4 DIAGNOSIS OF A TEST SEQUENCE 

Without going into details about the diagnosis test, we are simply going 
to present the principle of a technique and analyze the distinction capability 
of a test sequence applied to a small circuit. This will allow us to explain the 
role of a diagnosis tree. 

13.4.1 General Problem of the Diagnosis 

The problem of a diagnosis test has already been introduced in Chapter 
12 (in section 12.2): from the observation of the responses of the product to 
the applied test vectors, how can we deduce the fault/eITor that is present? 

Figure 13.14 provides some simple diagnosis examples allowing some 
faults to be distinguished. In order to distinguish the stuck-at 1 faults a. and ß 
of the first gate (AND), we look for a sequence that firstly detects the 
presence of one of these two faults (test vector 10, noted TV1 = 10 on the 
figure), and then separates them (second vector TV2 = 00). Hence, the 
resulting distinguishing sequence is DS = <10, 00>. The reasoning is similar 
for the OR gate. By performing this analysis for several fault pairs, we 
realize that some faults cannot be distinguished. Thafis the case of the stuck
at 0 of the inputs / output of an OR gate, or of the stuck-at 1 of the I10 of an 
AND gate, or the stuck-at opposite values of the input and output of an 
INVERTER. These faults are system equivalent. 

It is not sufficient to only consider the faults of an isolated component. 
Next, we must ex amine every single fault of the components of the circuit. A 
complete diagnosis (or distinguishing) sequence will have to classify all the 
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groups of faults that can be distinguished; each group is a set of system 
equivalent faults. p aTV=JO aß: TV = 01, 10,00 

b c ~ distinguishing sequence: DS = < 10, 00 > 
1 a 

a~ 
0:: TV =01 
ß: TV =01,10,11 

b C 

distinguishing sequence : DS = < 01, 11 > o a 

Equivalent ~~ hp Caults 

Figure 13.14. Diagnostic of gates 

13.4.2 Study of a Small Circuit 

Example 13.6 

Let us consider onee again the cireuit of Example 13.1 (Figure 13.15) 
with a classic single stuck-at '0' or '1' fault model. We apply the following 
fixed diagnosis sequenee: DS = <110, 010, 100,011>. 

Figure 13.15. Diagnosis of a small circuit 

The faults deteeted by these 4 veetors are indicated by Table 13.1: thus, 
the input veetor (abc) = (110) detects the stuck-at '0' of the lines 1,2,4 and 
5. The symbol '-' indieates that the veetor deteets no failure of the line. This 
table was obtained by applieation of the path sensitizing method presented in 
seetion 13.2. The eonsidered fault model eomprises 10 faults (stuck-at '0' or 
'1' of eaeh of the 5 lines). The circuit is either faultless (this is noted by the 
symbol <»), or affected by one of these 10 failures; this gives 11 situations. 
The applieation of the veetor V 1 separates these possibilities into two 
groups: 
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• {1°, 2°, 4°, 50} if the response of the circuit is incorrect, that is an the 
faults belonging to the first row of the table, 

• {<p, 11, 21, 3°, 31, 41, 51} if the response of the circuit is correct, that is an 
the other situations. 

Lines 1 2 '3 4 

~~i fest ' abc ~ 

VI 110 0 0 - 0 0 
V2 010 1 - 1 1 1 

V3 100 - 1 1 1 1 

V4 Oll - - 0 - 0 

Table 13.1. Fault coverage of a 4-vector test sequence 

Then, we successively perform the same analysis for the 3 others vectors, 
and we gradually construct the binary diagnosis tree displayed in Figure 
13.16. The considered test sequence thus partitions the 11 possible cases into 
7 c1asses. We note that two c1asses possess several faults: {31, 41, 51} and 
{ 1°, 2°, 4°}. In fact, the faults of each one of these groups are not 
distinguishable: they are thus system equivalent. 

Imp. Imp. 

pO, 20, 40} 
{31, 41, 51} 

Figure 13.16. Diagnosis tree 

Hence, the proposed test sequence provides a complete diagnosis, which 
means that the c1asses of distinguished faults ({ <p}, {30}' {21}, {1 1}, {3 t. 4 t. 
51}, {1°, 2°, 4°} and {50}) are an the c1asses of system equivalent faults. 
Moreover, this sequence is optimal in number of test vectors. Since the 
circuit is combinational, we can exchange the vectors without changing the 



13. Structural Testing Methods 339 

final classes; thus if we remove any vector, some of the distinction classes 
that are obtained are no longer equivalence classes. 

13.5 INFLUENCE OF PASSIVE REDUNDANCY ON 
DETECTION AND DIAGNOSIS 

Now we analyze the influence of passive structural redundancy (Chapter 
8) on the test of logic circuits. By definition, passive redundancy implies 
undetectable faults. From the user's point of view, this situation can appear 
satisfactory: he/she does not have to preoccupy himself/herself with faults 
that never disrupt the good working order of the product. Such an argument 
is false, as we will show by the use of some simple examples. First of all, the 
manual or automatic search for test vectors detecting undetectable faults is a 
cause of loss of time and money. Secondly, the majority of protection 
methods are based upon simplified hypothesis such as the 'single fault' 
assumption. Passive redundancy can mask the existence of faults that can be 
accumulated over time. This is calledfault masking. Passive faults can: 

• mask the detection of 'activable' faults (a fault being able to bring about 
a faHure is not detected by the tester), as illustrated by Example 13.7, 

• distort the diagnosis of 'activable' faults (the tester is mistaken when 
identifying the presence of a particular fault when it is another fault), as 
illustrated by Example 13.8. 

Example 13.7 

Let us assurne that a non-detectable stuck-at 1 fault occurs in the circuit 
of Figure 13.17 (fault noted a in the figure). Since it is not detectable, it can 
occur and then remain in the circuit for a very long time without posing any 
problem nor being detected at the time of the maintenance test operations. 

Detection Masking a ---I 

CL : undetectable 
ß : detectable by 

ab=OOor 10 

b--r-r-I 

Figure J 3.17. Detection masking 

f 

To understand the loss of detection, we consider a stuck-at 0 fault, noted 
ß in the figure, which is detectable by two test vectors (00 and 10). We 
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suppose that we have chosen vector 10 for the maintenance test sequence. If 
this fault ß occurs whilst a is already present, the result of the test is always 
'correct' and therefore the fault ß can no longer be detected by the test 
sequence. We say thatfault ß is masked by the passive fault a . 

Example 13.8 

In order to understand the loss of diagnosis, we propose the circuit in 
Figure 13.18. As for the previous example, we assurne that a passive fault, 
noted a, is present in the circuit, perhaps for a very long time. Now let us 
consider two detectable stuck-at 0 faults, ß and y, which are distinguishable 
by the diagnosis sequence <11,01>. If the fault ß occurs whilst ais already 
present, this sequence erroneousl y diagnoses the presence of y instead of ß! 

Note. This situation corresponds to the presence of two single faults, 
which violates the dassic single fault assumption. Actually, the first non
testable fault a appears at time t, and, from this moment, the probability of 
having a second failure increases with time. Such situation is quite possible. 

Diagnosis Masking 

a : undetectable 
ß : detectable by: ab = I J on f 

ab=OJ ong 

y : detectable by ab = 11 on f 

~ Distinction <11, 01> 

a """T---1 "»-----''''''' 

a 
J 

Figure 13.18. Diagnosis error 

( 

g 

13.6 DETECTION TEST WITHOUT ERROR MODEL. 
APPLICATION TO SOFTWARE 

13.6.1 The Problem of Structural Test without Error Model 

In electronics, an error model defines error dasses (for example that of 
the stuck-at) due to various causes: design errors of the components, 
hardware faults due to ageing, etc. Bach dass represents a perceptible 
physical reality that has been established by experience/experiment (notion 
of pertinence of the models). Furthermore, a model identifies generic errors 
appropriate to the technology and not to the product studied. For example, 
the stuck-at fault can occur in a gate constituting the product, whatever the 
functionality offered by this product. In the case of software technology, 
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such generic error classes are generally not considered, since they are not 
acknowledged as representatives of situations that are commonly 
encountered. 

Nevertheless, the methods of structural testing for software are based 
upon types of elements that the test sequences must activate. For example, if 
we consider statements as the type of element, a structural test sequence will 
look to execute all the statements of a program. If this is the case, we will 
allude to a 100% coverage rate. As previously mentioned, the coverage rate 
of the sequence will be the number of elements (of the considered type) that 
are activated by the execution of the sequence, divided by the total number 
of elements of this type in the pro gram. 

Even if the terminology (coverage rate) is identical to that employed in 
electronics, the sense given in the software domain is different. In 
electronics, this level represents the percentage of the errors in a class (fault 
model) of which detection is guaranteed; in software, no precise link has 
been established with technological faults. We can say that the higher the 
value of this level, the more important the probability of detecting possible 
errors will be, since the sequence will have activated more elements. 
However, a level of 100% can be associated with a sequence that does not 
really detect 100% of the present faults. Even this sentence can be contested, 
since we do not know the set of possible faults, and thus the reference base 
that helps us to define the percentage of actual fault coverage. 

Let us consider the following function: 
function F(A, B: in float) return float is 
begin 

return (A+B)/(A-B); 
end Fi 

The execution of F(5,3) provides a level of 100% when 'statements' are 
the type of elements considered, whereas this function contains an activable 
design fault raised by calling F with identical values (A = B) if this case has 
not been included in the specification. 

Thus, the fact that all the statements have been executed increases, in an 
unjustified way, the trust that we could have. On the other hand, the fact that 
all statements have not been executed increases, in a justified way, the 
mistrust that we should have. Actually, the fact that it may not be possible to 
execute some of the statements in the program frequently uncovers a design 
fault. This situation however can be intentional, for example, as a result of 
library usage in which only some of the functionalities are voluntarily 
employed, or because of the presence of redundant mechanisms that were 
introduced for tolerance reasons, wh ich are only activated when errors occur. 

In order of implementation complexity, we consider as type of elements: 
statements, branches and paths, and conditions. We will indicate the 
increasing degree of the verification of these methods that are besides 
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generally demanded according to the increasing degree of dependability 
required. In the case of the requirements of the DO-178B standard applied to 
avionics systems, the following is appropriate. The software at level 1 (not 
critical) does not require the use of structural testing, those at level 2 require 
an statement test, for level 3 a branch test is necessary, and at level 4, which 
is the highest, a conditional test is required. 

13.6.2 Statement Test 

The statement test sequence must provoke the execution of all the 
statements of the pro gram. Let us consider the following fragment of 
program: 

if X <= 0 
then 

else 

end if; 
if X = 0 

then 
else 

end if; 

x .-
Y .-
X . -
Y .-

X .-
X .-

-X; 
2 ; 
1-X; 
1; 

1; 
X+1; 

1 

2 

3 

4 
5 
6 

The figures following the '--' sign are comments which will be used in 
our analysis. 

If we execute this pro gram fragment with the value -3 and then + 1 for X, 
we obtain coverage of 100%. Let us indicate that there are tools that are 
integrated into the execution environments of computer languages that can 
save and therefore highlight the statements executed. 

Generally, we do not initially try to establish a specific activation 
sequence. We use the input sequence of the functional test sequence already 
defined for functional verification. The fact of not considering the output 
values shows that the software structural test is not used to detect failures of 
the product. If some of the statements of this program are not executed by 
this sequence, then that proves: 

• either that the functional test sequence was incomplete and that certain 
behaviors were not evaluated, 

• either that the design choices have lead to treat in a singular manner the 
behaviors that are considered as functionally equivalent, 

• or that there is redundant code, for example to implement mechanisms for 
fault tolerance. 

In order to illustrate the second case, let us consider that we have two 
functions Small_F and Big_F at our disposal. Both of these functions 
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calculate the same result F according to two different methods (or 
algorithms), respectively weIl adapted to the case where the value of the 
parameter X belong to the interval [0.0, 1.0] or if it is greater than 1.0. 
Therefore, the designer will undoubtedly write: 

if X <= 1. 0 

end if ; 

then F .- Small_F(X); 
else F := Big_F(X); 

If the product (the complete pro gram) behaves differently if X <= 7.5 and 
X> 7.5, then the functional test sequence can execute the program with X 
=7.0 then 8.0 and finally 7.5 for the 'limit tests'. In this case, the statement 
'F: =Small_F (X) ;' will never be executed. Hence, the implementation of 
Small_F can contain a fault that we must try to detect. This example thus 
shows one of the interests in structural testing. 

13.6.3 Branch & Path Test 

Wehave just shown that the test of statements constituted a contribution 
to the evaluation of the functional test sequences. However, the supplied 
coverage level is of little significance. Let us consider the following extract: 

if x>o.o then 

99 statements in sequence 

else ... 1 statement 
end if ; 

If we execute it with X = 1.0, we provoke the execution of 99 of the 100 
statements. The level of 99% seems very satisfying, whereas evidently, we 
have only tested half of the situations: 'X> 0.0' has been examined but not 
'X <= 0.0'. In fact, the statement test makes the hypothesis of the 
independence of the statements, wh ich is not the case in this program. In the 
previous example, the execution of the first statement automatically implies 
the other 98 statements that are in sequence. 

The statements in sequence are now grouped together by branch and only 
the branches are examined. 

Figure 13.19 shows a representation of the branches from the extract of 
the program that is provided in sub-section 13.6.2. The statement test 
explained in the previous sub-section leads to the state paths that follow: 

• X=-3:1,2,4,6,7, 

• X=+I:I,3,4,5,7. 

Thus, all the branches are covered (2, 3, 5 and 6) by this branch test. 
This coverage level is more significant than the previous one, since it takes 
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the sequential dependencies between the statements into account. However, 
this test does not consider the dependency (or non-dependency) between the 
branches. For example, the state sequence 1,2,4,5, 7 is not activated by the 
2 attempts (X = -3 and X = +1) when it could correspond to a particular 
behavior that potentially leads to a faHure. 

X :-l-X; 
Y:-l; 

X:=-X; 
Y :=2; 

Figure 13.19. Branches of a program extract 

The path test is devoted to the study of paths. We are therefore looking 
for a test sequence that provokes the execution of all the control graph paths 
of the program. For the previous example, the 4 possible paths are: 2 then 5, 
2 then 6, 3 then 5 and 3 then 6. The sequence X = -3 then X = + 1 therefore 
covers only 50% of the paths (2 out of 4). The path test thus seems 
preferable. However, it must be practiced with care. 

First of all, all the control paths are not necessarily execution paths. In 
the previous program extract, if we replace the second test x = 0 by x = -
1, then the path 1,2,4,5, 7 will ne ver be executed. This is because if X <= 0 
the execution of x : = -x gives X a positive value, which will therefore 
never be equal to -1. In fact, the conditions for branching are not 
independent. If numerous relations exist between the conditions and the 
branches, then the actual number of execution paths is relatively low. 

Secondly, the duration of such tests can be intractable, in particular if the 
program has loops and nested control structures. Actually, the number of 
paths increases in a combinatorial fashion. An article presented an example 
of a pro gram that contains 2 'while' loops of which we assume that there is a 
maximum of 12 iterations, 2 'case' statements (equivalent to 'switch' in the 
C language) and one 'if' statement. For this program, we assume that the 
execution of a path requires 1 nanosecond. The study showed that an 
exhaustive path test would require 4000 years. 
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13.6.4 Condition & Decision Test 

We use the term condition for a Boolean expression which does not 
contain any Boolean operator ('and' , 'or' and 'not'). 'A>B' where A and B 
are float variables is such an example. We use the term decision for a 
combination of conditions (or of decisions) with the use of Boolean 
operators. 'A>B and B>C and not Cond' where Cond is a Boolean variable 
is an example of adecision. 

The ConditionlDecision test (CIDC for 'ConditioniDecision Coverage') 
is dose to the structural toggle test seen in Chapter 12 since it considers that: 

• the decisions must take the value True and False at least once, 

• the conditions must take the value True and False at least once, 

• the input and output points of the components (subprograms, etc.) must 
be executed at least once. 

This last condition aims at detecting components that are not used or in 
which the execution never terminates. 

Let us consider the following program extract: 
If A=B and C2 and D>3 then ... 

We have 3 conditions (A=B, C2, and D>3) and one decision ('A=B and 

C2 and D>3 '). Let us consider Table 13.2 that contains the values of the 3 
conditions (the first three columns). We deduce from these first 3 columns 
the values of the Decision. In this situation, we obtain a total coverage 
conceming the conditions and the decisions that take the values True and 
False. Thus, to acquire a test that gives a coverage of 100%, it is sufficient to 
take the values a, b, c2 and d for variables A, B, C2 and D such that a = b, c2 
= True and d > 3, then such that a 1= b, c2 = False and d ~ 3. 

Condition/Decision test does not try to obtain all the possible Boolean 
combinations but: 

• to cover all the branches by assigning the values True and False to the 
decisions, 

• to cover all the situations of the conditions. 

A=B C2 D>3 => Decision 

True True True True 

False False False False 

Table 13.2. Condition & decision test 
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The CIDC is the ConditionlDecision Coverage. It measures the 
coverage, taking the three previous element types (conditions, decisions, 
1/0) into account. The MCIDC test for 'Modified ConditioniDecision 
Coverage' adds a fourth requirement to the 3 previous ones: 

each condition in adecision must be shown to independently 
affect the result 0/ the decision. 

In the previous case, the 3 conditions and the decision have taken the two 
possible values True (respectively False) but not independently: 'A = B' and 
C2 and D > 3 were simultaneously True or False, wh ich gave a True 
decision (respectively False). To achieve the previous requirement, we must 
modify a single condition at a time so as to show the impact on the decision. 
An example is developed in Exercise 13.14. 

The achievement of the structural test sequences, in particular of the 
CIDC and MCIDC type, is difficult; since it must be able to control the 
modification of the values of the internal variables from the external inputs 
of the program. This is a controllability problem that has already been 
highlighted. 

13.6.5 Finite State Machine Identification 

Structural testing methods used to check pro grams are not based on 
explicit fault models. After the presentation of the statement, branch, path, 
decision and condition testing techniques, we must say that implicit fault 
models exist. Indeed, the control flow of a pro gram can be expressed by a 
Finite State Machine (FSM) whose transitions are labeled by decisions and 
inputs. The introduced structural coverage rates in fact aim at measuring 
how achanging in the control flow FSM due to any fault can be detected. 

Consequently, test sequence generation can be processed by finding 
inputs/outputs which identify the control flow FSM. 

13.7 DIAGNOSIS WITHOUT FAULT MODELS 

13.7.1 Principles 

The diagnosis method presented in section 13.4 assumes the knowledge 
of a possible fault or error model. For each of the faults or errors of these 
models, the failures of the system are deduced in the same way as the trees 
that associate each failure with primary faults or errors. Thus, the 
'experimental approach' also called 'empirical associations' assumes apriori 
the knowledge of the faults, failures and their relationships. Then, when a 
failure occurs, the potential faults are then examined. 
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Such techniques are not relevant when software technology is concemed, 
as the lists of faults or classes of faults that may actually exist cannot be 
exhaustively defined. To handle such a situation, the 'model-based 
diagnosis' technique does not assurne apriori any knowledge on the 
software failures and faults. It takes aposteriori the occurred failure into 
account, analyzing two system models: 

• what is expected, such as the system specification, 

• what exists, such as the software structure (design models, program, etc.). 

A failure violates an expectation whose causes must be found in the 
existing system structure. 

A diagnosis method aims at guiding the engineers during the diagnosis 
process. Taking the previous pieces of information into account, this process 
helps to find the fault being at the origin of the failure. 

The proposed diagnosis method is divided into four steps: 

1. highlight the error, 

2. elaborate hypotheses on the causes, 

3. confirm these hypotheses, 

4. verify these hypotheses. 

In the following sub-sections, each step is defined and its practical use is 
studied. We will show that the main difficulties in handling these steps come 
from the lack of knowledge on the actual system functioning before the 
failure occurrence. To obtain such pieces of information, checks of the 
system functioning are processed at run-time and data are stored. These two 
activities are known as system instrumentation. The checks aim at 
confirming the correct operation of the components or to signal error raising 
at run-time. The data will be useful at diagnosis time to obtain the same 
conclusions, improving the knowledge on the actual functioning. The 
instrumentation technique will be introduced in Chapter 16. In this section, 
requirements on the instrumentation, which makes the handling of each step 
easier, are introduced. 

Let us note that this diagnosis approach can be applied to any product 
(hardware andlor software) modeled at system level. 

13.7.2 Highlight the Erroneous Situations 

The first step consists in highlighting and studying the assumed failure 
from which we may conclude that a fault exists. This phase is important, as 
the engineer must be sure that a diagnosis is necessary. Two reasons stop the 
diagnosis process. 
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First reason. The analysis establishes that the detected erroneous 
situation comes from a defective use of the system. For instance, the user or 
the environment had previously lead the system in astate where occurring 
interactions cannot be handled as such a situation was not specified. This 
conclusion does not mean that no action has to be undertaken. Without doubt 
we will have to specify the contents of the user manuals so that the 
interactions offered by the system are more explicit. The specifications of 
the system can also be modified to improve the ergonornics so as to make 
the understanding of the state of this system and of the actions authorized 
clearer. Some mechanisms, which increase the robustness of the system to 
the undesired interactions, will have to be specified as weIl. However, these 
actions do not concern the search for a fault, since the system conforms to its 
specifications. 

Second reason. The analysis highlights an incorrect instrumentation. We 
encountered systems whose functioning was correct but a failure was 
detected due to an erroneous instrumentation such as a too restrictive 
assertion on its expected functioning. 

The study of the erroneous situation is very important, as it also specifies 
the problem to be solved. The conclusions of such a study will be the basic 
information handled during the following steps. In particular, this study must 
specify the cireumstances of the failure by detailing the state or the 
sequences of states of the environment which led to the failure. This study 
must also provide an image of the internal state of the system, at that 
moment. This prelirninary work is essential, since for many software 
systems the main difficulty is rediscovering the precise context of operation 
for the system. This context often corresponds to some very particular 
situations that were not imagined by the designers. 

The operation configurations can be deduced from the observations that 
are made by the user. This information is often not precise, since the user 
does not pay special attention to it (he/she does not expect apriori any 
failure when it oeeurs). For these reasons, we reeommend the planning of a 
data saving mechanism that charaeterizes the state of the operation requests, 
or the history of these requests in the case of a sequential system. 

The context of the software system also includes the internal state of the 
system. If the identity of the current statement is useful, other pieces of 
information are useful as weIl. It concerns the state of the components of the 
system (objects, variables, ete.). This information can be quantitative, that is 
the eurrent values of the variables. This is obtained from saved data or 
deduced from them. This information can also be qualitative, that is the state 
of the correct functioning of the eomponents. This correct functioning is 
eonfirmed by the implementation of detection mechanism for erroneous 
states, for example by means of assertions. These two types of information 
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are often correlated. For example, if we save the value of the variable that 
designates the index of the top of a stack, this quantitative information also 
provides qualitative information about the state of the stack: empty, full or 
between the two, Pushed when it was full, etc. 

13.7.3 Elaborate the Hypotheses 

From the erroneous situation, that is the failure and the occurrence 
context, hypotheses on the causes are examined. Taking the program 
structure into account, the engineer searches for the states previously 
processed by the pro gram to detect an internal erroneous one. 

The main difficulties are quantitative as well as qualitative. 

Quantitative difficulties. The pro gram contains numerous statements 
whose backward recovery induces numerous possibilities. The engineers 
must be able to select a few numbers of them to continue their analysis. For 
instance, to handle backward simulation from the last statement of the 
following program extract, the engineer needs to know if the 'then' or 'else' 
part was processed. 

if A>B then 
else 

end ifi 
A:=A+li 

Moreover, only in few cases the execution of a statement possesses a 
single antecedent. For example, if we know the value of A after the 
execution of A: =A + 1 i, we can deduce the value of A before this execution 
(A has the value A-l). Generally, elasses of possible values must be 
manipulated. For example, if the branch then was definitely executed, the 
variables A and B can previously contain all the values such that A>B. 

Qualitative difficulties. Whereas the pro gram provides structural 
information (statements are assembled by control structures), the elaborated 
hypotheses must concern more abstract notions such as "this subprogram 
provided a wrong result". A link between these two types of information has 
to be rnaintained throughout the analysis. For example, the knowledge of the 
values retumed by the parameters allows us to make a conelusion about the 
subprogram erroneous behavior. 

At the end of this process, the provided hypotheses are program states 
whereas the fault that causes their occurrences at run-time is a structural 
notion. For instance, a constant value is incorrect or the Boolean condition is 
A>=B instead of A>B, etc. are structural notions. As no realistic fault models 
exist for the software technology, the deduction of a fault from a given 
erroneous state cannot be done automatically. However, to make this last 
step easier, the elaborated hypotheses must be elose to the actual fault. 
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13.7.4 Confirm the Hypotheses 

The previous backward simulation leads to multiple hypotheses. Most of 
them are only potential. The confirmation stage of the hypotheses endeavors 
to show that an error hypothesis effectively leads to (or does not lead to) the 
erroneous situation. A direct simulation performs this research. We execute 
the system from the hypothesis. 

The first difficulty comes from the fact that the information that acts as 
the starting point of the simulation is often expressed in constraint form: f 
does not return a correct result or the value of X is less than 1.0. Thus we 
have to perform a simulation that uses qualitative data (the first example) or 
uncertain data (the second example). 

Here again, the program complexity makes high-level simulation 
necessary. For example, we will not execute a subprogram but assume that 
its execution provides a correct result. This assumption must be argued 
about. The instrumentation is therefore useful once more. For example, 
thanks to the checks that were carried out on-line, or from saved 
information, we deduce a certainty on the correction of the subprogram. 

Whatever the simulation level we consider, the structure of the pro gram 
describes multiple processing possibilities. For example, an if then else 
offers two choices. Similarly, it can be necessary to know the effective 
number of iterations that are executed by a loop. Pieces of information must 
be available to reduce the choices. 

If the simulation handling does not lead to the assumed erroneous 
situation, the studied hypothesis is wrong. To reduce the time spent reaching 
this conc1usion, the incoherent situations that come from the hypothesis 
should be detected as soon as possible. In particular, the simulation is 
stopped if it leads to states that could not occur. The instrumentation data are 
one again useful to detect such a situation. For example, if the hypothesis 
leads to show that the program requested the opening of a val ve or affected a 
variable to some value, while these facts did not occur, this contradiction 
shows that the hypothesis is false. This conc1usion is obtained without 
processing the simulation from the fault up to the failure. 

13.7.5 Verify the Hypotheses 

The previous analysis concerns one erroneous situation and the recent 
past of the system life: from the hypothesis to the error. However, the useful 
life of the system may be longer. So engineers use knowledge on this 
previous activity to confirm or not the assumed hypotheses. For instance, let 
us consider the following hypothesis: the subprogram P does not correctly 
calculate a result in certain circumstances. If P was previously called on 
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numerous occasions in the same circumstances without any problems, then 
this hypothesis is probably false. 

When industrial applications are concerned, such a conc1usion is 
unfortunately not always true. Even if the program structure cannot be 
changed at run-time, a lot of transient phenomena exist. For instance, they 
rnay due to hardware faults or software temporal problems. For example, an 
interrupt occurs whose handling consumed CPU time, increasing the 
execution duration of a given preempted task. The fact that the interrupt was 
raised during the task execution may be rnasked, thus making the 
understanding difficult of the task execution duration delay. Other hardware
software interactions are at the origin of such phenomena. For example, the 
presence of cache memory changes the execution duration of the executable 
code instructions. It has an effect on the application behaviors that rnay be 
perceived as hazardous. Here again, this cause is not understandable when 
the hardware platform characteristics are unknown. 

13.8 MUTATION TEST METHODS 

13.8.1 Principles and Pertinence of Mutation Methods 

A program mutation consists in modifying its statements so as to obtain 
a new program called mutant. 

The modifications used in practice are first-rate; they affect a single 
element. Various types of modifications have been proposed. They constitute 
fault models and concem different features. 

• Constant values are changed by taking other values. For instance, in the 
case of areal constant, we shift the placement of the decimal point 
forward. For example, 3.14 is replaced by 31.4. 

• Identifiers are replaced by others of the same type if the language is 
strongly typed (Ada, Pascal). In the case of languages that allow implicit 
conversions, such as the C language, an identifier can be substituted by 
another one, even if their types are different. For example, in the 
statement "X=Y;", Y oftype float is replaced by I of type integer. 

• Operations are replaced by other operations that have operands and 
results of the same type, if the language demands the respect of types. 
This applies to arithmetic operators (+, -, *, etc.), but also to logic 
operators (or, and). 

• The called functions are replaced by others that have the same number 
and the same types of parameters. 
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• The flow of control is modified. For instance, by adding a negation 
operator in front of the conditions that are associated with the branch tests 
(it) or loop tests (exit conditions). For example, "if ((A+B < C) and 
(A < D» then . . . else ." is replaced by "if not ( (A+B 
< C) and (A < D» then . . . else . . .". 

• Statements are removed. 

The question of the representativeness of such fault models immediately 
comes to mind. These models generally correspond to no realistic faults. The 
promoters of this technique confirm this. It is actually unlikely that a 
designer obtains a correct program by means of a single mutation to the 
original program. However, this technique presents a number of interesting 
features. Even if the faults that are used by mutations are not realistic, the 
errors that these faults induce are generally significant. The mutation 
technique therefore allows us: 

• to validate the error detection mechanisms by instrumentation of the code 
(see Chapter 16), 

• to validate the test sequences. 

This last aspect is developed in the next sub-section. 

13.8.2 Mutation Testing Technique 

The mutation technique is used to evaluate the test sequences. For each 
mutant, we check that the test sequence is capable of activating the fault 
introduced and propagating the induced error up to the outputs. If the 
mutation cannot be detected by the sequence, this sequence must be 
improved. However, this improvement is not always possible. First of all, the 
modification of the pro gram by certain mutations does not lead to a fault. 
For example, let us consider the extract of the following pro gram: 

Number_of_Ernbedded_Passengers = 
Nurnber_of_Registred_Passengersi 

for (N=l; N < Nurnber_of_Ernbedded_Passengersi N++) 
{ . . . } 

If a mutation transforms in the for loop, Nurnber_of_Ernbedded_ 
Passengers by Nurnber_of_Registred_Passengers, then there is no 
fault detectable. 

In other situations, the mutation effectively creates a fault, but the 
redundancies do not allow to activate an error or to detect it at the outputs. 
We will say in hoth cases that the mutated program is equivalent to the 
initial one, which means that its behavior is not influenced by the mutation. 
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Under these circumstances, we do not have to try to modify the test 
sequence since no improvement will be obtained. The performance of a test 
sequence is therefore measured by the number of mutations that are detected 
divided by the total number of applicable mutations, in excluding the 
mutations leading to equivalent programs. 

Evidently, this technique is only tractable if we dispose of a tool that 
automatically injects the faults one by one, re-executing the test sequence 
and noting the detected faults. In addition, the types of mutations that are 
considered must be few in numbers. For example, a program containing 500 
uses of the '+' operator will create 1500 mutants if we modify each use by 
'-', '*' or '/'. If a program contains 15 integer variables, each used 10 times; 
the total number of mutations is 15*10*14 = 2100. 

Finally, certain mutations give properties to the program that make the 
test difficult. Let us consider for example, the following extract: 

for (1=1; 1<=N; 1++) { ... } 

with the mutation which replaces the identifier N by the identifier I, thus 
the execution of the loop can become infinite. This can cause an omission of 
a result, which cannot therefore be compared to the expected one. 

In spite of these difficulties, this evaluation method of test sequences is 
quite appropriate, not as a result of the representativeness of the faults that 
are considered by the mutations, but as a result of the representativeness of 
the errors that these faults induce. Two types of experiments showed this. 

• First of all, a test sequence a test sequence was established, having a 
complete coverage of the set of mutations, for a preliminary version of 
the pro gram. Then, this test sequence was applied to a second version that 
was developed from the same specifications, but by another person. Most 
of the faults that were present in this second version were detected. 

• Secondly, the mutations can be applied two by two instead of one by one. 
We therefore show that the initial sequence also detects almost all of 
these situations. This experiment would aim to conclude that the 
sequence is capable of detecting the errors that come from complex 
faults, if those are considered as the combination of simple ones. 

A similarity exists between the evaluation of the mutation software test 
methods and the evaluation of electronic test methods that have to detect the 
stuck-at 0 /1 errors. We saw in the previous chapter that this evaluation was 
carrled out by methods that are based on the simulation of faults, that is, by 
injection of faults. These errors have also been shown as significant. They 
are due to physical faults that are not taken into consideration since they are 
too diverse and complex for an observation of the system at logic level. 

However, we have to repeat that the faults considered are not 
representative. Therefore the sequences obtained by the mutation testing 



354 Chapter 13 

technique are useful in the detection of the presence of faults thanks to errors 
that they provoke, but not to the diagnosis of these faults. For example, a 
piece of a sequence could have been introduced to reveal the transformation 
of a '+' operator into '-'. If the sequence is applied to the initial program, no 
error should be detected. The detection of an error, by means of this 
sequence slice, in another version of the pro gram does not allow us to 
deduce the presence of a fault which changes a '+' operator into a '-' 
operator in such a place in the program. In fact, the structure, i.e. the 
statements of the tested program, is undoubtedly very different to that of the 
original pro gram. 

The evaluation of a test sequence by the mutation technique requires the 
sequence to raise an error (controllability problem), but also to propagate it 
towards the outputs (observability). The weak mutation testing only 
possesses the first requirement. Indeed, it assumes the presence of internal 
detection mechanisms to signal the error detection, such as those of 
instrumentation that will be developed in Chapter 16. Only the 
controllability capability of the sequence is therefore evaluated. This 
technique is also useful to measure the performance of the detection 
mechanisms implemented in the application, for instance to recover errors by 
a fault tolerance mechanism. 

13.9 EXERCISES 

Exercise 13.1. Test of a small circuit 

Consider the small circuit in Figure 13.2. 

1. Apply the method seen in section 13.2 to find all the test vectors for each 
of the stuck-at '0' or '1' faults of this circuit. Draw the resulting fault 
table and comment the coverage efficiency of the different input vectors. 

2. Prom this fault table deduce an optimal test sequence, i.e. a test sequence 
detecting all faults and having a minimal number of vectors. 

Exercise 13.2. Test vectors detecting a fault 

Consider again the circuit studied in Example 13.4. Apply the structural 
test method studied in section 13.2 to find all vectors testing the stuck-at 1 
fault of line 11. The procedure here is more complex, since in stage 2 of the 
backward propagation several input values can satisfy the constraint. These 
possibilities must then be considered successively. Hence, a loop must be 
added to the basic procedure. 
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Exercise 13.3. Analysis of test procedures 

Let us consider the circuit of Figure 13.20. We want to find, by a path 
sensitizing approach, one test vector which detect the stuck-at 0 fault of the 
output of gate D. 

a--;::::==~==fR' 
b 
c 

d 

Figure 13.20. NAND-gate circuit 

1. The following procedure is proposed: 

AllIines are set to 'x' (unknown) state. 

f 

- Input a is set to '0', and a propagation (simulation) is performed towards 
the fault location: B = 1, C = 1, D = 0, so the fault cannot be activated; 
hence we make a backtracking in the input assignment. 
Input a is switched to '1', and a propagation is performed that brings 
nothing, as B and C stay unknown. 
Input b is set to '0', and a propagation is performed: B = 1. 
Input c is set to '0', and a propagation is performed: C = 1, so the fault 
cannot be activated; hence we make a backtracking in the input 
assignment. 
Input c is switched to '1', and a propagation is performed: C = 0, D = 0, 
so the fault is activated as an error e. 
Analyze this procedure and complete it in order to find one test vector. 

2. The following procedure is proposed: 

Alliines are set to 'x' (unknown) state. 
- To activate the fault, D is set to 1, and we backtrace this information 

towards a primary input: one input of gate D must be set to '0' 
We choose to set B to '0', and we backtrace this information: all inputs of 
gate B must be set to '1'. 
We choose first the hardiest case, i.e. to assign A to '1', and we backtrace 
this information. 
We chose to set b to '0', and we perform a forward propagation towards 
the fault of this information: B = 0, so the assignment is inconsistent; we 
abandon this path and try another one with the assigned values of the 
primary inputs. 
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- Gate C is set to '0', this information is backtraced: all inputs of gate C 
must be set to '1'. 

- Input a is set to '1'. 
- Input c is set to '1'; now the fault is activated as an error. 
- We want to propagate the error through gate E: there is inconsistency. 
- We make a backtracking in the primary input assignment. 
- Input c is switched to '0', and we perform a propagation: C = 1, so there 

is inconsistency, and we continue the backtracking on input b, c being 
now set to 'x' again. 
Complete this procedure in order to find one test vector. Can this 

procedure be improved? 

Exercise 13.4. Fault coverage of a test vector 

1. We apply to the circuit of Exercise 13.2 the input vector (a b c d) = 
(l 00 1). Find by structural analysis all the faults covered by this vector. 

2. Is the preceding vector a good test vector? Analyze the structure of the 
circuit in order to find test vectors having the highest test coverage (best 
number of detected faults). 

Exercise..13.5. Diagnosis of a circuit 

Let us consider again the circuit of the previous exercise. 

1. Look for a simple test sequence that at best distinguishes the three faults 
in the group {2°, 5°, 11 1 }.-

2. Draw the diagnosis tree of the following test sequence; 
TS = <1000, 1001,0110>. 

3. Is this sequence significant? 

Exercise 13.6. Complete diagnosis of a small circuit. 

From the fault table obtained in Exercise 13.1, deduce a minimal 
sequence which performs the best diagnosis testing. 

Exercise 13.7. Logical test of some faults of a full-adder 

This exercise invites you to test the full-adder of wh ich the logic diagram 
is given again in Figure 13.21. 

1. Find all the input vectors which test the stuck-at '0' fault a in the figure. 

2. This fault has already been studied in Exercise 5.2 of Chapter 5. In what 
way is this functional approach different to the present structural path 
sensitizing approach? 
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3. A functional fault transformed the two EXCLUSIVE OR gates into 
IDENTITY gates. 1s it possible that a test vector that was found In 

question 1) can test this fault, which is not a stuck-at fault? Why? 

a _--r::::::-l 
b ~--+~~ 

g 

Figure 13.21. Full Adder 

Exercise 13.8. Functional test and toggle test 0/ a Jull-adder 

1. Find a very simple functional sequence of two vectors to test the full
adder of the previous exercise. Find the stuck-at faults detected by this 
sequence. 

2. Complete the previous sequence in order to obtain a toggle type test 
sequence (such a sequence was found in Exercise 12.2 of Chapter 12). 

3. Complete the previous sequence to test all the stuck-at faults of the 
circuit. 

Exercise 13.9. Test 0/ a structured circuit 

Two full-adders (FAI and FA2) are connected in series as shown in 
Figure 13.22. This structured circuit adds two 2-bit numbers, (al, a2) + (bI , 
b2), and produces a 3 -bit result, (SI, S2, S3). An input carry cO (set to ° in 
our case) can be used to put in cascade several circuits, in order to constitute 
an n-bit adder. 

S I 2 

"I bl :l2 1>2 

Figure 13.22. Structured adder 

We suppose that each full-adder is completely tested by the following 
test sequence made of 5 input vectors (a, b, c) : <001,010, 100, 110,011>. 
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1. Is it possible to apply such a sequence to each module from the primary 
inputs and outputs? 

2. From this study, deduce a complete test sequence that ensures the 
detection of all faults in this circuit. 

Exercise 13.10. Diagnosis study ofthefull-adder 

Draw the diagnosis tree of the input sequence <000, 010, 111> applied to 
the full-adder of Exercise 13.7. Is this sequence a good diagnosis sequence? 

Exercise 13.11. Complete test sequence of a circuit 

A very simple logic circuit of 3 inputs (a, b, c) and 1 output (j) is 
depicted in the following figure. 

Figure 13.23. Complete test of a circuit 

Find a test sequence that detects all the single stuck-at 0/1 failures of the 
inputs / outputs of the gates in this circuit. 

Exercise 13.12. Redundancy analysis 

We consider the circuit described by Figure 13.24. 

4 a 

2 6 
b f 
c 

3 
13 

5 7 9 
g 

Figure 13.24. Redundancyanalysis 

1. We want to determine the passive structural redundancies of this circuit. 
You will address this question by two different approaches: 

• by an algebraic Input-Output study, 
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• by drawing the fault table of this circuit. 

2. Find the conditions leading to the masking of fault detection, and the 
conditions leading to the masking of diagnosis. 

Exercise 13.13. Structural testing 0/ a program 

A program, written in e, is aimed at regulating the temperature of the 
engine of a car in the range [OOe, 90°C] (function named 'regulator'). 

1. Analyze the functioning of this pro gram. 

2. Define some functional test vectors. 

3. Analyze the coverage of these test sequences. 

Program: 
int modify_temperature(int temperature, int action, 

int duration) 
/* int temperature, action, durationi */ 
{ 

int final_temperature, ti 
switch (action) 

} 

{ 

case 1: / * Heating * / 
final_temperature = temperaturei 
for (t=Oi t<durationi t++) final_temperature++i 
return (final_temperature) i 

case 2: / * Cooling * / 
final_temperature = temperaturei 
for (t=Oi t<durationi t++) final_temperature--i 
return (final_temperature) i 

default: final_temperature = ternperaturei 
return (final_temperature) i 

#define heat _a_ little 10 
#define heat_much 20 
#define cool _a_ little 10 
#define cool_much 20 
/* ************************************************ */ 
int regulator(int initial_temperature, int 
heating_state, int fan_state, int variation) 
/* 

variation 

return 

o faulty 
1 OK 
o a little bit 
1 much 
the final temperature if the 
regulation is possible 
-3000 if the regulation is impossible 
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*/ 
{ 

int temperature, final_temperature; 
if ((initial_temperature > 0) && 

Chapter 13 

(initial_temperature <90)) 
return(initial_temperature); 

else { 
if ((initial_temperature <0) && 

(heating_state==l)) 
{ 

temperature = initial_temperature; 
while (temperature <0) 

{ 

if (variation==O) 
temperature = 

modify_temperature(temperature, 1, heat_a_little); 
else temperature = 

modify_temperature(temperature, 1, heat_much); 
} 

final_temperature = temperature; 
return(final_temperature); 
} 

if ((initial_temperature > 90) && (fan_state==l)) 
{ 

temperature = initial_temperature; 
while (temperature > 90) 

{ 

if (variation==O) 
temperature = 

modify_temperature(temperature, 2, cool_a_little); 
else temperature = 

modify_temperature(temperature, 2, cool_much); 
} 

final_temperature = temperature; 
return(final_temperature) ; 
} 

if ((heating_state == 0) I I (fan_state 0)) 
return(-3000) ; 

} 

Exercise 13.14. MCIDC testing 0/ a program 

We consider the following fragment of a pro gram: 

If (A=B and C2 and D>3) then Action; end if; 

Define the sequence of values that must be taken by the conditions and 
the decision so as to realize the M CIDC test. 
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FAULT TOLERANCE MEANS 

After having considered the fault avoidance techniques in the third part 
of this book, we now tackle the dependability means that are relative to 
fault tolerance. 

First of all, we dedicate Chapter 15 to Error Detecting and Correcting 
Codes, which constitute a fundamental base for most techniques used to 
design fault-tolerant products. Thus, this chapter aims at introducing the 
notions developed after. 

Then, Chapters 16, 17 and 18 present in a progressive way the 
principles, interests, and issues of fault tolerance: on-line testing systems, 
fail-safe systems and fault-tolerant systems. 

Finally, in Chapter 19 we compare the various approaches that have 
been studied throughout the book to synthesize their contribution to 
dependability improvement. 
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Design For Testability 

Faced with the ever-increasing complexity of testing, scientists have 
developed several methods and techniques to make test pattern generation 
easier, as weIl as to decrease the length of these sequences in order to reduce 
the testing duration, by acting on the product design. 

14.1 INTRODUCTION 

14.1.1 Test Complexity 

The prodigious historical evolution of computer technology, concerning 
hardware as well as software, has lead to products of increasing complexity. 
According to the Moore's empiricallaw, this complexity has been multiplied 
by 2 every 1.5 years! Current integrated circuits have millions of transistors, 
hundreds of I10 pins, and dock frequencies greater than one gigahertz, with 
feature sizes around 100nm. The cost of today automatie test equipment is 
several million dollars, and it might be growing exponentially to cope with 
the next generation of 1Cs. According to an SIA (Semiconductor Industry 
Association) report, the cost of testing future chips using conventional 
methods should rapidly be superior to the cost of manufacturing these chips. 
The same dilemma is developing with software applications, where the 
complexity is also increasing considerably in embedded applications 
(millions of statements). For this technology, the cost of testing increases 
exponentially; it is now frequently higher than the design cost. 

1t follows that the testing of products integrating both electronic 
components and pro grams has become rapidly prohibitive, even impossible, 
as illustrated by Figure 14.1. 
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Duration of lest generation in H 

Figure 14.1. Test complexity 

The off-line test, which was analyzed in the previous chapter, poses two 
kinds of problems: 

• At the test pattern generation level, that is for the search of a test 
sequence: 

~ Which method must be used so as to obtain a test sequence? 

~ What is the cost of this search, in terms of study duration and of 
invested finances? 

• At the test application level: 

~ What is the cost of the testing equipment? 

~ What is the length of the sequence (point which is connected to the 
duration of the test)? 

Systems that are 'easily testable' bring fundamental contributions to 
answer these questions. After explaining the principles of such systems (sub
section 14.1.2), we will specify the means that allow the modification of the 
designed product (section 14.2), then that allow the design of easily testable 
products (sections 14.3, 14.4 and 14.5). To finish this chapter, we will show 
the evolution from off-line to on-line testing (section 14.6). 

14.1.2 General Principles of Design For Testability 

14.1.2.1 Testability 

On the basis that testing is a difficult challenge, we pose the question: 

Is it possible to design and manufacture a product that is easy to test? 

First of all, let us specify what we mean by 'easy to test'. This concept, 
involves testability criteria and underlies two distinct yet linked properties: 
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• the easiness with wh ich we can generate a test sequence satisfying some 
quality properties, 

• the easiness with which we can apply this test sequence to the product. 

Tester 

Figure 14.2. Easily testable systems 

Test quality 
The general test context comprises the product expressed by a model, a 

fault model, and a test sequence applied to this product by a tester (Figure 
14.2). The quality of the test sequence is quantified by two attributes already 
presented: 

• the length of the sequence which influences the application easiness 
(duration of the test experiment); this attributes often assesses the test 
generation easiness; 

• the coverage of the sequence which measures the test efficiency to detect 
faults of the considered fault model. 

Test generation aims at defining a test sequence satisfying the test quality 
requirements expressed before. These attributes are useful to choose a 
suitable test method. For instance, a random test sequence is easy to obtain, 
but its length is generally prohibitive to reach a high coverage rate. 

Testability measurement 
Now, let us consider the testability by examining the product model. The 

easiness with which we generate the test sequence depends on the 
complexity of the product (number of elementary components, number of 
internal states of sequential systems, etc.), and on the way it has been 
structured into interconnected components. 

The most important attributes that can be used to measure the testability 
of a product are the controllability and the observability. 
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• Controllability is the easiness with which we can influence the product 
functioning so as to apply a given stimulus on an internal component 
from the primary inputs (ease of producing an arbitrary signal at the input 
of a component by exercising the primary inputs of the product). 

• Observability is the easiness with which we can access (to get a measure) 
the internal variables and states from the exterior by the application of a 
stimulus (ease of deterrnining at the primary outputs of the product what 
happened at the output of a component). 

These characteristics are linked to the structure of the product, that is to 
say, to the way in which it is organized as a system, into interconnected 
modules, possibly in accordance with a hierarchy. 

Every increase in controllability and observability facilitates the test: this 
is the basis of all the methods that are presented in this chapter. Indeed, this 
increase allows us to change a fault into an error (controllability), then this 
error into a failure of the product (observability) . Figure 14.3 illustrates the 
lack of controllability and observability of two poorly testable circuits. 

Uncontrollable Unobservable 

Figure 14.3. Lack of controllability and observability 

Several different groups of reasons can explain why a given product has a 
low controllability or observability. First, the design of the product has not 
produced an optimal structure (bad method or bad use of the method). We 
have already seen that some redundant components cannot be tested 
(untestable parts). Unfortunately, these redundancies are extremely frequent 
(in the form of reconvergent fan out structures for example) and difficult to 
elirninate during the design process. However, some redundancies can have 
voluntarily been introduced during the design for good reasons! For 
example, gates are frequently added to combinational structures in order to 
elirninate the occurrence of glitches; the anti-glitch circuit is then redundant, 
and the added gate cannot be tested! We will study some examples of gate 
circuits as exercises at the end of this chapter. 

Even if the design is optimal according to redundancy (no redundant 
components), the resulting structure can be difficult to test, as controllability 
and observability properties are not taken into account by most design 
methods. 
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It is important to note that the testability of individual components or 
parts of a system do not guarantee that the entire system is testable when 
these components are working all together. Hence, as we already noticed, the 
'unit testing' aimed at testing individual components is a necessary step in 
the process of testing a complex system; however, are also required 
'integration testing' procedures, which are much more difficult to implement 
and manage. 

Several methods, not detailed in this book, have been proposed to 
evaluate the testability of a given hardware or software system. They are 
essentially based on structural analysis of the system, in order to deduce 
qualitative estimators. At gate level, the ß1imber of gates (NG) is a rough 
approximation of testability measurement of a circuit. Adding the number of 
inputs and outputs (NIO) leads to a better measurement (T = NG / NIO). 
Much more accurate methods to evaluate the testability of a gate circuit have 
been proposed, and some of them have led to evaluation tools. All of them 
try to estimate the controllability and the observability of the circuit. These 
methods have led to industrial analysis tools, such as SCOAP. 

In software, a popular example is related to software quality metrics. The 
quality is measured according to several parameters; for example, the 
Halstead software metrics is based on 7 parameters: vocabulary, size, 
volume, difficulty, effort, errors estimated, and testing time. 

Test application 
We must note that the easiness of the test application can involve very 

technical aspects like the interconnection between the tester and the product 
under test: extern al physical connections (connectors, pads, etc.), probes or 
other sensors used between the tester and the tested product. This aspect will 
not be developed in this book although it can pose major technical problems. 
For instance, the occurrence of an output considered as erroneous may not be 
due to a failure of the product under test, but due to a parasite induced by the 
test environment as wen. 

14.1.2.2 Design for Testability 

The Design FOT Testability (DFT) strategy (sometimes called Design· 
For Test) provides solutions which make the product testing easier. Some of 
them act on the structure of the product already designed so as to increase 
the controllability and observability, and hence facilitate test generation. 
Other ones act on the design of the product by integrating specific 
mechanisms which facilitate test application. 

We identify four groups of techniques, as illustrated in Figure 14.4: 

• ad hoc approach, 
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• specijic designfor testability, 

• Built-In Test (BIT), 

• Built-In Self-Test (BIST). 

What to do? ..b... • Facilitate test generation 
t 

7' 
• Fatilitate test application 

Design For Testability 1. AD HOC approach 

(DFT) t\. 2. Specitic design for testability 

t ControUability ~, 3. BuHt-In Test (Bl1) 

t Observability 
4. BuHt-In Self-Test (BIS1) 

Figure 14.4. Wh at can be düne? 

The first approach is very pragmatic: it uses guidelines and techniques 
that are applied either during or after the design stage. However, these rules 
do not have a profound impact on the structure of the designed system. 
Nevertheless, they bring a significant improvement to testability . On the 
contrary, the secand approach requires a huge effort for specific design. The 
mechanisms implemented are therefore specific to each system dass, wh ich 
makes a unified presentation difficult. We will illustrate theirs principles 
with the help of two examples. Concerning the third and the fourth family of 
techniques, we da not question fundamentally the design, but we act mainly 
on the external interface with the tester. These techniques aim at improving 
the cost of the off-Une test by integrating the functions of the tester into the 
product. The English term self in the last group of techniques can lead to 
confusion with the on-line self-test techniques which are presented in 
Chapter 16. Actually, all techniques presented here require the product to be 
halted during the test, whereas those presented in Chapter 16 operate in 
parallel with the normal function of the system. Nevertheless, we will 
encounter on-line implementations of the BIST techniques in high 
dependability systems. 

These four families are analyzed in the following paragraphs. The ad hoc 
techniques are presented in section 14.2. Section 14.3 deals with specific 
design for testability methods. The Built-In Test approach is presented in 
section 14.4, and the Built-In Self-Test is considered in section 14.5. 
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14.2 AD HOC APPROACH TO DFT 

The principle of the Ad Hoc approach is to modify the structure of the 
partially or totally designed system in order to facilitate access to it from the 
outside. Fundamentally, it is a pragmatic approach to control and to observe 
certain variables from the outside. It has frequently been referred to as 
'afterthought testability' . Naturally, these basic considerations should lead to 
more formalized and efficient methods that cope with testability at the early 
stages of the design. 

In this section we will introduce the general design guidelines that bring 
new characteristics to the system, in order to make its test easier. To 
illustrate the application of these guidelines, we develop in sub-sections 
14.2.2 and 14.2.3 two software mechanisms that facilitate the observability 
and the controllability: the instrumentation and the exception mechanism. 

14.2.1 Guidelines 

In this section we are going to briefly present seven groups of guidelines 
conceming the best practices for improving testability . 

Initialization: Add ifnecessary initialization devices 

These are reset signals for electronic components, or initialization 
procedures for software applications. These devices allow us to place the 
system into a known initial state, thus facilitating the test operation. This 
initialization is generally necessary to start the test, for instance, to test a 
sequential system. It can also be useful to bring back the system into a 
predefined state, after the application of a part of the test sequence. When 
such an initialization mechanism is not available, a long input sequence must 
often be inc1uded in the test sequence to reach a desired known state. 

Modularization: Partition the system into small modules loosely and 
explicitly coupled (or 'divide and conquer') 

A good guideline for system design advises the use of solutions for which 
the components are loosely and explicitly coupled. This expresses the fact 
that there are only a few dependencies between the components and that they 
are c1early visible. For example, the subprogram body has to call a small 
number of other subprograms (loose coupling). Furthermore, the values 
necessary for the execution of the subprogram or retumed by its execution 
must be passed by parameters and not by global variables (explicit 
coupling). Such a practice facilitates the test, since we know precisely the 
small number of causes that influence the behavior of a component, 
(controllability) and the effects produced by this behavior (observability). 
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Example 14.1. Modular realization 0/ a counter 

Consider a 16-bit counter which has one input receiving asynchronous 
events (I), and 16 outputs (Q;) expressing the number of input events; the 
circuit reacts to the negative edge of I. The test of this counter requires 

16 
2 = 65536 input vectors: obviously, this circuit is not easily testable. Now, 
let us partition this system into two cascaded 8-bit counters, and add a 
multiplexer between them, as shown in Example 14.1: when Test = 0, the 
circuit behaves as a 16-biy counter, and when Test = 1, we obtain two 
independent 8-bit counters. Hence, the test complexity is drastically reduced. 
Indeed, the two 8-bit counters can be tested in parallel (l = In with 128 
vectors (pulses on I) with Test = 1; then, a last pulse on I with Test = ° 
checks the link between the two sub-circuits. 

Let us note that this solution has not increased so much the circuit 
complexity in terms of number of components. 

I 16.bit 
----. Counter 

I 8-bit 
Counter 

TI 

Figure 14.5. Modular realization 

8-bit 

Hierarchy: Take into account the hierarchy of the design system by 
carrying out a bottom-up test process 

A good practice for design consists in organizing the constituents into a 
hierarchy (electronic components, subprograms, data structures, etc.), so as 
to find in the designed system the different levels of abstraction introduced 
at the time of design. However, this approach, which can only be 
encouraged, dirninishes the testability of the system. In effect, it is more 
difficult to modify the value of a variable of a component which is located 
deeply in a component tree structure, or to activate one of its features, than if 
all the components were at the same level. This sit~ation leads to organize 
the test process into several steps: 

• the unit test checks individually the low-Ievel components, 

• the integration test checks the components of a high er level in the tree, 

• thefinal test, or acceptance test, checks the complete product. 
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Bach verification level implements test techniques which assume that the 
lower level constituents are correct. Thus, if a subprogram uses 'sub
subprograms' , we will try to cover all the paths in the subprogram body by 
considering the 'sub-subprograms' as black boxes. 

The bottom-up test brings solutions to the controllability of hierarchical 
systems. ActuaIly, the tests applied at a given level must activate the 
modules that make up the system at this level, without trying to exercise the 
internal structure of these components. These components are therefore 
considered as atoms. 

Concerning the observability, mechanisms must allow us to 
automatically propagate the detection of an error across the design hierarchy. 
For software applications, we present in section 14.2.3 the propagation 
technique offered by exception mechanisms, wh ich responds to this need. 

Mastering of the sequential parts 
1. Control the unknown states 

Most designed systems do not use all the internal states wh ich are, for 
example, defined by flip-flops in electronic design. If, for any reason, the 
final product enters one of these unknown states, it is important to known 
how it will react. If the behavior is 'trapped' into an uncontrollable sub-set 
of states, testing will become impossible. This situation corresponds to 
functional redundancy implied by the state coding. 

Such rules are given by the companies designing integrated circuits (such 
as Programmable Logic Devices) or proposing tools to design them. In 
software technology, we encounter the same worry to master unknown 
situations. For example, when using a case statement, it is recommended to 
always insert the defaul t condition to bring the system in a known state 
when an incorrect situation occurs. Let us note that in nowadays hardware 
developments, the use of VHDL or Verilog languages mixes hardware and 
software issues. Hence, the engineer has to master both set of guidelines. 

Example 14.2. Control the unknown states 

Let us consider the state graph of Figure 14.6 a). Any design requires at 
least 3 internal Boolean variables to code the 6 states; for instance, Figure 
14.6 b) shows such a 3-internal variable coding. As a consequence, the 
sequential circuit has 8 theoretical internal states (from 000 to 111). This 
may lead to some control difficulties. A simple initial reset of the circuit 
brings it into a non-defined state (OOO)! If a parasitic aggression induces '1' 
values (capacitive charges) in the three flip-flops, then the circuit reaches 
state (111). 

This problem is weIl known, and it has led to rules that the designers 
must follow to control the unknown states. Here, we can control the 2 
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unknown states by adding arcs leading to state 1 supposed to be the initial 
state of the system (see Figure 14.7). 

Present state Nextstate 
123 123 

I 00 I o I 0 
2 o I 0 o I I 
3 o I I I 00 
4 I 00 I 0 I 
5 I 0 I I I I 
6 I I 0 00 I 

a) State graph b)Coding 

Figure 14.6. State graph coding 

ErronooU5 states Normal functioning 

Figure 14.7. Complete state graph 

2. Breakthejeedbackloops 

As we have already noted in Chapter 12, sequential systems are very 
difficult to test owing to feedback loops, wh ich reduce the controllability and 
the observability. Hence, it is important to provide means for 'breaking' the 
feedback loops. This is achieved by the employment of additional signals 
that allow the blocking of these feedback loops. For example, a sequential 
circuit thus becomes combinational, which facilitates its test. Figure 14.8 
shows an example that uses an AND gate controlled by an extemal blocking 
signal. We can thus operate in a step-by-step mode. 

LI+-O+-- forcing 

Figure 14.8. Mastering the sequential parts 
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We can also want to force certain states in flip-flops by use of forcing 
lines (e.g. reset of one or several flip-flops as illustrated in Figure 14.8). 

Finally, the insertion of multiplexing functions allows us to control the 
links between the modules (illustrated by the second schema in Figure 14.8). 

The majority of design guidelines forbid the employment of 
asynchronous sequential modules for which the feedback lines are not 
controlled by dock signals. In fact, such systems are particularly difficult to 
verify and to test. They react asynchronously to extemal events and produce 
dynarnic characteristics according to the parameter time. This makes their 
analysis delicate, and it is difficult to know their internal state by only 
observing the inputs and outputs. 

Test points 
1. Insert internal test access points 

The controllability and the observability -can be artificially increased 
thanks to the insertion of internal test points. In the case of an electronic 
board, we can add pins or specific connectors linked to the tester by means 
of specific measurement instruments. In the case of integrated circuits, we 
can add internal pads that are used uniquely at the time of an under-pin test 
of the chip with the help of special probes. These techniques have their 
equivalence in the software domain. For instance, subprograms can be added 
whose call provides pieces of information about the pro gram state. To 
illustrate this mechanism, let us give the simple example of a task that uses a 
stack through two services, Push and Pop. Let us suppose that the call for the 
service Push is blocked while the stack is full, and that the call for the 
service Pop is blocked while the stack is empty. The function Stack_State 
returns one of the three values (Full, Empty, Partially), which specifies the 
state of the stack, but is not useful to the pro gram designer who implements 
its application. However, this function provides a means of observing the 
internal state of the Stack. 

2. Insert external test inputs/outputs 

The debugging and the testing of systems are facilitated by additional test 
inputs and outputs only handled during test operation. This technique is used 
a lot and numerous components (microprocessors for example) or complete 
systems have 'secret' inputs/outputs which are only accessible to the 
maintenance person. For example, we can control the speed of execution by 
suspending the activity of the system in order to withdraw internal 
information; another example is the 'step by step' mode which facilitates 
debugging. 

In the case of software, this possibility is either offered by the execution 
resources (run-time executive), or introduced into the applicative pro gram 
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itself by means of statements which either wait for an acknowledge or which 
write various data that allows the trace of execution to be deduced. This last 
technique, called instrumentation, will also be treated in section 14.2.2. 

These additional pieces of information are used notably for the 
debugging of applications that use micro-controllers and software 
assemblers. Specific tools exist for test applications, as for example the 
electronic logic analyzers and the software debuggers. 

Test of redundant parts 

The presence of redundant elements in a system is a source of great 
difficulty for testing. Actually, by definition, passive redundancy cannot be 
transformed into failures and cannot therefore be tested. However, it is vital 
to test these redundant parts at the time of maintenance operations, so as to 
avoid the masking phenomenon described in Chapter 13. 

As already said, a first source of redundancy comes from a non-optimal 
design. We will try to remove the redundant components and make clean the 
structure. An example is given in Exercise 14.2. 

The second category of redundancy results from voluntary actions, for 
example to avoid glitches of the signals of an electronic circuit (see Exercise 
14.3), or to allow fault tolerance property. It is then necessary to insert 
additional resources to access these useful redundant elements during the 
maintenance operations. For example, if we use a Triplex type of redundant 
structure (studied in Chapter 18), we must be able to deactivate some of 
them, so as to test each module individually. Another example comes from 
exception handling mechanisms in programs. These mechanisms introduced 
in section 14.2.3 allow handling errors. These redundant mechanisms are 
therefore never activated in normal functionality (without fault activation). 
The fact that we introduce statements provoking a direct raising of these 
exceptions allows us to test the exception handlers. 

Conclusion 

Figure 14.9 illustrates some of the preceding guidelines used to increase 
the testability of an electronic product after its design: primary input/output 
test lines, internal test points (control), reset signals (forcing), selection and 
blocking signals. Although these rules and techniques, which are applied 
during or after design, are used a lot in industry, they do not guarantee total 
testability . They constitute part of the initial approach to the methods studied 
in sections 14.3, 14.4 and 14.5, which are more precise, and more efficient. 

In the two following sub-sections, we are going to illustrate two of the 
preceding guidelines for software applications: 
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• the data recording performed by instrumentation, wh ich improves 
observability of the past or current execution state of the application 
(section 14.2.2) 

• the exception mechanisms offered by some programming languages, 
whose error propagation mechanism facilitates observability of eITor 
presence (section 14.2.3). 

Selection 

~ 
control ~ 

Observation 
blocking 

Figure 14.9. Modification ofthe product 

14.2.2 Instrumentation: Data Recording 

Instrumentation of software covers two functions: 

1. detection of errors occuITing during the operation of the application, 

2. recording of data characteristic of the execution state of this operation. 

The first aspect will be studied in Chapter 16, since it involves on-line 
eITor detection means. These means are principally used as the first stage of 
a fault tolerance mechanism. They can also be used to signal, on-line, the 
occurrence of an eITor. The associated fault is therefore diagnosable and 
correctable after the product has stopped. This is therefore an 'off-line 
means'. To make the error easy to observe, it is propagated towards the 
outputs of the system thanks to the exception mechanism. This mechanism 
will be presented in the next section. 

In this section, we analyze the data saving mechanism that 
instrumentation offers. 

The saved data must provide information about the CUITent execution 
state of the program. They can also store the successive states. This storage 
of the past is indispensable when we study sequential systems. 

This technique is weB known among the programmers who display 
information on the screen that concerns: 

• the state of the control flow: 
printf ("Matrix_Inversion starts i ts execution");, 
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• the state of data flow: 
printf("Variable Delta contains %i", Delta);. 

The information saved by the instrumentation mechanism increases the 
observability of the system, since it pro vi des values on certain internal 
variables. Instrumentation is thus a mechanism that implements the general 
guideline 'insert externat test points' presented in sub-section 14.2.1. 

For industrial applications, the data are sometimes saved on disk and 
more generally in non-volatile memories. This is particularly the case for 
embedded systems. The volume of stored data must therefore be very 
lirnited. Consequently, the engineer has to choose them with care. This data, 
which characterizes the Execution State of the application, have to represent 
the state of the objects that make up this application as weIl as the 
sequencing state of these objects. In the case of a sequential application, the 
instruction pointer (at machine level) describes this last piece of information, 
or it is perhaps represented in a more symbolic way. For example, an integer 
variable can code the number of the subprograms presently executed: its 
value identifies the branch of the flow of control that is executed. In the case 
of loops, supplementary information will have to be added in order to store 
the iteration number. 

The information that is explicitly created by the application is contained 
in the declared variables. It is easily accessible to the programmer. Other 
pieces of information concerning the state of execution resources also 
provide useful data for the control of the execution of the system. They must 
be able to be modified (controllability) or read (observability). For example, 
these features can concern the internal representation of the data, the 
management of interrupts, the management mechanisms of time and of tasks 
(for real-time applications). A language such as Ada offers such features 
whose standardized description is described in the Ada standard appendices. 

14.2.3 Exception Mechanisms: Error Propagation 

Theobservability of the erroneous states occurring at software 
application run-time is a critical need for the test. For the majority of 
languages, the executable pro grams that reach such states continue their 
execution without signaling these situations. Hence, the error can 
contarninate the system (error propagation). The resulting failure 
subsequently makes the diagnosis very difficult. In testing terms, these 
situations require the addition of vectors that force the propagation of the 
errors towards the outputs so as to make them observable. To avoid this 
propagation management from the outside, by the test sequence, certain 
languages offer a specific feature called the exception mechanism, which 
allows erroneous situations to be handled on-line. 
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When the handling consists in reaching a safe state and resuming to a 
normal execution, then the exception mechanism is used to tolerate the fault 
at the origin of the error (in Chapter 18). If the handling consists in signaling 
this error to the outside world, the exception mechanism is used to facilitate 
the test. It is this last situation which is studied in this section and which will 
be illustrated by using the syntax of the Ada language. 

Example 14.3. Exception mechanism 

An Ada component is constituted of 3 parts: the declarative part, the 
body, and the exception handler. Let us consider an example: 

procedure First is 
Declarative part 

beg in 

exception 

Body which contains statements 
which may raise error E 

when E => ... 
end First; 

-- Exception handler 

An on-line error detection (see in Chapter 16) occurring during the body 
execution is signaled by the raising of an exception. In the previous example, 
E is the exception identifier, that is to say the error name. When such 
detection is done by the execution resources, a predefined exception is 
raised. For instance, when an index accesses to an array out of its dec1ared 
range, the predefined exception ConstrainCError is raised. When the 
detection is explicitly programmed by the application designer, the 'raise' 
statement allows a user exception to be raised. 

A simple example is given by the following extract: 
if Passenger_Number > Aircraft_Capacity then 

raise Overbooking; 

In the previous example, the First procedure body contains the 
statement 'if Condition then raise E;' to signal the occurrence of error E. 

When the exception raising occurs, the current control flow is stopped 
and resumed at the exception handler beginning. For example, if exception E 
is raised by the First body statement execution, the associated exception 
handler is immediately executed by the statements following 'when E =>'. 

If no exception handler exists, or if a raise statement is written in the 
exception handler, the same exception is re-raised at the subprogram call 
location. The exception is then propagated, in order to take the system 
structure hierarchy into account (guideline 'hierarchy' of section 14.2.1). 
This upward propagation mechanism is illustrated by Figure 14.10. For 
instance, if the procedure Second calls the procedure First which 
propagated the exception E, then a local handler is searched for exception E 
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in the procedure Second (see Figure 14.11). Otherwise, the exception is 
propagated to the subprogram that calls Second, till reaching the main 
procedure. Thanks to this mechanism, the program user is imrnediately 
informed that an error occurred. 

Error 1 AI. 

levell • ~ exception ...... ffiechaniSffi 
Mt 

/ Jf ',.," ...... 
./ exception 

.. / / -. propagation 
" 

......... 

Errc 2.1 f 
level 2 • ---+ • M2.l M2.2 

Figure 14.10. Test generation 

procedure Second I ~rocedure First 

'-in ~irst' /I!' '-in :a<s. B, 1 
... " exception 

exception "" when E .. > • •• 
when E => ... aise; 

~ raise; 
end Second; end First; 

: Exception propagation 

Figure 14.11. Exception propagation 

The statements included in the exception handlers may memorize data 
before the same exception is re-raised. The following program extract 
illustrates such a situation: 

exception 
when E => Mernorize (Engine_Speed) i 

raise Ei 
endi 
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These data are chosen in order to provide information on the current state 
(at exception raising time), or the backward propagation path, that is the 
chain of subprogram calls when the error was reached. 

Thanks to the exception mechanism, the errors are propagated up to the 
output where they can be observed by the tester. The identity of the error, the 
current state, as well as the propagation path are saved by using the 
instrumentation mechanism of the previous section, hence facilitating the 
diagnosis procedure. 

14.3 DESIGN OF SYSTEMS HA VING SHORT TEST 
SEQUENCES 

A system can be designed by means of several approaches that end up at 
final structures which are quite different: electronic components, logic gates, 
lines of code, tasks, etc. Studies on the testing of logic systems have shown 
that all of these structures do not have the same potentiality regarding the 
testability of the resulting product. Specifzc design methods that improve the 
testability will naturally integrate all the re marks made in the previous 
sections. In this section we want to stress the 'natural testability' of some 
structures, without any addition of extra test points or ports. This concept 
will be illustrated on hardware and software technologies. 

14.3.1 Illustration on Electronic Products 

In the case of a combinationallogic circuit, the synthesis called 'linear' is 
based upon a mathematical field defined by Galois using the XOR and AND 
operators, without any Inverter. This realization wh ich is 'canonical' (only 
one realization under this form can represents a given logic function) leads 
to circuits with logic gates which have the remarkable property of being 
testable with a sequence of fixed test vectors, the length of which is 
proportional to the number of inputs. Furthermore, we can obtain circuits 
which are testable by a universal test sequence which is independent of the 
realized logic function (Reed-Muller structure noted RM). Unfortunately, 
this solution is not always satisfactory with regard to other design criteria, 
such as the complexity and the response time. Actually, the realization of 
XOR gates puts astrain on the cost, in terms of number of transistors. 
Moreover, such easily testable circuits have many logic layers, which makes 
them slower than traditional circuits. 

Now, this approach uniquely has an educational interest. It only has 
immediate practical interest for ca1culation circuits (as binary addition is an 
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XOR function), and coding and decoding circuits used for redundant cyclic 
codes. 

Example 14.4. RM Structure 

Let us consider a logic function 1 of 4 variables expressed by 1 = ab' d' 
+ a c' d' + a' b c + b c d (x' is the logical complement of x). Let us assume 
that we realize this function under the form of a two layer SIGMA-PI logic 
circuit with AND, OR and INVERTER gates, as shown in Figure 14.12. 
With the classical stuck-at 0/1 fault model hypothesis, the use of structural 
testing methods (Chapter 13) shows that the testing of this circuit requires 
the application of 9 test vectors. 

a 
a ---""'-- a' b' 
.....-- d' 

b -t>-- b c' -~ 
d' 

c -t>-- c' a' 
b 

d -t>-- d' ~ 
c 
CI 

Figure 14.12. SIGMA-PI circuit 

f 

Now, let us consider the realization under the Reed-Muller from drawn in 
Figure 14.13:/= a $ b c $ a d . 

If we take the same hypothesis of single stuck-at fault model, the circuit 
is completely tested by the input sequence of three vectors, STl(abcd) = 
(0101, 1010, 1111), which gives the respective outputs (0, 1, 1). 

output 

b c IJ d 
inputs 

Figure 14.13. RM Circuit 
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Moreover, if we assume that we must apply all the input configurations 
in order to test a 2-input XOR gate (4 vectors 00, 01, 10 and 11), then this 
circuit is totally tested by completing the previous sequence with two other 
vectors, which gives a sequence of 5 vectors: 

ST2 = (0101, 1010, 1111,0111, 1001). 
The complete analysis of this circuit is conducted in Exercise 14.5. 

14.3.2 Illustration on Software Applications 

As in electronics, two programs providing the same functionality can 
have two different degrees of testability . Let us consider the extract of the 
following program: 

if (A>B) and (A>C) then Part_li 
else Part_2i 

end ifi 

If we perform a branch test, it is sufficient to choose values of A and B 
such that A<=B, in order to execute Part_2. Indeed, in this case the local 
Boolean condition (A>B) is false, thus the global condition '(A>B) and 

(A>C) , is also false. If the compiler has a code optimizer at its disposal, the 
Boolean expression (A>C) will not be evaluated if (A> B) is false. 

Even if it gives an error coverage of 100% for Part_2, the validity of 
this branch test is only partial since the other configuration having to 
provoke the execution of Part_2 is not exercised: case (A<C) is false. So 
that the coverage rate explicitly evaluates the two cases, we would have to 
write the program in the following way: 

if (A>B) then 
if (A>C) then Part_li 

end ifi 
else Part_2i 

end ifi 

This program is more complex and less maintainable, since Part_2 had 
to be duplicated. On the other hand, it is more testable, since it explicitly 
distinguishes the two execution conditions of Part_2: (A>B) is false or 
(A<C) is false. 

Let us point out that the tests of type ConditionlDecision and Modified 
Condition/Decision, introduced in Chapter 13, respond to this need. 
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14.4 BUILT-IN TEST (BIT) 

14.4.1 Introduction 

The Built-In Test technique consists in adding to the product a standard 
specific interface which controls and facilitates access from the external 
tester, thus increasing the controllability and the observability. As a 
consequence, the test sequences are simpler, and their application is 
facilitated. Hence, the tester is also simpler. Figure 14.14 symbolizes this 
approach. The drawbacks of the BIT techniques are that they require more 
components, hence more surface on the chips (increase values of about 15% 
are announced), and they slow down the signal propagation in the chips. In 
avionics, the equipment used for maintenance purpose is called Built-In Test 
Equipment (BITE), cf. ARINe 624 standard. 

l: 
- :-:--.. '-.... 

Tester 
I .... .. Ei" Pj -.. 
1-" r ... ;: 

Test Bus I.l ~ 
Figure 14.14. Principles of BIT 

Several techniques implement the BIT in the electronics domain, such as: 
the FIT PLA, the Scan Design which lead to the LSSD, the international 
IEEE standard of the Boundary Scan (IEEE standard 1149.1) which is now 
used systematically to design AS1C circuits or rnicroprocessors. We will 
introduce these techniques in the following sub-sections. 

14.4.2 The FIT PLA 

14.4.2.1 Structure (Example 14.5) 

A Programmable Logic Array (PLA) is an universallogic structure able 
to implement logic functions in the form of c1assical SIGMA-PI expressions 
(as for examplej= a'b + b'c' + b'd + ad' + a'bc). Figure 14.15 shows the 
basic PLA structure comprising an AND net receiving the inputs and 
elaborating aB the product terms (such as a'b or b'c'), and an OR net 
elaborating the outputs from the product terms. 

The idea of the FIT PLA is to modify the traditional structure of a PLA 
by integrating a parity coding for the product terms (parity noted AND) and 
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a parity coding for the output functions (parity noted OR). Figure 14.16 
shows the general structure of a FIT PLA which implements two logic 
functions :j= a'b + b'c' + b'd + ad' + a'bc, and g = a'b + b'd + bcd' . 

Each colurnn of cross-points in the AND matrix constitutes an electronic 
structure realizing an AND logic function. Each point can be realized by a 
MOS transistor whose gate is controlled by the electric line (associated with 
the row); all these MOS are connected in series. In the same way, each row 
of cross-points of the OR matrix represents an electronic MOS structure 
defining an OR logic function. 

Product 
Terms 

AND f----+ OR 
Net r---+ Net 

--, ,..--
... ~ 

-..j ,. 
Inputs Outputs 

Figure 14.15. PLA basic structure 

x y 
1 2 3 4 5 6 7 

a 

b 

c 

scan in - .... ~HlI!liHHjfl-

parity error 

Figure 14.16. Example of a FIT PLA 

ANDparity 

ej 

outputs 

f 
g 

ORparity 

The aim is to make easier the test of the two matrices (AND and OR), 
according to faults which affect the interconnections. An additional product 
term is added which ensures an odd number of 'points' on each line of the 
AND matrix. This signifies that when a line is at '1', an odd number of MOS 
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transistors are conducting ('On' state) on an odd number of columns. 
Similarly, we add an additionalline into the OR matrix so that each column 
of each matrix has an odd number of 'points'. Two parity detector circuits 
detect if there is an odd or even number of columns in the AND matrix, or of 
lines in the OR matrix. A last modification is brought to the input amplifiers 
which receive two inputs, x and y. 

The circuit has two different modes of functioning: normal, and test. 

• If xy = 00, the input circuits create the signals e and e' for anormal 
functioning of the PLA. 

• In 'test' mode: 

~ if we apply xy = 01, all the rows ei ' are forced to take the value '1', 

~ and if we apply the value xy = 10, all the rows ei are forced to take' 1'. 

14.4.2.2 Test Procedure 

The test of the FIT PLA is driven in two stages: 

1. test of the AND matrix, 

2. test of the OR matrix. 

1. Test of the AND matrix. The test of the AND matrix is carried out by 
initially putting xy = 01, and by successively applying the 4 input vectors 
given in Figure 14.17: 0111., 1011, 1101, 1110. Each of these tests is such 
that only one of the lines of the matrix is at 0, and thus an odd number of 
columns are at O. The observation of the output of the parity detector thus 
detects all the faults that act on this parity. Then, we put xy = 10 and we 
apply the following 4 test vectors <1000, 0100, 0010, 0001>, of which only 
one bit takes the value 1. This test completes the detection of the previous 
stage and guarantees the detection of all faults that do not modify the parity 
(single, tripie faults, etc.). 

xy el ez e3 e4 xy et e2~~ 
01 ei' = 1 V i 10 e;=IVi 

0111 1000 
1011 4 tests 0100 4 tests 
1101 0010 
1110 0001 

Figure 14.17. Test vectors ofthe AND matrix 

2. Test of the OR matrix. The two matrices AND and OR are isolated by a 
shift register that is able to receive in test mode values from the input Scan 
In. The test of the OR matrix is based upon the same parity principle as that 
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of the AND matrix. Across this shift register, we successively apply the 
vectors (1000000, 0100000 .... 0000001), and we observe the parity of the 
lines with the OR parity checker. 

Note. The previous PLA structure which uses an AND matrix and an OR 
matrix is a symbolic representation of real PLAs. In MOS technology, we 
use NAND or NOR components. This changes nothing concerning the parity 
fault detection principle that has been presented. 

14.4.3 Scan Design and LSSD 

The only way to make a sequential circuit easy to test is to master its 
sequentiality. In computing systems, circuits are essentially synchronous: 
their execution is synchronized by a clock signal. Furthermore, the internal 
state (set of secondary variables) is materialized by a register. An interesting 
approach, which was imagined at Stanford university in the USA, and gave 
rise to several methods, is called Scan Design. It consists in modifying the 
state registers, in order to be able to write and read their values from the 
exterior. Hence, the test of a sequential circuit is essentially reduced to the 
test of the combinational part, according to the methods already mentioned 
in Chapter 13 (the path sensitizing method, for example). 

ScaD Out 

x--.. 

Yl 

Y2 

YD 

CombiDaUonal 
Circuit 

HE HM Sbift 

Figure 14.18. LSSD ofiBM 

t-- ... z 

ScaD In 

The ffiM company has popularized the Scan Design with the variation 
called LSSD (Level Sensitive Scan Design), which was used intensivelyon 
all large computers since the mythical '360' series of the sixties. This 
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technique, which is represented in Figure 14.18, implies two different 
functioning modes of the circuit: 

• in normal mode of functioning, the state register uses 'Master-Slave' 
flip-flops (Mi - Ei), and the system evolves to the rhythm of the docks 
HM and HE, which are interlaced, 

• in test mode, this register is transformed into a shift register by setting 
the shift signal at the logic '1'. Therefore, it is possible to load the register 
from the exterior by the input scan in with n dock strokes HM - HE; this 
sequence provokes at the same time the reading of the content of the 
register on the output line scan out. 

The test of such a circuit is performed by a succession of elementary 
tests, each of them entailing a cyde of three phases: 

1. SCAN IN: the signal shift is set to the logic '1', and we initialize the 
internal state of the sequential circuit by n dock pulses HM-HE, 

2. NORMAL CYCLE of functioning: the signal shift is set to the logic 
'0', and we activate an elementary test in the combinational part with 
one pulse HM-HE, 

3. SCAN OUT: the signal shift is set to the logic '1', and we scan out the 
state register to observe the results of the test by n dock pulses HM-HE. 

During the steady state, stages 1 and 3 are simultaneous: we load the new 
state at the same time as we scan out the previous state. 

It is unlikely that the tested product is constituted of a single sequential 
part that is implementing as a single automaton. The Scan Design technique 
is also applied to products that are structured into several interconnected 
modules. For that, we connect the signals scan out and scan in of the 
modules in order to form achain of 'series' tests as shown in Figure 14.19. 

The test vectors are propagated along this chain as pulse trains. This 
basic technique is slow, but it can be improved. 

Tester 

Figure 14.19. Scan Test for Modular Structures 
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14.4.4 Boundary Scan 

Several years ago, a work group of the scientific society IEEE, made up 
of specialists from industries and universities of several countries, (the 
JTAG - Joint Test Action Group) defined a standardized interface for the 
testing of integrated circuits: the IEEE 1149-1 standard. Today, the majority 
of integrated circuit manufacturers use this standard for ASICs, 
microprocessors, and micro-controllers (see Appendix C dedicated to 
dependability techniques associated with a microprocessor). 

The Boundary Scan ensures the control of the primary inputs and 
outputs of the circuit according to the Scan technique (see Figure 14.20), 
thanks to the addition of some test inputs I outputs and an intemallogic: 

• The test bus (called Test Access Port, TAP) composed of specific signals: 
the series input I output signals, TDI and TDO, a test clock (TCK) . 

• An integrated logic module comprising: 

)0> aseries register (Boundary-Scan Register), for the forcing of test 
inputs and the reading of the test results, 

)0> a Bypass Register, in order to reach other modules that are located 
below in the test chain of the system' s modules, 

)0> an automaton (TAP Controller) associated with an instruction register, 
in order to process certain test operations. 

Inputs 

TDJ _ _ L-_ -.I 
L--_-...-_=----J 

TMS ----_I:;:!-;;---J 

Outputs 

TDO 

TCK 1--____ ----1 

(TRS1) 

Figure 14.20. IEEE 1149-1 Standard 
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The automaton (T AP) controls the various operations in normal or test 
mode. Each cell of the boundary scan register has four modes of functioning 
(see Figure 14.21). 

• Normal mode: the output multiplexer of the cell transfers the data corning 
from an input pin of the circuit towards the output of the cell (Data Out), 
which is connected towards the input of the core logic. 

• Update mode: the output multiplexer sends the contents of the parallel 
output register towards the output of the cello 

• Capture mode: the input data (Data In) is directed by the input 
multiplexer (Input Mux) towards the shift register, in order to be loaded 
when the dock DR occurs. 

• Shift mode: the bit of each cell of the shift register is sent to the following 
cell via the line scan out, whilst the signal scan in corning from the 
previous cell is loaded into the flip-flop of the shift register of the cell. 

The output cells are based on the same principle. 
These facilities thus allow controlling all the inputs and outputs of the 

tested circuit, thanks to a shift register that can be loaded and unloaded in 
series. It is also possible to pass information across a circuit in order to reach 
a circuit situated below it, or to receive information corning from this circuit. 

Data In 

(circuit pm) 

ScaD In ClockDR Update DR 

Figure 14.21. Boundary input cell 

Data Out 
(core logic) 

Notes. In some cases, the boundary scan technique is not applied to the 
whole circuit, but only to some parts of it. We therefore say that this circuit 
implements apartial-scan, wh ich is opposite to thefull-scan. 

The global use of Scan Techniques in complex circuits, such as those 
integrated in today communication systems or embedded controls systems, is 
not always possible. Some parts are really difficult to implement as scan 
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structures (too much extra-surface or too expensive, too slow, etc.), such as 
the ROM and RAM memory, which are numerous in today circuits. Some of 
these parts will be treated separately with BIST techniques (see section 
14.5). Scan design is not interesting for circuits having a great number of 
inputs and outputs, as the big size of the scan register would imply too long 
test sequences. Hence, these circuits are generally partitioned into several 
parts, called scan domains, which implement separate scan design of about 
100 cells. Each one is tested as a unit test, and then an integration test is 
performed. This allows a good trade off between the test complexity and the 
controllability/observability mastering. The final integration test of the 
complete product still remains a real problem. 

14.4.5 Discussion about BIT Evolution 

As already mentioned, all manufacturers of semiconductors, and in 
particular the manufacturers of ASIC, have invested enormously in BIT 
techniques. All present industrial projects of ASIC or full-custom integrated 
circuits are using the Design For Testability (under full-scan or partial-scan 
form) in their development platforms. The design costs and silicon surface, 
which are implied by the scan techniques, are now largely compensated by 
the advantages brought to the verification of the components (in production 
and in operation as well). Of course, this progress is made possible by the 
use of the IEEE 1149-1 standard, which becomes inescapable for technical 
but also commercial reasons. Other standards favor this development, such 
as languages and formats for writing test sequences for industrial testers: 
language BSDL (Boundary Scan Description Language), language STIL 
(IEEE Standard Test Interface Language), etc. 

Various computing tools for helping in the design and testing have 
integrated the problems linked to the test of scan type structures: boundary 
scan support, testability analysis, Design Rule Checking, Automatic Test 
Pattern Generation, fault simulation, and test vector post-processing. Let us 
mention two of today prominent companies: Mentor Graphics Corp. and 
Synopsys. From the descriptions of Verilog or VHDL type, some of these 
tools automatically produce test sequences in accordance with the STIL 
format. The BIT testing is generally performed at slow speed, and the stuck
at fault model remains the base of all test operations. With c10ck rates 
approaching the gigahertz, other faults must be considered. Thus timing or 
delay faults have been added to fault lists treated by most of these tools. 

Naturally, the human specialists have still a major role to integrate these 
separate tools, and to solve the numerous problems not covered by them. 

Figure 14.22 shows a typical script of a development based on BIT 
architecture with one or several scan domains. Functional, structural and test 
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files coming from previous stages of the development are used by several 
tools performing DRC, ATPG, and Fault Simulation. The test engineer 
analyzes the coverage and the possible problems. The solutions to these 
problems eventually imply to return to the design stage. At the end of this 
analysis, we obtain a test sequence which can be used by production testing. 

8 
Such procedure produces today circuits of 10 transistors with stuck-at fault 
coverage greater than 95%. 

Fllnctional 
Testing 

Structural 
Testing 

Production 
Testing 

Figure 14.22. Typical BIT script 

14.5 BUILT-IN SELF-TEST (BIST) 

The test techniques examined in the previous sections require equipment 
external to the tested circuit: this test is called off-chip test. We are now 
going to tackle another category of test called Built-In Self-Test (BIST), for 
which the test equipment is totally integrated into the tested product. This is 
known as on-chip test resources. Naturally, this testing improvement needs 
more components (hence increasing die sizes) and more design investments. 

14.5.1 Principles 

The BIST approach improves the principle of integration of the tester 
functions within the product. Of course, such a solution is only acceptable if 
the complexity and the expenditure of this integrated tester are not excessive. 
Sometimes, the price to pay for this facility is limited by accepting an 
important reduction in the coverage of tested faults. This technique allows 
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the product to test itself, off-line, the external tester no longer being 
necessary. We insist on the 'off-line' property of the BIST, as the normal 
function of the product is suspended during the test. The test operations can 
be run during power-up phases (for example, test of a RAM by a galloping 
technique presented in Chapter 12), or during maintenance operations. BIST 
techniques are integrated in more and more industrial products. 

The most employed BIST techniques calls upon the test by signature 
described in Chapter 12. Three modules are integrated into the product (see 
Figure 14.23): the test sequence generator which is a simple pseudo-random 
generator, the compaction funetion, and the signature analysis funetion. 
Naturally, this test cannot detect any failure of the function, as information is 
lost during the compaction function. An alias occurs when an erroneous 
output sequence provided by the tested function gives the same signature as 
the fault free signature. 

We will develop the pseudo-random BIST techniques in next sub-section. 

Figure 14.23. BIST principles 

14.5.2 Test Sequence Generation and Signature Analysis 

14.5.2.1 Pseudo-Random Test Generation with LFSR 

A Linear Feedback Shift Register (LFSR) is a synchronous sequential 
circuit, using D Flip-Flops and XOR gates, which generates a pseudo
random output pattern of Os and 1 s. 

Example 14.6. 3-bit LFSR 

A 3-bit LFSR is shown in Figure 14.24. Let us suppose that this circuit 
has been initialized in state (Q1, Q2, Q3) = (1, I, 1). Then, the circuit 
produces a cyclic output sequence with one (Ql, Q2, Q3) output vector for 
each input clock pulse (see Table 14.1). Hence, all binary vectors excepted 
(0 0 0) are generated. If necessary, the LFSR basic structure can easily be 
modified in order to produce the null vector. 
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Figure 14.24. 3-bit LFSR example 

dock QIQ2Q3 

0 1 1 1 
1 o 1 1 
2 101 
3 010 
4 001 
5 100 
6 1 1 0 

Table 14.1. Produced vectors 

Such LFSR can be used as a test sequence generator in an Integrated 
Circuit as shown in Figure 14.25-a. During the test operation, the 3 outputs 
of the LFSR, Q1, Q2 and Q3, are sent to the three inputs of the functional 
circuit, via a multiplexer. 

Ok 
Test 

+ Circuit Outputs 
Q ... PSA 

(OUT) ~ 

LFSR---+~ Output 
Circuit --. 

siJture ~r----. (DUI') 
Input ---+ ? 

'--

a) Test generation a) Test co~tion 

Figure 14.25. Test with LFSR 

14.5.2.2 Signature analysis with LFSR 

A LFSR can also be used as a compaction circuit, in order to reduce the 
length of the output sequence corning from the device under test, in the 
context of BIST testing (see Figure 14.25-b). This compaction circuit is 
called PSA (Parallel Signal Analyzer). 
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Example 14.7. 3-bit PSA 

Let us consider a simple example based on the preceding 3-bit LFSR, as 
illustrated by the circuit of Figure 14.26. 

Clk - 1---'11=-----. ___ --_ ,-___ 1..::,.3_--, 

+ 
C 

D Q 

Figure 14.26. PSA with a LFSR 

c Q3 
D 

The tested circuit is supposed to produce 3-bit output vectors in response 
to the input test stimuli (maybe generated by the LFSR of the previous sub
section). We suppose here that the PSA is in the initial state (1, 0, 0), and 
receives one output vector corning from the DUT at each dock pulse. 

Input PSA State 
sequence Ql Q2Q3 

Initial state 100 

1 1 1 001 
o 1 1 1 1 I 
1 0 1 1 1 0 
o 1 0 101 
001 o 1 I 

o 0 00 1 
1 1 0 

Table 14.2. PSA response to the input sequence 

Table 14.2 shows the evolution of its internal state in response to the 
given simple 7-vector sequence. If no errors affect the functioning of the 
circuit, the final PSA signature is (010) . Hence, any error modifying this 
value is detected. This detection capability covers any single bit error, but 
also a lot of multiple bit errors. 

An alias occurs when a multiple error in the input vector sequence is 
masked. Exercise 14.8 analyzes the behavior of this LFSR used as a 
generator and as a compaction circuit PSA in more detail. 
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14.6 TOWARDS ON-LINE TESTING 

Additionally to the cost and the complexity of the off-line testing, another 
dis advantage is its 'discontinuous' character: we must wait until the test 
operation is performed before being able to react on the application in order 
to correct possible errors or failures. We are now going to show how we can 
pass from the strict off-line test to an automatic test which executes 
continuously and is totally integrated into the functioning of the product. 
Such approach is called on-Une testing and is described in Chapter 16. On
line testing is necessary when we want to react quicker to errors and failures, 
in order to obtain more dependability. In this section, we exarnine three 
steps: 

• placing the tester in the product application site (office, workshop, etc.): 
this is called in situ test, 

• facilitating the maintenance in situ, 

• integrating the test into the normal activity of the product. 

14.6.1 To Place the Tester in the Application Site 

In a lot of cases, it is more interesting to place the tester into the product 
site rather than the product into the tester site; this is the case for heavy or 
fragile products, to increase the intervention speed because of econornic 
consequences of the interruption service, etc. In computing industry, the 
maintenance operation sometimes amounts to a quick inspection followed by 
standard exchange of the suspected board, this board possibly being 
diagnosed and repaired later in a specialized workshop. The maintenance 
agent travels to the site with his/her test kit, sirnilarly to a doctor who visits 
patients with his medical kit. The constraint of this approach resides in the 
necessity to dispose of a 'portable' and efficient tester, and to dispose of 
access means to the product, thanks to a test BUS such as the JTAG BUS. 

14.6.2 In situ Maintenance Operation 

To perrnit in situ maintenance, the product is designed so as to facilitate 
the diagnosis operations by the maintenance agent. Using again the example 
of a computer, we will facilitate its test thanks to specialized interfaces, test 
pro grams already integrated into the system, etc. 

Computer manufacturers also propose a remote maintenance jacility that 
allows testing the computer of the dient from a specialized center, across a 
telephone network or through the Internet. This approach involves in situ 
circuitry and software to allow the remote access and diagnosis. 
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14.6.3 Integration of the Tester to the Product Activity 

The last stage consists in integrating the tester into the product and using 
it in a more or less continuous way, that is during the product functioning. 
From this point, the proposed techniques deals with on-fine testing, specified 
in Chapter 16. Some of these techniques will be of the BIST type. They will 
be particularly useful when implementing certain fault tolerance mechanisms 
presented in Chapter 18. 

14.7 EXERCISES 

Exercise 14.1. Ad Hoc Techniques 

Consider a structure of two coupled modules (Figure 14.27). Modify this 
schema by inserting several circuits in order to make the test easier. Explain 
the expected improvements. 

Figure 14.27. Circuit with feedback Joop 

Exercise 14.2. Analysis ofredundant circuits 

a 
c~~---f 

b 

a a ----4 

n 

J--L----- ß ß 
c c 

a) First circuit a) Second circuit 

Figure 14.28. Redundant circuits 
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1. Analyze the gate circuit of Figure 14.28-a in order to determine the 
redundancies; suppress these redundancies and propose a 'clean' circuit 
completely testable. 

2. Analyze the circuit of Figure 14.28-b and compare it to the previous one. 
Analyze its testability. 

Exereise 14.3. Anti-gliteh eireuit 

The circuit of Figure 14.29 uses a gate (denoted A) to elirninate the 
glitches occurring when the input b switches. Unfortunately all stuck-at 
faults cannot be tested. 

a -..,.---1 

fl 

c--'---I 

Figure 14.29. Redundant circuit 

1. Study the circuit to determine this untestable redundancy. 

2. Add a testing input T and modify the structure to make it entirely testable. 

Exereise 14.4. Easily testable gate network 

Logical networks (wired or programmable) constitute very used logical 
implementation means. Fundamentally they comprise a layer of AND cells 
which receive primary inputs and their complements, and a layer of OR cells 
delivering the outputs. 

l------- f f 

~-- g g 

a) initial structure b) m:xIified structure 

Figure 14.30. Test of a logical structure 
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Here we are interested in the test of a network of AND gates with a very 
simple circuit of 3 inputs (a, b, c) and 2 outputs lf and g) drawn in Figure 
14.30-a. To facilitate the test, we replace the 3 input inverters by 3 XOR 
gates controlled by a test input noted T: if T has the value '0', then the 
signals a, b and c are complemented, and if T = '1' they are transmitted 
without complementation (see Figure 14.30-b). 

How can this modification improve the test? 

Exercise 14.5. Reed-Muller structure 

Consider the following logic function of 4 variables: 
f = ab' d' + a c' d' + a' b c + b c d, 

and the two circuits implementing this function, as presented in Example 
14.4: the SIGMA-PI structure, and the Reed-Muller implementation. 

1. We consider the SIGMA-PI realization of this function. Analyze this 
circuit to find a test sequence as short as possible. 

2. Check by inverse transformation (extraction of the logic function by 
analysis of the circuit) that the proposed Reed-Muller circuit realizes the 
specified function. 

3. Check that the test sequence STI = (0l01, 1010, 1111) covers all the 
single stuck-at faults of the inputs / outputs of the gates. 

4. Specialists of electronic design of XOR functions have proved that to 
activate all internal faults of such gates, it is necessary to apply all their 
input vectors. Check that the sequence TS2 = (0101, 1010, 1111,0111, 
1001) satisfies this requirement, and that every internal error propagates 
to the output where it is observed. 

Exercise 14.6. FIT PLA 

We want to realize, with the help of a FIT PLA structure (according to 
the structure described in section 14.4.2), a set of 210gic functions,fl andj2, 
expressed by the list of their true vertices (noted here R(i, j, .. )): 

fl(a, b, c) = R (2, 3, 7), 
j2(a, b, c) = R (3, 4, 5, 7). 

1. Determine the number of product terms necessary to implement these 
two functions in a PLA. 

2. Give the symbolic structure of the resulting FIT PLA, by inc1uding the 
parity lines. 

3. Find the complete test sequence of this circuit by indicating the faults 
detected by each vector. 
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Exercise 14.7. Scan Design 

In this exercise, we refer to the technique of LSSD presented in 
paragraph 14.4.3. We assurne that the circuit considered possesses 4 internal 
variables, and that the combination part is tested with a sequence of lOtest 
vectors noted VI to VlO. 

Draw a symbolic time diagram that represented the different steps of the 
test of this circuit, by showing the evolution of the signals HE, HM, Shijt, 
Scan In and Scan Out. 

Exercise 14.8. LFSR 

The aim of this exercise is to study the LFSR presented in section 14.5. 

1. First of aB, it is used as a generator of pseudo-random sequences . 
Analyze its behavior when its initial state is (111), then (010). 

2. The basic LFSR circuit is modified as shown in Figure 14.31: the D input 
of the first D flip-flop receives the XOR of bits Q2 and Q3. Does this 
circuit still behave as a LFSR? 

3. We will now analyze the compaction circuit of Figure 14.26 (Example 
14.7). Check the compacting sequence given in Table 14.2. 

4. Still for the PSA circuit, find several non-detectable errors. 

5. What do you think about the use of LFSR and of the BIST techniques by 
signature analysis? 

~ ~ 

Clk l ~ 1 Q3 Ql Q2 

C C C 
r--+ D 

~ 

D Qf-~ Q .. D (; 

~ 
Figure 14.31. Modified LFSR circuit 
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Error Detecting and Correcting Codes 

In this chapter, Error Detecting and Correcting Codes (also noted EDC 
codes) are presented. These codes, which are an illustration of the general 
theory of redundancy presented in Chapter 8, were originally used for the 
encoding of information to allow its transmission in noisy environments; for 
example, a transmission on an electricalline which is subjected to electrical 
perturbations. Later on, scientists encountered dependability problems whilst 
realizing projects for computer systems. They, of course, tumed their 
attention towards the solutions that already existed. In certain cases, it was 
possible to modify the existing codes, but in many other cases, they had to 
develop new ways of coding. Finally, more general fault tolerance 
mechanisms were proposed. Error Detecting and Correcting Codes will be 
introduced in a very general way. First of all, we will explain the underlying 
principles, and then we will present the fundamental codes. This information 
will be very useful, since it will help in the understanding of the following 
chapters. Actually, combined with other detection techniques that stern from 
the previously encountered functional redundancy (such as assertions), these 
redundant codes are employed as a way of detecting errors 'on-line' .. Lastly, 
they are also useful for fault tolerance, being connected to safeguarding and 
reconfiguration mechanisms. 

15.1 GENERAL CONTEXT 

15.1.1 Error Model 

We consider a system T, which processes information supplied by the 
input values U, and provides results at Z (see Figure 15.1). This system is 
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affected by various faults, such as electromagnetic parasites on the electrical 
lines, or functional faults affecting the function achieved by T. We do not 
wish to go into details about these faults, so we are going to specify an error 
model according to the definition given in Chapter 5, that is as a set offaults 
characterized as errors by properties on desired or intended states of the 
system. In this chapter, the considered attribute that characterizes the 
behavior will be the output Z of the system. Thus, the desired or intended 
states are defined by the expected output values of Z. 

I ErrQf model E J 
;. 
~ i( 

U ~ T ~ z 
'". 

Treatment 

Figure 15.1. Error model 

The effect of the faults is represented by a set of disruptions, noted E, 
acting on Z by means of an operator noted '+' . Z* defines a disrupted output 
value, i.e. an erroneous state of T. We thus have: 

Z* = Z + e, with e E E, 

The error model considered is thus specified by the couple (E, +), where 

• E is the set of disruptions, wh ich are modifications of correct states 
causing an error, and 

• '+' is the disruption operator which combines the correct state with a 
disruption to express an error. 

Note. We have defined errors as erroneous states. In this chapter, we will 
call error a disruption in order to be in accordance with the conventional 
vocabulary of detecting and correcting codes theory. 

These errors are due to the different categories of faults already 
considered: 

• functional faults having affected the design or the manufacturing of the 
product associated to the system T. 

• technologicalfaults (permanent or temporary) affecting T, 

• disruptions due to the environment. 

Three error cIasses are important for transmission and treatment systems: 
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• an error is single when it only affects a single bit of the output Z, 

• an error is multiple 01 order p when it affects at most p bits of Z. 

A multiple error of order p is said e"or in packet o/length I (also called 
burst error) if the erroneous bits of Z are within an l-distance neighborhood. 

These different binary error models originate from transmission systems. 
The input bits U are emitted in series onto a communication media by an 
emitter. Theyare received in series by the receiver (and in the same order), 
and they finally end up at output Z. A single error model is justified if: 

1. the parasites which disrupt the transmission are statistically sufficiently 
distant in time from each other, and 

2. their maximum time interval is inferior to the period of transmission of a 
bit (this basic period is called moment). 

A multiple error model is used in more aggressive transmission 
environment. The particular case of errors in packets is confirmed if the 
parasites have a time duration greater than the basic moment of transmission 
on the media. 

Some examples of errors are given in Example 15.1. 
Let us note that the definition of the disruption set (errors) E and the 

disruption operator '+' must result from an analysis of the product T and 
from the faults that are able to affect it. In fact, all the detection and 
correction techniques presented hereafter in this chapter are based on 
particular error models (such as the single error model for example). Their 
actual efficiency thus depends on the realism of these models. Therefore, it 
is generally necessary to carry out an instrumentation experiment on the site, 
so as to characterize the error model (E, +), before all choices are made 
about codes that detect and correct errors. 

Example 15.1. Error Model 

We consider a system that serially transmits 4-bit words. We suppose that 
this transmission is disrupted by electromagnetic parasites that are able to 
modify a single bit of information. Under these conditions, the error model is 
defined by the disruption set E = {1000, 0100, 0010, 0001} and of the 
disruption operator which is a XOR. Hence, if U = (0 1 0 1) and if the error 
(in reality, a disruption) which affects this transmission is e = (l 000), then 
the received word affected by the error is: 

Z* = (0 1 0 1) XOR (1 000) = (11 0 1). 

This error is a single error since only the first bit has been disrupted. 
Whatever the transmitted word is, 4 single errors can affect it in this way. 

Now, consider the error e = (1001). This is a double error, and the same 
transmitted word (0 1 0 1) becomes Z* = (0 1 0 1) XOR (1 00 1) = (11 00). 
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15.1.2 Redundant Coding 

Error detection and correction require redundancy. To illustrate this 
notion, we consider again Example 15.1. Let U be the value emitted, Z = U 
the expected value, and Z* the value received which is affected by an error e. 
If U can take any 4-bit values, no erroneous output Z* can be detected or 
corrected. For example, the reception of (1101) instead of the emitted (0101) 
cannot be detected as erroneous, as this word is a valid input U. 

To be able to detect an error, the system T has to possess a static 
redundant functional domain: the set of values provided by Tin the absence 
of error must strictly be included in the set of values of the output universe. 
In this way, the output universe is partitioned into 2 subsets: the set of 
expected values and the set of erroneous values. 

Let Z be the original output of T and W a redundant coding of Z. Hence, 
the uni verse of W is partitioned into a set of acceptable values called code 
and a set of erroneous values. 

Code Uni verse 
ofW 

Figure 15.2. Error detection 

Let (E, +) be an error model, W a redundant word, and W* = W + e the 
word affected by an error e from E. If W* belongs to the code, the error 
cannot be detected (case of error e3 in Figure 15.2). On the contrary, if W* 
does not belongs to the code, the error can be detected (case of errors e J and 
e2 in Figure 15.2). 

IA code is an error detector for the error model (E, +) if and only if 
V e E E, W* = W + e e code. 

To be error corrector, a code must allow to find, in addition, the 
expected value Z from the erroneous value W* . The following Example 15.2 
illustrates these notions. 

We will give later on more precise conditions for error detection and 
correction of a given error model. 
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Example 15.2. A simple redundant coding 

We modify the system of Example 15.1. A fifth bit is added to the output 
Z to form W = Z + {O, I}. We suppose that the value of this fifth bit is '1' if 
and only if the number of bits of Z having the value '1' is even. The uni verse 
of W is constituted of all the 32 combinations of 5 bits, whereas the values of 
the code form a subset of only 16 configurations. Hence, there is static 
redundancy. For example, (01101) is a member of the code, whereas (01111) 
does not belong to the code: its occurrence reveals an error. 

15.1.3 Application to Error Detect.ion and Correction 

The Error Detecting and Correcting Codes, noted EDCIECC, allow the 
treatment of errors from a given error model thanks to the use of structural 
redundancy (see Figure 15.3). The inputs U are coded with more bits than 
necessary (Y) be fore treatment, then treated by-the module T, which deli vers 
a coded result (W), which is then decoded (Z) with the detection and/or 
correction of possible errors. 

u 

Treatment 

Figure J 5.3. EDC code context 

If we take Example 15.1 again, error e = (1 000), which affected the 
word (0 1 0 1) and produced an output of (1 1 0 1), is detectable if and only 
if no chosen codeword of output W has the value (1 1 0 1). However, this 
necessary and sufficient condition gives no information about the way to 
detect an error, except, of course, by the trivial method of comparison with 
all words of the code. 

So that a code can also be corrective, we must add some constraints in 
such a way that, after detecting an erroneous word W*, we are able to 
discover the correct value W which was affected. Consequently, we are able 
to deduce from W the correct value of Z. In the following sub-section, 
Hamrning' s theorems will provide more detail on error detection and 
correction. Let us note that, generally, the errors can affect the treatment 
module T, as weIl as the coding and decoding parts. These latter parts are 
functions realized by means of circuits and/or programs, and which therefore 
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can be altered by errors as well. 
Numerous Error Detecting and Correcting codes exist, which are adapted 

to various situations for various types of data processing systems T: 
transmission systems (c1assic codes), memory systems, logic processing 
systems, arithmetic systems. We are going to give the codes' general 
principles, describe the most significant codes, and then we will return to the 
c1asses of applications in the final section of this chapter. Although the 
theory of coding is very general and often very formal, we will essentially 
consider here the binary codes by minimizing the theoretical aspects so as to 
facilitate understanding. However, we will tackle certain codes of decimal 
type with calculation systems. 

15.1.4 Limitations of our Study 

15.1.4.1 Anti-Intrusion Codes 

We will not develop here the specific category of codes that are intended 
to protect against intrusions. These security codes, which are also applicable 
to the general context of Figure 15.1 have the following function: they 
prevent access to resources with protection keys (Message Authentification 
Code, such as the c1assic passwords for computer systems access) and to 
prevent data transformations whilst coding and decoding. The access to 
world networks, like the Internet, has brought these codes to the attention of 
the media. Notably, this is because of the regular competition between their 
implementation and their cracking! Nowadays, two categories of codes are 
intensively studied: 

• the RSA codes (Rivest Shamir Adleman), based on the factorization of 
large numbers, which protect 95% of all electronic exchanges worldwide, 

• the ECC codes (Elliptic Curve Cryptography) based on the rectification 
of points on an elliptical curve, such as the standardized IEEE 1363 
codes. 

15.1.4.2 Low-Level Coding 

We also do not consider the binary-signal and signal-binary coding 
levels encountered in transmission systems. These levels, c10se to the 
transmission media, allow adapting the transmission to throughput problems, 
signal weakening and noise immunity. They also insure a good 
synchronization of the transmitted messages. Let us quote as examples three 
binary-signal coding: 

• the NRZ code (Non-Return to Zero) which associates electricallevels +A 
and -A to the '1' and '0' logical values, 
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• the Manchester code wh ich transform any bit '0' into an electrical 0 to 1 
transition and any bit' l' into a 1 to 0 transition, 

• and the HDB(n) code (High Density Bipolar) which transforms any bit 
'1' into a positive electrical pulse, each bit '0' into a 0 level; a fictitious 
bit' l' (a pulse) is added after n consecutive bits '0', in order to avoid a 
synchronization loss from the receptors. 

These examples are illustrated in Figure 15.4. Finally, in many cases of 
communication media (for example the hertzian one), it is necessary to use 
adaptation techniques such as the amplitude modulation, the shift keying 
frequency or phase modulation. These techniques are encountered in the 
MODEM (Modulation - Demodulation) equipment. 

NRZcoding 

+: I 
I I I I I 

~ 
1 0 0 1 1 0 

-A 

Manchester coding 

+; i I 
I [[rp, I 

I 
I 

... 
0 

HDB(3) coding 
Ficlitious 1 

+; 1 1 
I I I ~·I .. 

0 0 0 1 

Figure 15.4. Examples of low-level coding 

15.2 DEFINITIONS 

Let U be an information word of k bits to code in some binary EDC code, 
and Y the codeword (word coded) of n bits obtained by the redundant 
coding: n > k. 

15.2.1 Separable and Non-Separable Codes 

I We say that a code is separable if all the bits of U can be 
found in Y. 

Symbolically, we write Y = (U, R), where Rexpresses the r-bits 
redundancy, with n = k + r. Figure 15.5 illustrates this notion of separable 
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code. Let us observe that all k bits of U, whieh are located in Y, appear 
grouped in the diagram to simplify the representation: this is not in the least 
obligatory. 

I On the other hand, a code is non-separable when we cannot 
directly find U in Y. 

The only interest in this property of 'separability' resides in the operation 
of decoding wh ich is much simpler. In fact, the majority of EDC codes for 
transmissions are separable. To decode a non-separable code, we usually 
have to create a table that contains all the codewords Y and their 
corresponding initial words U. Except in some particular simple cases, this 
procedure is highly untractable, due to the size of the table. In numerous 
applications which do not concern transmission, it is not always necessary to 
code and decode information at processing time. This allows the use of non
separable codes. For example, the addresses of units comrnunieating via a 
Bus, or the internal states of a sequential circuit, are objects coded once and 
for all, at design. If three internal states, states '1', '2', and '3', of a 
sequential circuit are coded with the words 110, 101 and 011 (corresponding 
to 3 internal variables, i.e. 3 electronic signals), it will never be necessary to 
decode these states to find their value (' 1', '2' or '3'). 

---
/~---- .. , 

( Coding ') 
Y (0 bits) 

I U (k bits) I --..-------: I 
, I ,... I 

U(k) I R(r) I 
Y : Codeword (0 bits) 
U: Information (k bits) 
R : Redundaocy (r bits) 

Figure 15.5. Separable codes 

15.2.2 Hamming Distance 

All EDC codes use, either implicitly or explicitly, a concept of distance 
that all codewords must respect: the Hamming's geometrie distance for 
transmission codes, and the arithmetic distance for arithmetic codes. 

I The Hamming distance between any two binary words is 
the number of bits that differ between them. 

For example, the distance between mi = (1100) and m2 = (0 1 0 1) is 2. 
We will express this as d (mi, m2) = 2. 
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A multiple error model of order papplied to any codeword transforms it 
into a word that is located at a maximum distance p from the correct 
codeword. We schematize that by saying that the erroneous word belongs to 
a sphere of radius p, centered on the original codeword. The Hamming's 
distance is a metric distance: 

d (m1, m3) ~ d (m1, m2) + d (m2, m3). 

Hamming stated the properties that a redundant code must possess to be 
able to detect or correct multiple errors. These properties are based on the 
minimal distance d that must exist between the two codewords of all the 
couples (Yi and Yj). There are two Hamming theorems: 

A code allows the detection of errors if d is strictly greater to the 
radius p of the error model: d (Yi, Yj) > p, \;j i "# j. 

A code allows the correction of errors if d is strictly greater than twice 
the radius p : d (Yi, Yj) > 2p, \;j i "# j. 

Figure 15.6 symbolizes these properties for error detection. For every 
couple (Yi, Yj), we have to respect the condition d> 2p; every error that 
affects any codeword Yi transforms the correct word into an erroneous word 
Yi* belonging to a sphere of radius p around Yi. Since all the spheres of 
codewords are disjoint, we can apriori deduce the correct word Yi from any 
erroneous word Yi* . 

p : maximal error 
radius 

U : universe of 
m-bitt vectors 

Figure 15.6. Distance and error model 

Note. Coming back to the general context of Figure 15.3, we see that the 
detection properties of the codes have to be preserved in the transformation 
performed by the system T. If T is a transmission system, the normal output 
W is equal to the coded input Y, and the Hamming distance properties allow 
the detection and correction of errors. On the other hand, these properties are 
not automatically preserved when the system T is not a transmission or a 
memory system. Other notions of distance have then been defined, as we 
will see with the 'arithmetic distance' for arithmetic circuits, in section 15.5. 
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Example 15.3. Detection and co"ection 0/ single errors 

If the codeword is Y = (0 1 1 00) and if p = 1, all erroneous words are at 
a distance of 1 from this word. They thus belong to a set of five words: 

y* = {(lI 1 00), ((00 1 0 0), (0 1 000), (0 1 11 0), (0 1 1 0 I)}. 

If none of these words belong to the code, then it is possible to detect the 
presence of all single errors that have affected the word (0 1 1 0 0). 

If, additionally, all the other words of the code are situated at a distance 
which is superior or equal to 3, we will also be able to correct all simple 
errors. In this way, the word Y' = (1 1010) is at a distance of 3 from (0 1 1 
00). We can easily check that all simple errors that affect it do not belong to 
the set Y*. If this property is true for all codewords, then the detection of an 
incorrect codeword, which belongs to the set Y*, clearly identifies the correct 
word Y: the correction of errors is therefore possible. 

15.2.3 Redundancy and Efficiency 

Let us suppose again that k is the number of bits of the information to be 
coded, n the number of bits of the codewords, and r = n - k the number of 
supplementary bits. A code can be characterized by: 

• its cost, which is the number of bits n that it needs, 

• its power 0/ expression (or cardinality or even capacity), which is the 
number of codewords N that it is able to represent, 

• by the error model defining the errors detected anel/or corrected. 

We use the termredundancy rate ofthe code as the coefficient: 

rr = r/k , where k is the number of bits of the word to code (called 'useful 
bits'), and r the number of added bits ('redundant bits'). 

The density 0/ a code, noted d, is the ratio of the capacity N and the total 
n 

number of words that could theoretically be formed with its n bits: d = N /2 . 
The coverage rate 0/ a code, noted C, is the ratio of the number of errors 

that it detects anel/or corrects and the number of errors belonging to the 
considered error model. For example, an-bits parity code detects all odd 
errors (of order 2.p +1) of these n bits. If we consider all possible 

mathematical errors associated with a given codeword (that is 2n -1), this 
n·t n 

code covers a large part of them: about C = 2 /(2 -1) # 0,5! Obviously, no 
real code of finite length can reach coverage of 1. 
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15.3 PARITY CHECK CODES 

The c1assic codes are the single or multiple parity codes, unidimensional 
(that is using a single word) or multidimensional (using 'blocks' of words). 
Essentially, they were defined and employed for information transmission 
systems, and then extended for use in data storage systems. 

15.3.1 Single Parity Code 

The single parity code is the most famous and simplest error detecting 
code. It is a separable code that adds a redundant bit to U, which is the result 
of the XOR function of an the other bits: 

k 
Yj=Uj forje (l,k),Yn = ffi i=l Ui (n=k+l) 

The E9 operator is XOR, which takes the value '1' if and only if the 
number of inputs that have the value '1' is odd. For example, if X = (1 0 1 0 
1 1 1), then we have to add a '1' bit since the number of bits' l' of U is odd. 
Thus, the codeword contains 8 bits: Y = (l 0 1 0 1 1 1 1). Hence, an 
codewords contain an even number of bits '1'. This code does not correct 
any error, but it detects half of an conceivable mathematical errors, i.e. an 
the errors that modify the parity of the number of bits '1'. 

In the previous example, all odd errors (single, tripie, quintuple or 
sextuple error) affecting Y = (l 0 1 0 1 1 1 1) are detectable, since they 
change the parity of the number of bits' 1'. Finally, the single parity code is 
the least redundant of an codes that detect and correct errors: rr = l/k; hence, 
its density is d = Y2. 

The single parity code is used everywhere in a computing system: to code 
data stored in memory, transmitted on a Data or Adress Bus, etc. Its 
limitation comes from the fact that it cannot detect an even number of errors, 
and in particular double errors (see Exercise 15.1). 

15.3.2 Multiple Parity Codes 

For multiple parity codes, several parity relations (functions $) are 
defined, and they anow the detection and correction of more complex errors. 
There are many of these separable codes and they are also very varied. 

We are briefly going to introduce unidimensional codes that concem the 
encoding and decoding of individual words, and also bidimensional codes 
that are intended for structured information in blocks of words. 
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15.3.2.1 Linear Codes 

Principles and example 

Chapter 15 

The general principle of multiple parity codes is the following: we add 
redundant bits to the word to be coded; these redundant bits are obtained by 
XOR relations between certain information bits. These codes were imagined 
for transmission applications, i.e. for wh ich W = Y without error. We will 
now explain the basic principles with a simple example. 

Example 15.4. Code C(7, 4) 

Let us consider the detecting and correcting code, such that k = 4 and 
n = 7. The bits Yi of the codeword Y are obtained from the Ui bits of the word 
to code, U, by the following parity relations: 

Yj = Uj for jE (1, k = 4), 

Y5 = Ul $ U2 Et> U4, 

Y6 = Ul $ U3 Et> U4, 

Y7= U2 $ u3 Et> U4· 

By construction, the words of this separable code are located at distances 
greater than or equal to three from each other. By applying Hamming's first 
theorem, this code will therefore allow the detection of all errors affecting at 
most 2 bits. By applying Hamming's second theorem, this code allows the 
correction of all single errors. Explicitly, the detection and correction 
mechanisms are derived from the construction of the codewords by three 
parity relations: 

Yl $ Y2 $ y4 Et> Y5= 0, 

Yl $ Y3 $ y4 Et> Y6= 0, 

Y2 $ Y3$ y4 Et> Y7= 0. 

These relations are called parity check relations or control relations. We 
clearly see that all single or double errors of the transmitted word W affects 
at least one, two, or all three of these relations. On reception, an error is 
therefore detectable by ca1culation and by observation of the syndrome 
which is the 3-bit vector: 

S=(Sl=Wl$W2 Et>w4 Et> W5,S2= Wl$W3Et>W4$W6, 

S3 = W2 $ w3 Et> w4 Et> W7). 

If this vector is different to zero, a single or double error has occurred 
and it is detected (but it is not correctable). If we assume that the errors are 
single, this syndrome vector enables the correction of the error. Thus, if the 
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error affects the bit Yl, the syndrome has the value S = (1 1 0), if the error 
affects the bit Y4, W4 = y'4, the syndrome has the value S = (1 1 1), and so on. 
This code is called Hamming code C(7, 4) . In Exercise 15.2 we will study a 
variant of the presentation, which is obtained by simple permutation of the 
coding relations; this variation is a more convenient way of correcting errors. 
In this exercise, we will also introduce the so-called modified Hamming 
code, which detects all single and double errors, and corrects all single errors 
(without any confusion between these two classes of errors). 

Matrix representation 
The EDC codes based on control relations with XOR operators, have 

given rise to a large number of studies. An original group of codes, called 
linear codes, uses matrices in the binary Galois Field GF(2) (using operators 
XOR -modulo 2 addition- and AND). Two binary vectors represent the word 
to code U and the codeword Y. The coding is carried out by a 
'multiplication' of U by a generator matrix called G: Y = U. G. A 
noteworthy property of this linear space is that any linear combination of 
codewords produces another codeword. 

Detection and correction of errors are achieved thanks to a control matrix 
H; we define the syndrome vector by S = H .w T (where T stands for 
transpose). The matrix H can be derived from the matrix G: H. GT = o. This 
property expresses the fact that the two vector spaces generated by these 
matrices are orthogonal. 

The syndrome is thus a null vector in the absence of an error, hence: 

H. W T =0. 

For our example, the two matrices and their properties are: 

1000110 

0100101 
G = , with [yJ, Y2, Y3, Y4, Y5, Y6, Y7] = [uJ, U2, U3, U4] . G. 

0010011 

0001111 

wl 

w2 

[1101100] w3 

=[;!];s, H = 1 0 11 0 1 0 ,with H . w4 

0111001 w5 

w6 

w7 
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S is the syndrome vector identifying the erroneous bit. 
When the first k columns of G form a kxk identity matrix (i.e. containing 

'1' values only in the diagonal), the code is said to be systematic. 1t is the 
case of our example. In that case, Y = [uJ, U2, U3, U4, UJ, PI, P2, P3], where Pi 
are the parity check bits. 

We will deepen the study of a linear Hamming code in Exercise 15.3. 

15.3.2.2 Cyclic Codes 

Principles 
Cyclic Redundancy Check codes (noted CRC) are derived from linear 

codes by adding the property: 

any cyclic shift of a codeword is still a codeword. 

Their study can be effieiently done with the help of the polynomial 
modeling over the Galois Field GF(2) using operators AND (noted here .) 
and XOR (noted here +). An n-tuple or vector is expressed as a polynomial 
by x, x being a symbolic representation variable. The vector m = [mo, m/, mz, 
m3] is written: 

2 3 u(x) = mo .1 + m/ . x + m2 . x + m3. x . 

For example, m = (1011) is written: 1 + x2 + x3• 

The generating matrix G becomes an (n-k) degree generator polynomial 
g(x) , and the control matrix H becomes the control polynomial hex). A 
fundamental concept of cyc1ic codes is that of 'polynomials equivalence 
modulo a given polynomial'. The most important modulo base polynornial is 
xn + 1. Two polynomials a(x) and b(x) are equivalent modulo (xn + 1) if they 
have the same remainder in the Euclidean division by (xn + 1). Hence, we 
write: a(x) = b(x) [mod xn + 1]. 

The error detection and correction properties of cyc1ie codes are obtained 
by choosing generator polynomials from the factorization of the base xn + 1 
into irreducible polynomials. Table 15.1 gives the factorization of xn + 1 for 
n = 7 and n = 15: 

n factorization 

7 (l +x)(l +x+x3)(1 +X2+X3) 

15 (l +x)(1 +x+x2)(1 +X+X2 +X3 +x4) (l +x+x4) (l +x3 +x4) 

Table 15.1. Polynomial factorization 

Any monie divisor of xn + 1 is the generator of a cyc1ie space. For 
I 'f 3 1 2 3 3) examp e, 1 n = 7, (l + x), (l + x + x), ( + x + x ), (l + x)(l + x + x ,etc., 

are generators of cyc1ic codes. 
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In that case, the control polynomial g(x) which generates the orthogonal 
subspace is easily obtained from the factorization of xn + 1: 

g(x) . hex) = 0 [mod ~ + 1]. 

Hence, these two polynomials generate supplementary cyclic spaces. 
For example, for n = 7, if we choose g(x) = 1 + x + x3, then: 

hex) = (l + x) (l + x2 + x3) = 1 + x + x2 + x4• 

Let g(x) of degree n-k be the generator of a cyclic code. Each codeword 
will have n bits and will be represented by a polynomial of degree n-l, 
multiple of g(x): y(x) = a(x). g(x) (with degree of a(x)::; n-l). 

g(x) 

xlg(x) 

From this, a generator matrix can be defined by G = x 2 g(x) 

Xk- I g(x) 

1101000 

0110100 
For example, if g(x) = 1 + x + x3, G = , the different 

0011010 

0001101 

columns of G correspond to 1, x, x2, x3, ••• , x6, from left to right. 

In that case, the encoding of a word u = (l 0 1 1) gives the codeword 
u.G = (1 1 1 1 1 1 1). 

The control matrix can be derived from the polynomial hex) as: 

hex) 

G= 
x1h(x) 

xn-k-1h(x) 

The columns of H corre~pond to 1, x, x2, x3, ••• , x6 , from right to left. 

Far example, if g(x) = 1 + x + x3, we saw that hex) = 1 + x + x2 + x4• 

Hence, H = [~ ~ ~ ~ 1\1 ~]. We can easily verify that G.HT = o. 
1011100 



414 Chapter 15 

Coding procedure 

Now, we will propose a very simple way of performing the coding 
operation of a cyc1ic code. 

We choose, for example, g(x) = 1 + x + x3, as the generator polynomial of 
a cyc1ic code. We will define a systematic cyclic code based on the 
fundamental property that the polynomial associated with the codeword is a 
multiple of the generator polynomial. Let u(x) of degree k, the word to be 
coded, g of degree n-k the generator polynomial and y of degree n the 
resulting codeword. We multiply u(x) by x(n.k), and then we perform an 
Euc1idean division by the generator polynomial. Thus, we have: 

x(n-k) u(x) = q(x) g(x) + r(x), 

with r(x) = Po + PI X + .. + Pn-k-I Xn-k-I, 

x(n-k) u(x) + r(x) = q(x) g(x). 

This relation shows that x(n-k) u(x) + r(x) is a multiple of g(x). 
Consequently, we can take this polynomial as the codeword y(x) associated 
with u(x): y(x) = [Po, . . . , Pn-k-I, Uo, Uj, ... , uk-d. 

synchronous 
DFF 

go = I ~=O 

Input U 
.....-__ -+ Uk-l •• Uo 

OutputY 
Uk-l •• Uo Po-k-l •• Po 

Figure 15.7. Systematic cyclic encoding 

This code is systematic. This operation can then be fulfilled by means of 
a synchronous sequential circuit, which is based on a shift register and XOR 
operators that feedback some Flip-Flop outputs. For example, Figure 15.7 
shows such a circuit for the generator polynomial g(x) = 1 + x + x3• The bits 
of the vector to be coded are entered into the register, one by one to the 
rhythm of the c10ck (which is not represented in the diagram), by starting 
with the most significant bit Uk-I. At the same time, these bits are also 
transmitted as the most significant bits of the coded word y . During this 
phase of coding, the switch Kl is switched at position 1 (Input U) and the 
switch K2 is c1osed. We thus perform aseries of k shifts which are feedback 
through the coefficients of the generator polynomial g(x). Therefore, we 
obtain the (n-k) bits of the remainder in the register. Finally, Kl is commuted 
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at position 2 and K2 is open, then we can transmit the contents of the register 
in (n-k) dock pulses, as least significant bits of the codeword Y. The detailed 
analysis of this performance is proposed in Exercise 15.4. 

The same coding circuit can also be employed for the detection of eITors. 
Actually, an eITor e(x) affects the word w(x) by transforming it into w*(x) = 
w(x) + e(x). It is detectable if the division of w*(x) by g(x) gives a non-null 
remainder. We enter the bits of the vector W, by starting with the most 
significant bit Wn-I. When n bits have been shifted, the syndrome s(x) is in 
the register. In short, the conversion is finished after n dock pulses. 

Notes 

• Rose Chauduri and Hocquenghem have proposed a systematic way to 
construct efficient codes that detect and COITect independent multiple 
eITors. These codes, noted RCH, belong to the most used CRC codes. 

• Certain transmission eITors are multiple eITors in packets (burst-eITors). 
Thus, specific cydic codes have been devised in order to detect and 
COITect these types of eITors. Hence, Fire codes have excellent burst-eITor 
cOITecting capability. They are notably employed in digital disks. 

• Cyclic codes are used in very numerous industrial domains. The choice of 
an appropriate code depends on the nature of the data to be treated, stored 
or transmitted, and the physical structure that receives and/or treats the 
data. The determination of a realistic eITor model is essential. These 
cyclic codes are generally presented in the documents by their generator 
polynomial which implies their detection/correction capability. For 
example, the North America T-caITier standard for transmissions uses the 
Extended-SuperFrame (ESF) cydic code for coding frames of 4632 bits; 
this code wh ich is given by its CRC-6 polynomial, g(x) = 1 + x + x6, is 
said to detect 98.4% of single or multiple eITors. Naturally, such assertion 
is issued from mathematical analyses and simulation performed to face 
the eITor model (l-length burst eITors in transmissions, etc.). 

15.3.2.3 Bidimensional Codes 

We suppose that the information to be coded is structured as blocks, each 
one constituted of kr-bit words. Figure 15.8 shows the principle behind the 
bidimensional codes, also called product codes. 

Two redundancies are introduced: 

• rl redundant bits are added to each word, forming what is called 
longitudinal redundancy check (LRC). 

• rv redundant words are added to the block, forming what is called vertical 
redundancy check (VRC). 
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The RR block corresponds to a vertical redundancy of the bits of the 
horizontal redundancy. Thus, each line or column is a codeword able to 
detect andlor correct errors. 

We can employ linear codes that were studied in the previous seetion. 
Exercise 15.5 suggests a study of abidimensional code with a simple 
horizontal parity on each word and a simple vertical parity on all words. 

pwords 

rv words 

Data 
Block 

k 
bits 

LRC 

rl 
bits 

VenkiJl 
Red",,""'I1:)' Check 

Figure 15.8. Bidimensional code 

Note. Bidimensional codes are very useful for optical or magnetic mass 
storage systems. For example, the Reed-Solomon (RS) codes, wh ich are a 
particular type of BCH codes, are employed in magnetic mass memories, on 
R-DAT (Digital AudioTape) and digital disks. An interleaving technique is 
frequently employed: parity symbols are added and the bytes (1,1), (2,1) ... 
are interleaved. Hence we can detect/correct an error in a packet of order n if 
each word has a single D/C capability! The Cross-Interleaved Reed
Solomon Code (CIRC) is used for Audio Compact Disc. Thanks to 2 cyclic 
codes by block, it allows the correction of short errors in CD manufacturing, 
and also chained errors. In this way, 4000 consecutive bits can be retrieved, 
and 12000 bits can be compensated. 

15.4 UNIDIRECTIONAL CODES 

The unidirectional codes are intended to detect all unidirectional errors, 
i.e. wh ich modify the number of '1' bits in the codeword (either by a greater 
number or a lower number). 

Thus, let m be a word, m = (100 1 0 1): 

• the errors m1 = (10 1 1 1 1), m2 = (1 00000) are unidirectional, as the 
number of '1' of m (2) is increased in m1 and decreased in m2, 
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• the error m3 = (0 0 0 1 1 1) is not unidirectional, as the first '1' of m 
became '0', while the 5th bit becomes '1'. 

In Appendix A we compare the capacity and the coverage of some of the 
codes presented below: the simple parity code (which will serve as 
reference), the optimal m-out-of-n code, the two-raU code, the Berger code 
and the modified Hamming code. 

15.4.1 M-out-of-n Codes 

Every codeword of an m-out-of-n code has exacdy m bits '1' and n-m 
bits '0'. This code is non-separable, so it is used in applications where there 
is no codingldecoding operation, such as opcode assignment for micro
processors or micro-controllers, or internal state assignment of finite state 
machines. We will encounter this code in the following chapters, notably to 
produce self-checking systems. This code detects any error modifying the 
number of bits '1', in particular any unidirectional error. It has also the 
following property: any AND or OR combination of two codewords gives a 
word outside the code. This property finds applications when faults can 
produce such AND or OR operations, such as the electrical 'wired OR' . 

The power of expression of this code is the number of different 

combinations of m '\' that can be formed with a .-bit word: N = (: )
This function has a maximum value when m has an integer value that is 

c10se to n/2 (see Figure 15.9). Therefore, a particular interesting case is that 
of n = 2m, since the cardinality is then maximal. An example of such code is 
given in Example 15.5. 

withnfixed 

1 

o n m 

Figure 15.9. m-out-of-n code power with m 

The density of the m-out-of-n code is: n! 
m!(n - m)! 2 R 
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Exercise 15.6 deepens the study of the m-out-oJ-n code by analyzing its 
properties for the detection of errors. 

Example 15.5. Code 2-out-of-4 

Figure 15.10 lists the N = 6 codewords of the 2-out-of-4 code. It is easy 
to verify that the minimal distance between two codewords is 2. 

ab cd 

00 1 1 
01 10 r double nril 
10 01 (4 words) ~~ 1 1 00 

(6 words) 
01 01 
'10 10 

Figure 15.10. Code 2-out-of-4 

15.4.2 Two-Rail Codes 

Two-Rail codes (or double-rail), which are used to design self-testing 
logic circuits, coincide with a variant of the duplication that has already been 
encountered. The word to code X is duplicated and complemented to 
constitute the codeword Y: 

Y= (X,X') . 

The redundancy R is therefore the binary complement of X, noted X' 
(R = X'). In fact, this is a particular instance of an m-out-oJ-2m code for the 
coding of m-bits X words. Its cardinality is N = 2m, which is less than that of 
a general m-out-oJ-2m code. Its density is 112m• 

For example, if m = 2, only the first 4 vectors of Figure 15.10 belongs to 
the two-rail code. The two-rail code is thus separable, with k = m and r = m. 
Compared to the m-out-oJ-n code, this code is simpler to implement but less 
efficient; for a given value of n = 2m, we can form fewer words: 

2m< 2m c ( m), lor m > 1. 

15.4.3 Berger Codes 

Berger codes are separable: the redundant part R, added to the useful 
part X, expresses in binary the number of bits '0' present in X. We can show 
that r = r log(k+ 1) 1 , where r x 1 is the first integer greater than or equal to x. 

The density is of the order of 1I(k+ 1). 
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These codes are optimal codes for the detection of unidirectional eITors, 
i.e. the number of redundant bits is minimal. They have been used for eITor 
detection in ALU. 

Example 15.6. Berger code with k = 3 

Table 15.2 gives the list of codewords for the Berger code when k = 3: 
thus r = 2 (there must be 2 bits in order to code all the possible 'zero 
numbers' in a word of 3 bits), and n = k + r = 5. This example is analyzed in 
Exercise 15.7. 

X R 
a bc de 

000 1 1 

001 10 

010 10 

o J I 01 

100 10 

101 01 

110 01 

I I I 00 

Table 15.2. Codewords of the Berger code, for k = 3 

15.5 ARITHMETIC CODES 

15.5.1 Limitations of the Hamming Distance 

Arithmetic codes are specific to calculation systems: addition, 
subtraction, and sometimes multiplication and division. They are based on 
the arithmetic distance notion, and they are thus efficient to detect arithmetic 
eITors. Actually, the Hamming distance notion, which is the basis of the 
majority of codes, is insufficient in the treatment of arithmetic operations. In 
this paragraph, we therefore take a slight deviation from the binary codes 
that have been considered thus far. 

Let us consider a simple system wh ich calculates the sum of two 
numbers (see Figure 15.11), Z = Xl + X2, and let us quickly examine the 
problem of detecting errors by the use of redundant codes. 

We want to determine a redundant code that detects a certain model of 
eITors affecting the system: let us call C(Xl) and C(X2) the two resulting 
codewords. Having coded the two numbers, we now ask the question: 
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Is the addition operation an internaioperation ofthe coding? 

That is: C(XI + X2) = C(Xl) + C(X2)? 
A second question concems the error models of such systems: 

What is the physical meaning of a single error model? 

Figure 15.11. An addition function 

Let us assume that our addition circuit, depicted in Figure 15.11, receives 
two natural numbers expressed in binary: Xl = 0001 and X2 = 0111. It 
provides as result Z = 1000. A single error affecting the acquisition of the 
input Xl = 0000 leads to the result Z = 0111. We see that a single input error 
(1 bit affected) produces a quadrupIe output error (all the bits are affected). 
Under these conditions, it is not possible to use Hamming's theorems, which 
are based on binary distance! If we want to find codes that detect andlor 
correct errors altering the addition function T, then we must reject the 
Hamming distance and define a new distance. The notion of arithmetic 
distance, has been proposed (in particular by scientists working in the spatial 
domain), leading to a new category of codes. In the definition of this 
arithmetic distance, words are considered as numbers. For example, consider 
the word ml = (1011), and two faulty words m2 = (0011), and m3 = (1001). 
The arithmetic distances between the first word and the two others are: da 
(mI, m2) = 8, da (mI, m3) = 2. 

Let us note that the two-rail codes that were presented in paragraph 
15.4.2 are universal; they can be applied to all data processing systems, and 
thus calculation circuits. However, they do not optimally exploit the 
specificity of a system, i.e . its function, as the residual codes, considered in 
the following paragraph, will do. 

Others specific codes are used. In Exercise 15.11, we propose to study 
the checksum code. 

15.5.2 Residual Codes 

Here we will only make reference to the residual codes which were 
introduced at the Jet Propulsion Laboratory (Pasadena, USA), and were 
used in the Saturn V projecl. The numbers that T treats are c1assed according 
to a 'congruence modulo A' property, A being a suitable constant called the 
check base. Thus, the c1ass '0' is constituted by the set of numbers {O, A, 2A, 



15. Error Detecting and Correcting Codes 421 

... }, the c1ass '1' by the set of numbers {I, A + 1, 2A + 1, ... }, and so on. The 
congruence is a property that is preserved by addition, subtraction and 
multiplication. If we perform one of these operations on natural numbers that 
are expressed in some numeration base B, then we obtain the foHowing 
property: 

If al == a2, bl == b2 mod[A], 

then al + bl == a2 + b2 mod[A], 

al - bl == a2 - b2 mod[A], 

al x bl == a2 x b2 mod[A]. 

On the other hand, the division does not preserve this property. 
This property is exploited in order to check if an operation op (+, - or x) 

on a1 and b1 is correct. This is achieved by redoing the calculation on the 
smallest representative of the c1ass (number inc1usive between 0 and A-l 
since there are A c1asses), and by comparing the c1ass of the result with that 
of a1 op b1. This redundant calculation is very simple since it operates on 
small numbers. Hence, we are able to assurne that the circuit that performs 
this calculation will have a better reliability. 

The search for the c1ass of some number N requires the calculation of the 
remainder of the division of N by A. It has been shown that this calculation is 
very simple when A is apower of base B minus 1: A = Bk - 1. For example: 
A = 15 = (24 -1) forbase 2,A = 9 = (10-1) forbase 10. 

With such values of A, the processing of the remainder of the division by 
A can be performed by using iteration on k-symbol slices of N, without 
taking the carry into account. 

For example, if B = 10 (decimal), and k = 1: 

257 [9] = 2 + 5 + 7 [9] = 14 [9] = 1 + 4 [9] = 5 [9]. 

In this way, we detect all errors (whatever the ongm: breakdown, 
functional fault, external parasite) except errors modifying the result by a 
multiple of A. 

The logical structure of the calculation circuit, which detects the errors in 
the case of an addition, is shown in Figure 15.12. We notice that the 
redundancy is separable, which greatly facilitates the development and the 
implementation of the circuit. 

An example of the application of error detection within this family of 
codes is the modulo 9 prooj, which was weH known among previous 
generations of students; this code is studied in Exercise 15.9. A simple 
binary application is considered in Exercise 15.10. 
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Xl X2 
Redundancy 

Z=Xl+X2 I---~error 

Figure 15.12. Addition circuit that detects errors 

15.6 APPLICATION OF EDC CODES TO DIFFERENT 
CLASSES OF SYSTEMS 

The general model of codes considered in this chapter and illustrated in 
Figure 15.3, covers different classes of detecting and correcting codes. We 
distinguish two cases of applications, according to wh ether T has the value 
'1' (a function which represents the typical case of data transmission, since 
the output is equal to the input), or whether it is different to '1' (the typical 
case of data processing). Each of these cases then subdivides again into two 
sub-classes: 

• T = 1 the output is equal to the input, and so the treatment is either a 
transmission (in this case W = y), or a data storage (ROM or RAM) 
which is, from the functional point of view, equivalent to a transmission; 

• T * 1, the product is performing a logical treatment, or an arithmetic 
treatment (which is a very special case of a logical treatment). 

When T = 1, the classical EDC codes can be efficiently used, as they 
were designed to handle this case. Consequently, these codes can be used in 
memory testing. Thus, the Hamming codes allow the detection and/or 
correction of the faults that affect Random Access Memory (RAM) or Read 
Only Memory (ROM) circuits. Variations of the Fire codes are employed to 
code information stored on magnetic or optical discs. 

On the other hand, when T * 1, these classical codes are generally not 
suitable. Furthermore, they are not at all adapted for the detectionlcorrection 
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of functional or hardware faults, or even perturbations that affect the circuits. 
Various codes are used, such as the single parity codes, or specific codes 
such as the m-out-oJ-n codes, the double-rail codes, the Berger code, and the 
arithmetic codes for the calculation circuits. 

This chapter perforrned a unified presentation of codes that detect and 
correct errors. This approach allowed us to illustrate the use and the interest 
of redundancy in the detection and correction of faults within two classes of 
systems: transmission systems and data processing systems. In the following 
chapters, we will encounter direct applications of these codes, but also other 
subtler redundancy techniques. 

15.7 EXERCISES 

Exercise 15.1. Single parity code 

The codewords of a parity code are obtained by adding a parity bit, Le. 
such that the number of bits '1' in the codeword is even. Consider the case 
wherem=4. 

1. Find the codeword of the useful word (l 0 1 1), and determine all 
detectable errors. 

2. Give an example of a non-detectable error. 

3. Calculate the following characteristics of this code: capacity, density, 
coverage rate, and redundancy rate. 

Exercise 15.2. Hamming Code C(7, 4) 

We consider a multiple parity detecting and correcting code such that: k = 
4 and n = 7. The bits of the codeword y are obtained from the word to be 
coded u in accordance with the following parity relations: 

YI = UI E9 U2 E9 U4, 

Y2 = UI Ea Uj Ea U4, 

Yj = UI, 

Y4 = U2 E9 uj E9 U4, 

Y5 = U2, Y6 = Uj, Y7 = U4, 

where Uj and Yi are the bits i of u and y. 

1. Analyze this code and show that it detects all single errors and all double 
errors. 

2. Show that this code only detects and corrects all single errors. 

3. The definition of this code corresponds to a simple exchange of the 
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relations given for the code of Example 15-4. Compare the detecting and 
correcting capabilities of these two codes. 

4. How can we modify this code so that it is able to detect all single and 
double errors AND correct all single errors (without making any 
confusion between them)? 

Exercise 15.3. Linear code 

Reconsider the previous exercise by regarding the Hamming code as a 
linear code. 

1. Determine the matrices G and H. 

2. Check the vector coding operation. 

3. Analyze the error detection and correction with the help of the matrix 
product H. WT. 

Exercise 15.4. Encoding of a cyclic code 

Consider the cyc1ic code generated by the generator polynomial 
g(x) = 1 + x + i, and the coding circuit shown in section 15.3.2.2. Study the 
operation of this circuit for coding the vector U = (0 0 1 1), where the bits 
are ordered from bit 1 (LSB) to bit 4 (MSB). 

Compare with the result obtained by the formal polynomial division of 
x(n-k) u(x) by g(x). 

Exercise 15.5. Single parity bidimensional code 

Consider a block of five 4-bits words. 

1. Explain how to code this block with a single parity bidimensional code. 
Give a simple binary example. 

2. Determine the c1asses of single and multiple errors that are detectable. 

3. Determine the c1asses of non-detectable errors. Give a significant 
example. 

4. What can we say about an error that is detected simultaneously in 
columns 2 and 3 and rows 4 and 5? 

5. Study the correctable errors and those that are not correctable. 

Exercise 15.6. M-out-of-n code 

Show that if mi and m2 are 2 words of an m-out-of-n code, the following 
properties are true: 

1. (mi OR m2) as weH as (mi AND m2) do not belong to the code, 

2. the Hamming distance between these two words is inc1uded between 2 
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and 2.k, and 

3. every unidirectional error is detectable. 

4. How can an error detection system for such a code be implemented? 

Exercise 15.7. Berger code 
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1. Draw the codeword table of aBerger code with m = 4. 1s this code 
optimal? 

2. Show that this code allows the detection of every unidirectional error. We 
will analyze this error detection capability with an error that increases the 
number of '0' bits, first of all on X, then on R, then on the 2 parts. Then, 
we will reason with an error that reduces the number of '0' . 

3. Consider a code derived from aBerger code that requires the calculation 
of the number of '1' bits in X in order to formulate the redundant part R. 
This code strongly looks like the Berger code. Show that this code does 
not allow, however, the detection ofunidirectional errors. 

Exercise 15.8. Unidirectional codes 

Find every optimal coding (that have the biggest coding capacity) of n = 
10 bits for the following codes (we will refer to Appendix A which compares 
several codes): 

1. M-out-of-n, 

2. Two-Rail, 

3. Berger. 

Exercise 15.9. Modulo 9 prooj 

Study the principle of the modulo 9 prooj for the addition, multiplication 
and division operations of decimal numbers (base 10). 

1. Show that searching for the dass of a number is equivalent to searching 
for the dass of the sum of the dasses of each figure of the number. This 
process is iterative. 

2. Use the modulo 9 proof to check if the following operations are correct: 

• 189 + 47 = 236 

• 189x47=8867 

• 189 - 47 = 144 

• 189 - 47 = 97 

3. Show with an example that the modulo 9 proof is false for division? 
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4. What is the class of non-detectable errors with this code? 

Exercise 15.10. Binary residual code 

Consider a binary residual code (B = 2) with A = 15. 

1. Search for the class of number N = (101111101111001101). 

2. Check the operation (00110010) + (01101110) = (10101100). 

Exercise 15.11. Checksum code 

Chapter 15 

Consider a block of five 4-bit words: (1101, 0011, 1110, 0110, 0101). 
We first calculate the sum without the remainder of all these words. The 
resulting 4-bit word W6 is then complemented to '2', that is to say we make 
the following arithmetic operation: r = 24 - W6 . This word constitutes the 
redundant word which is added to the others data words. This code is called 
Checksum code. 

1. Code this block with the help of Checksum code. 

2. Show that if no error is present, the 'sum without the remainder' of the 6 
preceding words must be equal to '0' . 

3. What errors do we detect? 

4. What errors are not detectable? 

Exercise 15.12. GCR(4B - SB) code 

In this exercise, we will analyze a code called GCR(4B - SB) which has 
been used for coding data transmitted on a given media as serial4-bit words. 
These words are coded with 5-bit codewords as shown in Table 15.3. 

The analysis of these codewords reveals that there is no interesting 
Hamming's distance property. Thus, what was the use ofthis code? 

4·bitX 5-bitY 4-bitX 5·bit Y 

0000 I 100 I 1000 1 101 0 

0001 1 1 0 1 1 1001 01001 

0010 10010 1 0 1 0 01010 

001 1 100 I I 101 1 o I 0 1 1 

0100 1 1 101 1100 1 1 1 1 0 

010 1 1 0 1 0 1 1 1 0 1 01 101 

0110 10 1 I 0 I 1 1 0 01 I I 0 

o 1 1 1 1 0 1 1 1 1 1 1 1 o 1 1 1 1 

Table 15.3. GCR 4B-5B encoding 
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On-Line Testing 

In this chapter we examine the techniques allowing the integration of 
error detection operations into the active life of the product, disturbing in the 
least possible way the operation of this product. 

16.1 TWO APPROACHES OF ON-LINE TESTING 

On-line testing (or OLT) aims at detecting errors during the product 
operation. This additional activity must not affect the normal functioning of 
the tested product. In particular, the operation of the product is not halted 
during the test operations. This requirement is relaxed by saying that the 
performance loss of the operation should not be below a certain level of 
acceptability, which is defined at the specification time. 

The main objective of on-line testing is the detection of errors appearing 
during the functioning of the product, so as to alert the outside world. On
line testing is therefore generally not concerned with the localization of the 
faults at the origin of the detected errors. Hence, the techniques will often be 
completely distinct from those employed in off-line testing. Moreover, on
line testing is not concerned by correction or recovery of the detected errors. 
These corrective techniques belong to the fault tolerance examined in 
Chapter 18. However, most of the fault tolerance solutions use the 
techniques presented in this chapter in order to detect the occurrence of 
errors before handling them. 

Two different c1asses of on-line testing techniques are defined: 

• the discontinuous on-line testing, presented in section 16.2, which 
exploits the natural temporal redundancies of the product in order to test 
it discontinuously with a fixed or variable periodicity, 
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• the continuous on-fine testing or, self-testing, presented in section 16.3, 
which observes continuously the different functionalities of the product to 
detect error occurrences. 

16.2 DISCONTINUOUS TESTING 

The discontinuous on-line testing is quite dose to off-line testing. We 
will introduce and illustrate this technique with the example of a control 
system for a petrochemical industrial process. This distributed system is 
made up of three regulators that are implemented by specialized circuits, 
Programmable Logic Array (PLA), Programmable Logic Controllers (PLC), 
or microprocessors that execute software applications. These regulators are 
interconnected to each other by means of a local network (Figure 16.1). Each 
regulator controls a process and the interconnection between the regulators 
ensures a globally optimized regulation. We are going to ex amine three 
possibilities which exploit the temporal redundancies of these regulators, to 
increase the system testing capability: 1) use of an external tester, 2) test 
performed by one regulator, and 3) test distributed between the regulators. 

Rl 

R3 

Figure 16.1. Control system 

16.2.1 External Tester 

Let us assume that the three regulators are not used continuously and 
therefore they have periods of inactivity. This hypothesis is completely 
realistic in a lot of cases. On the site, we place a tester T connected to the 
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regulators by a point-to-point network. These new elements are represented 
in thick black in Figure 16.2. 

Figure 16.2. Introduction of a tester 

The tester alternatively tests each regulator during its inactive period: 

• functional testing of the regulation by running processing orders and by 
comparing the results with predefined values stored in ROM, 

• specific testing of certain internal units of the regulator (central unit, 
arithmetic processor, and memories), and of certain input/output 
interfaces with the controlled process (analog/digital and digital/analog 
converters, sample/hold circuits, etc.). 

Some modifications of the regulators may be necessary in order to make 
possible the actions ordered by the tester. For example, when a D/ A 
converter is tested, its output voltage must not be send to the process, but to 
an A/D converter instead, to verify these two circuits. 

This approach has little practical interest since it is expensive. It requires 
the installation on the site of a costly tester and communication links with 
the regulators. An improvement of this schema consists in using the existing 
local network that links the regulators together. Hence, test data (orders, 
information) must be interleaved with the communications implied by the 
regulation functions . The test traffic must not hinder the normal 
communications. In particular, the traffic due to the test must not be at the 
origin of failures in the tested systems. Let us suppose that R1 is waiting for 
information coming from R2. If this information does not arrive before a 
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certain deadline, then a situation of bad regulation can arise. This failure is 
not due to a failure of R2, but to the fact that the activities of R2 are 
suspended during the test, or because the network is overloaded owing to the 
exchanges due to the tests. 

16.2.2 Test Performed by One of the Regulators 

The testing task is performed by one of the regulators which possesses 
enough ca1culation power, memory and inactivity periods. In addition to 
regulating one of the processes, this regulator must test itself and test its 
colleagues across the natural communication network (Figure 16.3). When it 
can be implemented, this solution is much more economical than the 
previous one. 

The previously highlighted problems of error occurrences due to the test 
mechanisms are more critical here, since the regulation and the test functions 
share the same resources: the CPU of the regulator and the communication 
network. 

Tater 

R3 

Figure 16.3. Test performed by one regulator 

16.2.3 Test Distributed Between the Regulators 

With the distributed test, there is no longer any centralized test function: 
each regulator takes care of testing its own operation (Figure 16.4) and/or 
possibly testing its neighbors. This technique assurnes that each regulator 
disposes of enough inactive time in order to activate its test actions, and the 
necessary hardware and/or software components in order to access to the 
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data acquisition circuits, the control functions, etc. 
Consider the example of a multi-task regulator (see Figure 16.5): the 

activity is scheduled by a fixed sampling period allowing presence of 
inactive or idle time. We exploit this inactive time to ron the test: we add a 
testing task Thaving a lower priority. 

R3 
Teeter 

Figure 16.4. Distributed test 

Sampling period 

Figure 16.5. Test tasks 

time 

Let us note that, unfortunately, the treatment tasks generally have a 
variable duration, which depends on the calculation functions that have to be 
executed and on the data sampled. Consequently, the inactive time available 
at each period is not fixed. If the test task T is not terminated when a real
time interrupt occurs, which starts the next sampling period, this task T is 
purely and simply cancelled and it must be re-run the next time. Hence, the 
resulting test frequency of the regulator is reduced. 

We noticeably improve this technique by breaking up the test T into n 
elementary tasks Ti which are integrated into the normal course of 
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regulation, but with a low level of priority: for each period, we include one 
or several tasks Ti in a fixed order, for example Tl, T2, ... , Tn. This 
dispatching can be done apriori at the time of design. Another technique, 
called periodic server, adds a periodic task to the application task of which 
the duration allocated is reserved in order to progress the execution of test 
treatments. In this case, a periodic test of all the regulators is guaranteed. 

Through this example, we explored various on-Une testing solutions and 
their property: the various devices are tested with variable or guaranteed 
periodicity. We have to evaluate these test properties, in order to be able to 
judge the relevance to the proposed solution faced with the requirements of 
dependability given in the specifications. 

Note. For industrial systems, the on-line test activity is often organized 
hierarchically. For instance, a distribution control system for electrical power 
is organized as several units (boards) communicating via a CAN bus. Each 
board performs the test of its internal memory every 4 minutes: the ROM 
containing the programs is tested by means of a checksum coding, and the 
RAM containing the data is tested by 'save - write - read - restore' 
operations on bytes '00' to 'FF'. A special unit ensures the control of the 
treatment units by asking each unit to identify itself and to give its internal 
state every 10 minutes. If a unit does not respond before 500ms, we repeat 
the request, and in the case of a new failure, the unit is declared as faulty. 

16.2.4 Precautions 

Whatever the technique employed, the on-line test must not interfere with 
the functioning which is the concern of the product' s operation. In particular, 
when the test starts, the system is in a certain state which must be preserved 
at the conclusion of the test. This state concerns: the image that the system 
possesses of the controlled process (for example, 'the gate is open', 'the 
contact is off', etc.), the progress of the process control algorithm (for 
example, 'the calculation of the average temperature has finished'). 

The absence of disturbances can be guaranteed by saving the context, 
which defines the current state of the system' s functioning, at the beginning 
of the test phase, and then by restoring it at the end of the test. Once the 
saving of the context has been completed, the functioning state of the 
product must be placed in an identified and appropriate initial state for the 
test execution. In the case of a test fragmented into elementary tasks Ti, each 
task possibly requires a specific initial state. Furthermore, the linking 
together of these tasks generally requires a saving and restoring mechanism 
for the context ofthe test (test current state). 

The test must also not be at the origin of disruptions of the resources that 
it shares with the application. These resources include the microprocessor 
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(execution resource), the networks (communication resources), etc. Bad 
sharing can be at the origin of error occurrence within the application. Such 
a situation was illustrated at the end of seetion 16.2.1. The following 
illustration shows the complexity of the situations that can be encountered. 
The introduction of saving and restoring mechanisms of the contexts of the 
application, and also of the test state, must guarantee a non-aggressive 
functionality between the treatments of the application and those of the test. 
However, these additional management activities (overhead) consume CPU 
time and can thus be at the origin of errors, which are due to the sharing of 
the CPU resource between these two concurrent activities. 

The on-line test does not have to disturb the controlled process. Indeed, 
the actions or outputs of the product, induced by the test, must not be 
transmitted to the process. This can be obtained by a special device, external 
or internal according to whether the tester is external or intern al. In test 
mode, the product will therefore be partially or totally disconnected from the 
process, and it is the device that performs the switching or the filtering of the 
signals. The absence of action on the controlled process at the time of the 
test does not indicate that no errors may occur. Such an error may be raised, 
for example, if an actuator is not activated during the test, whereas a periodic 
refresh operation is indispensable. 

Finally, the on-line activity must not raise an erroneous state induced by 
a wrong test; this is calledfalse alarm. 

16.3 CONTINUOUS TESTING: SELF -TESTING 

16.3.1 Principles 

The previous discontinuous on-line test may not be in accordance with 
the safety criteria. Indeed, if we assurne that a product has a constant failure 
rate of A. failures/hour, and that it is tested with a periodicity of ~ hours, then 
the probability of having a non-detectable failure just before the next 

maintenance test operation is: p = J: e -At dt (cf. Figure 16.6). As a first 

approximation, we can write that p = A. . ~, if A. and d are smalI. 
For example, with A. = 10-5 and ~ = 103 hours, we obtain the probability 

p = 10-2 of having a non-detectable fault. This level is high and not 
acceptable if we compare it with the failure prob ability 10-9 that is frequently 
required for high-critical systems. Thus, we easily see that if the external 
consequences of this failure are serious and have a small inertia, then the 
bigger is the ~, the greater is the risk generated of occurrence of serious 
failures due to undetected errors. 
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A vailability 

test Time 

o I:> 

Figure 16.6. Discontinuous testing 

The previously described problem comes from long periods of absence of 
fault detection. Consequently, to improve the dependability of the product in 
terms of safety, we implement more reactive detection techniques that alert 
the outside world as soon as an error occurs, or better, before an error occurs. 

Figure 16.7. Principle of continuous on-line testing 

The general framework of self-testing is illustrated by Figure 16.7. The 
detection of errors reHes on three types of observation: 

1. Condition monitoring: observation of the non-functional environment of 
the product; for example, in an embedded system, we measure the 
temperature of the environment and/or the voltage distributed by the 
power regulator; these observations indicate abnormal conditions of 
operation which are able to lead to faults, etc. 

2. Observation of product operation. For instance, 

~ we analyze, either intemally or from the exterior, the response time of 
a task, of a module, or of the whole product, 

~ we carry out a parity test on the data or the address, 

~ or we integrate a self-test into the product. 
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These observations aim at detecting the functioning errors of the 
product. 

3. Observation of user behavior: for instance sensor for speed, position or 
pressure, are introduced into the process controlled by the product; they 
provide pieces of information about the actual evolution of this process. 
Their self-test is done by checking that the provided data are within a 
given range, or by comparing the successive sampled values. These 
observations also concern a human operator whose behavior is analyzed. 
For instance, the system asks for useless actions to check his/her 
availability (dead-man technique). 

The detection of non-desirable conditions that occur in the functional and 
non-functional environment is important for two reasons: antieipating 
possible faults which are created by side effects on the product, and 
facilitating the establishment of the symptoms for the diagnosis and recovery 
after detection. 

1. Prevent possible faults created by the side effects on the product. For 
example, the non-respect of the anticipated temperature interval can 
cause an excessive ageing of electrical circuits. Similarly, bad use of the 
product, outside of the specifieations, can lead the product into astate 
from which later uses lead to an erroneous state. 

2. Facilitate the establishment of symptoms, first stage for the handling 
(diagnosis or tolerance) after detection. If, for example, a functional error 
of the product is caused by bad use, the establishment of these 
circumstances is fundamental. For diagnosis purpose, we do not 
needlessly look for a non-existent fault in the system. For tolerance 
purpose, it is not necessary to execute an alternative implementation, but 
the normal use of the product must be recovered. 

The techniques presented below are used to detect errors in the fault 
tolerance approaches. They are often referred to as self-testing techniques. 
However, the reaction to a detected error is not considered in this chapter. 
For the moment, this re action is assumed to be external to the couple 
'product - process': saving and repairing will be, according to the case, 
performed by a human operator or automatie hardware or software deviees. 

The error detection techniques are based on redundancy whose two types 
are successively considered: 

• functional redundancy by adding checks on behavioral properties, 

• structural redundancy by modifying the product' s structure to allow the 
detection of errors. 
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16.3.2 Use of Functional Redundancy 

If the product to be tested on-line possesses natural functional 
redundancies, they are exploited to detect the dass of errors that they can 
reveal. The general notions dealing with functional redundancy were 
introduced in Chapter 8. Practical examples are given hereafter. 

16.3.2.1 Detection Type 

The detection mechanisms are integrated into the normal functioning of 
the tested product, and they observe 'on-line' the truth of predefined 
properties. The membership to functional domains of certain input, output 
andlor internal variables are such examples. 

We distinguish between three complementary checking types: 

• the pre-condition which checks whether an operation can be realized 
before processing it, 

• the post-condition which analyzes the correction of an operation at the 
end of its execution, 

• the assertion which controls if a property is valid each time that a 
circumstance could lead to violating it. 

The likelihood test, which consists in checking the membership of a 
variable to its functional domain, constitutes one of the techniques 
encountered in data acquisition and treatment systems. 

Example 16.1. Pre-condition 0/ a controller 

Let us examine a temperature regulation system located in an office. The 
information provided by the temperature sensor is submitted before 
treatment, to a likelihood test which allows us to detect data capture faults 
(amplification, signal filtering, analog/digital conversion, transmission, 
buffer registers, etc.). We check the membership of this ca1culated 
temperature to an interval [Min, Max] = [-50DC, +50DC]. Any value out of 
this range implies an error, which is then signaled. 

Let us note that this test is a pre-condition of the temperature treatment 
function, but it is also a post-condition of the temperature capture function. 

Example 16.2. Pre-condition 0/ a subroutine 

Consider a piece of software that possesses a subprogram of which an 
input parameter E is associated with a type defined by an interval [Min, 
Max]. For certain programming languages like Ada, this type implicitly 
leads to the generation, within the executable code, of test instructions. This 
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test checks that the value V of the actual parameter E used at the time of the 
call of this subprogram belongs to this interval: Min ~ V ~ Max. In the 
adverse case, we interrupt the normal running of the program, in order to 
execute error treatment, or completely stop the subprogram operation by the 
raising of the exception Constraint-Error. 

Example 16.3. Assertion 

Let us consider the previous example of a program that contains the 
definition of a type that is constrained by an interval. If a variable is of this 
type, then every assignment of a new value to this variable generates the 
verification that this value belongs to the interval. 

Unlike the pre and post conditions for which the tests are localized (at the 
beginning and at the end of the subprogram), assertions are attached to an 
element (here a variable) and lead to tests each time an action on this 
element can violate the assertion. 

Example 16.4. Post-condition of a subroutine 

Consider a subprogram that receives a list of numbers and returns the 
smallest value (Min) and the largest value (Max). It is evident that the two 
output variables must satisfy the property: Min ~ Max. 

Discussion 
We can conceive more complex 'pre' or 'post' condition or assertion 

properties that the membership to a domain or an inequality between two 
variables. For instance, two successive values of the same variable are 
correlated: V(before) ~ V(ajter). The properties can also concem the flow of 
control of the execution of the program. For example, the procedure 
Initialization has to be called before the procedure Treatment. 

The facility to include assertion checking into a product depends 
especially on the technology employed. In the case of software, we have to 
insist on the fact that a programming language must be chosen not only 
according to its power of expression. It should also be chosen according to 
its capacity to detect errors by static analysis (at compile time) and by on
line testing (at execution time). For example, in the case of the language 
Ada, the membership expression to an interval is performed very easily: 

subtype Temperature is integer range -50 .. +50; 

The addition of the on-line test also requires design choices, as illustrated 
by the following example. 
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Example 16.5 

Let us assume that a pro gram contains two procedures PI and P2. The 
first one, PI, must be called at least twice before each call to the second one, 
P2. We have just expressed an assertion on the flow of control (calls to the 
subprograms). The inclusion of these two procedures in a module will 
facilitate the implementation of these tests, as shown in the next example 
where PI and P2 are placed in a package P of which an extract of the 
body is provided. 

package P is 
Number_of_Calls PI 
procedure PI ( ... ) is 
begin 

Natural . - 0; 

Number_of_Calls_Pl .- Number_of_Calls_Pl + 1; 

end Pli 
procedure P2 ( ... ) is 
begin 

if Number_of_Calls_Pl >= 2 

end if; 
end P2; 

end P; 

then Number_of_Calls_Pl 0; 
else raise Error; 

To conclude, let us signal that the output value of a system or sub-system 
is not provided before a required deadline. This error can also be detected by 
a dynamic functional redundancy. The detection mechanism is called 
watchdog. 

16.3.2.2 Detection Location 

Systems are structures composed of subsystems. An error detection 
device must be placed in a given place within the structure. This location 
should be chosen after careful consideration of the characteristics of the 
errors. 

Detection placed within the components 

The pre and post conditions specific to the implementation of a 
component must be placed in this component. They are an integrated part of 
it, since they must be checked in all circumstances. For example, the 
operation Pop requires that the Stack is not empty in order to operate 
correctly. The software implementation is, for example: 

procedure Pop(E in Element) is 
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begin 
if Stack.Empty then raise Stack_Underflow; 

end Pop; 

Similarly, a post-condition evaluates the correct functioning of the 
implementation. For instance, let us consider a procedure that provides the 
minimum (Min) and maximum (Max) values of a list L. These two results 
should always satisfy the constraint 'Min <= Max'. Its verification will be 
made by including a property checking in the body of this procedure: 

procedure Min_and_Max(L in List; Min, Max out Value) is 
begin 

if (Min > Max) 
then raise Min_and_Max_Implementation_Error; 

end Min_and_Max; 

This internal detection does not assurne that the fault is internal, i.e. 
localized within the component. It can also be external, Le. localized in the 
surrounding components. Furthermore, the violation of a precondition does 
not necessarily signal bad use of the component. This error can signal poor 
implementation of this component. For example, a Stack_Overflow error 
in the Push operation of a stack can be caused by a too great a number of 
stacking (external fault) or by an under-evaluated stack size (internal fault). 

Detection on the relations between components. 

Errors can be detected as well by checking the relations between the 
components. It thus expresses an assertion on their cooperation: their 
sequencing, the data exchanges, etc. The detection mechanism must 
therefore be placed at the exterior of the components, as it looks at their 
interactions. 

Let us consider again the example treated at the end of the previous 
subsection. The error detection mechanism implemented in the two 
procedures P1 and P2 is based on an assertion, "P1 has to be called at least 
two times before each call to P2", which must be valid whatever the use 
context of P1 and of P2. This is a property required for a correct functioning 
of the implementation. On the contrary, if this property is specific to a 
particular use of P1 and of P2 in a given application, its satisfaction will 
have to be checked outside of the two components. 

As a second example, let us consider two components Cl and C2, whose 
respective inputs are 11 and 12, and respective outputs are 01 and 02. In 
the considered application, these two components are executed in sequence; 
the output 01 of Cl is used as input 12 of C2. We assurne that constraints 
exist on 11 as a result of the behavior of the components situated above CL 
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Consequently, the possible values 01 produced by Cl are themselves 
constrained. A property P defines the set of these acceptable values. 
Therefore, the evaluation of this property has to be performed outside of Cl 
and of C2, since it concerns their relation. For example, if the components 
are subprograms, we will write: 

Cl (I1, 01); 
if 'not P{Ol) then raise Error; 

else C2{Ol, 02); 

end if; 

This example illustrates the error detection on the exchange of values 
(data flow), whereas the previous example concerned the sequencing of the 
modules (control flow). 

16.3.2.3 Detection Signaling 

Let us consider again Example 16.5 presented in sub-section 16.3.2.1. If, 
when P2 is called, the number of previous calls of P1 is greater than or 
equal to 2, then this number is reset to zero so as to count these P1 calls 
again. If not, an error is signaled by using the exception mechanism. This 
example illustrates the fact that, in addition to the detection means, we must 
also dispose of means that are able to signal the occurrence of an error. 

An error parameter could have been used for P2. However, this solution 
does not favor the safety criteria since the subprogram calling P2 can be 
unable to perform the analysis of the parameter after the call (this is a fault 
which may occur). On the contrary, the raising of an exception ('raise error') 
will automatically provoke a branching to an exception handler or the 
propagation to the calling procedure, as described in seetion 2 of Chapter 14. 

Instrumentation 

The signaling of an error can provoke the activation of tolerance 
mechanisms, which aim at avoiding the appearance of a failure. It can also 
lead to stopping the functioning of the system, or re-initializing this one 
(hypothesis of transient faults). In both cases, it is useful to implement 
instrumentation procedure in the product: information identifying the error 
is saved in non-volatile memory (magnetic support, EEPROM), for a future 
diagnosis of the fault at the origin of the error. Unfortunately, this unique 
information is most often insufficient to allow a diagnosis in a short time 
period. For this reason, additional data on the state of the system are also 
saved: values of input/output parameters, internal variables which 
characterize the state of the software or of the electronic execution resources 
(for instance, the state of the internal registers of the microprocessor), etc. 
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This action, called Jault logging , stores the error data in a log file. 
The choice of pertinent data, i.e. facilitating the future diagnosis, is not 

easy, and it will not be developed in this brief introduction. So as to illustrate 
this difficulty, we can mention the case of sequential systems, which is the 
most general case of hardware and software products. The knowledge of the 
current internal state, at the moment of error detection, is often insufficient. 
We must therefore save data from the past so as to be able to 'go back', from 
the error up to the fault. Consequently, in this case, it is necessary to save 
data throughout the operation, even in the absence of errors. The data about 
the system operation are saved onto a magnetic medium during a time slot of 
finite duration, so as to limit the size of saved data. In this way, the new 
stored data erases the older data (notion of instrumentation window). 

16.3.3 Use of Structural Redundancy 

The use of structural redundancy to design self-testing systems is 
different and complementary to the previous functional approach, and it is 
also frequently employed in projects of highly-critical systems. This 
approach involves structural choices at design time, and often calls on, either 
explicitly or implicitly, the employment of error detecting and correcting 
codes. We will give first the general definition of a self-checking system, 
then analyze the simple example of the duplex, and finally discuss the 
problem of the test of the checker. We will find again EDC codes in Chapter 
18, to design fault-tolerant systems. 

16.3.3.1 Definition of a Totally Self-Checking System 

Let us consider a system with: functional inputs (x E X) and outputs (z E 

Z), test outputs (w) to which an error detector code (c E C) is associated, and 
a fault model F. 

Achecker, supposed for the moment to be faultless, observes the w data 
and raises an error if they do not belong to the code C (Figure 16.8). 

We define three properties on this system, according to the fault model F: 

• code-preserving, 

• self-testing, 

• Jault-secure. 

The first property expresses that the fault-free module preserves the 
output code on w. 

I The system is said to be code-preserving with regard to F 
if '\I x E X ~ W (x, e ) E C, 
where w (x, e ) represents the output w without fault. 
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The second property expresses that every fault is detectable on the output 
w by at least one functional input vector. 

I The system is said to be self-testing with respect to F if 
"dfe F3xeX:w(x,f)e C 

The third property guarantees that no incorrect functional outputs can 
occur which are not imrnediately detected on w. 

The system is said to be fault-sec ure with respect to F if 

"d f e F, "d x e X: either z ( x,j) = Z (x, e ), 
or z ( x,j) '# Z (x, e ) AND w (x,j) e C 

Finally, we obtain the definition of a totally self-checking system: 

IA code-preserving system is said to be totally self-checking with 
respect to F if it is self-testing andfault-secure. 

Inputs 

" 

Fault Model 

Check word 
(code C) 

I Cbjer I 
Error 

Figure 16.8. Error detection 

16.3.3.2 Duplex Example 

The most symbolic example of self-testing system is the duplex, al ready 
introduced in Chapter 8, and illustrated by Figure 16.9: the product is 
duplicated and the outputs of the two modules are compared to detect 
possible errors. The figure shows that the test outputs w are constituted of 
the functional outputs of the main module and of the duplicate (or alternate) 
module. The error detecting code associated is a duplex code. The checker 
compares two binary vectors. For electronic systems, it is realized with XOR 
functions (noted $ in the figure) . 

A variant of this approach, called the FRC (Functional Redundancy 
Checking) , has been proposed by manufacturers of rnicroprocessors like 
Intel; these rnicroprocessors can be associated by two: a master connected to 
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the environment, and an observer who checks by duplex the functioning of 
the first one. Faults detected by this technique comprise all the hardware or 
functional faults acting on a single block only. Hence, this system is totally 
self-checking since it is code-preserving, self-testing and fault-secure. 
Exercise 16.2 and Exercise 16.3 refine the study of the duplex technique. 

inputs 
Productt---r--' outputs 

Duplex error 

Checker 

Figure 16.9. Duplex 

As soon as the outputs of the duplex and of the normal module are 
different, an error is signaled (by the error output). Of course, this vision is 
simplistic. On the one hand, the checker is assumed to be faultless; on the 
other hand, the real comparison of the outputs of complex products (for 
example of rnicro-controllers) has to include a synchronization of the pieces 
of data which do not occur at the same time. Moreover, the comparison of 
the two results provided by the modules is not so easy. For instance, if two 
programs provide numeric results of real type, then the acceptable 
calculation error has to be taken into account by the checker so as to judge 
the equivalence of the two results. Furthermore, we cannot accept a simple 
duplication of the product, since the two duplicates would risk having the 
same weakness (identical design faults or same sensitivity to perturbations, 
etc.), and provide the same erroneous outputs, and thus the faults would be 
undetectable! That is typically the case of the duplication of a piece of 
software affected by design faults. We must therefore carry out a different 
design both 'algorithrnically' and 'technologically' for the product on the 
one hand, and for its duplicate on the other hand. This aspect will be 
discussed again in Chapter 18, which presents fault tolerance mechanisms. 

We have seen in Chapter 15 (dealing with error detecting and correcting 
codes) that the duplex corresponds to a separable code (the two-raU code). 
That is not the only technique used. We can also employ the m-out-oJ-n 
codes. For instance, we can realize a self-testing sequential circuit from the 
coding of its internal states with the help of an m-out-oJ-n code. This system 
therefore possesses the property of outputting the code as soon as a 
unidirectional error (see Chapter 15) provokes a failure. Furthermore, once it 
has outputted this code, the system can no Ion ger return to this code. 
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Note. The term self-testing is often used with a completely different 
meaning to the one given here. Thus, a programmable logic controller is 
called self-testing by its manufacturer, as it possesses a button and a LED: if 
we press the button, the LED has to light up if the functioning is tested as 
correct. Sirnilarly, many ' self-tests' are used in many systems when they are 
switched on: an off-line test program is initiated in order to test certain 
treatment or memory functions (for example the central memory of a 
computer). This is certainly not a self-test, but an off-line testing technique 
of the type BIT, which was studied in Chapter 14. 

16.3.3.3 Error Detection Mechanisms: Self-Checking Checkers 

In a complex system like a computer, different redundancy techniques for 
the detection of errors are used in different modules of the structure. Thus, 
various error detection mechanisms, called here checkers, are implemented 
by circuits or programs, or both, as illustrated in Figure 16.10. 

Error#l Error#n 

Figure 16.10. Errordetection 

The different detection functions are rarely independent, since the 
observed modules are often interconnected. The global management of error 
detecting mechanisms is therefore complex in many cases. That is true for 
error det~ction circuits displaying error signals on a panel, like for example 
waming lights on the dashboard of a car, or error signaling panels in electro
nuc1ear power plants. It is also true for software technology, for example as a 
result of the propagation of exception mechanisms within the different layers 
of the hierarchy of programs (cf. section 2 of Chapter 14). 

Consequently, this additional functionality is also subjected to destructive 
mechanisms, and all the types of faults envisaged for the modules 
(functional, technological, aggression faults) can therefore affect it. We are 
thus led to the problem of testing these redundant parts, either off-line, or on
line. The problem of testing the error observation functions is generally 
complex. Indeed, they are not directly controllable; thus, the detection of 
faults altering an error detection circuit may require to artificially provoke 
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errors of the basic modules. 

Independent from the problem of testing detection systems, we must 
make sure that their complexity is reduced, for dependability and cost 
reasons. To address these issues and, in particular, to reduce the non-tested 
on-line parts of the complete product, self-checking checkers can be used. 
We will now briefly explain the principle of these mechanisms. 

Achecker observes a set of n variables belonging to an error detecting 
code, as for example a parity code, a duplex code, or even an m-out-oJ-n 
code. This module produces at its output an error signal as soon as the values 
of the input variables do not belong to the redundant code, for example the 
output is a bit which has the value '0' without error and which passes to '1' 
to signal an error. Very generally speaking, achecker is a code transJormer. 
It receives as input ln-bit words belonging to an n-bit input code Ch and 
sends to the output 0 rn-bit words (with m« n) belonging to an output code 
Co having at least 2 bits (see Figure 16.11). 

Observed 
detecting code 

Figure 16.11. Checker 

IA system is said to be code disjoint if: 

'Vle Ci~Oe Co, 

'VI~ Ci~O~ Co. 

And finally we obtain the final self-checking property. 

I Achecker is said to be self-checking with respect to a defined fault 
model F if it is code-dis joint and self-testing: 
'VJ e F 3 I e Ci : 0 ~ Co. 

This property allows us to guarantee that the faults of the checker are 
detected at the final output when the checked module function correctly. 
This assumes that all the words of the code Ci are effectively produced by 
this module. Of course, it is not possible at the output of the checker to know 
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whether an eITor is due to a fault affecting the module observed or a fault 
affecting the checker! 

We should note that, even if the tested module does not produce all 
codewords of the Ci code, the checker could have the self-testing property. 
Indeed, in many cases, such as the double-rail code or the parity code, a 
checker can be tested by small sub-sets of these codes. We will analyze this 
property in Exercise 16.4 and Exercise 16.5. 

Finally, if several checkers are used in a system, so as to observe the 
eITors made by different redundant modules, it is sometimes possible to 
observe the output codes of all these checkers with another checker. This 
additional checker is a code 'reducer' for the final output code signaling the 
eITor (see Figure 16.12). Thanks to this technique, we guarantee that each 
part of the checkers is tested on-line. 

Observed 
code #1 

Figure 16.12. Combination of checkers 

Thus, the part of the system which cannot be tested on-line (called the 
kerne I), is reduced to small circuits or software modules that will be 
periodically tested off-line. Numerous checker circuits have been proposed. 
In particular, we can mention the Carter's cells (from the name of a 
researcher at IBM who proposed them) which uses double-rail codes and 
which can connect themselves quite easily in the same way as XOR gates, 
by associativity. A study of SCC (for self-checking checker) for two-rail and 
parity coding is proposed in Exercise 16.4 and Exercise 16.5. 

From these basic principles, many variants have been proposed and used, 
but they will not be discussed here. 
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16.4 EXERCISES 

Exercise 16.1. Test 0/ a control system 

A regulation system is constituted of three interconnected regulators (R1, 
R2 and R3), each performing the regulation of a unit. A tester is linked to 
these three regulators in order to apply to them test sequences at the time of 
periods of inactivity (see Figure 16.2 and sub-section 16.2.1). We assume 
that R1 is stopped once a week during 1 hour, that R2 is at rest each morning 
from 6H to 6H30' , and that R3 can be interrupted 10 minutes every hour. 

1. Study the work of the tester, its needs in terms of actions on the 
regulators, and the periodicity of the average test of the equipment, by 
assurning that the sequences making the complete test of each regulator 
spend less than 6 minutes. 

2. What must we do if the test duration is increased to 15 minutes? 

3. Exarnine the problem of the management of the test of a regulator when 
the test activity is split into several elementary tasks Ti. 

Exercise 16.2. Duplex technique 

We consider the diagram of the duplex given by Figure 16.9. 

1. Draw up the inventory of the detected faults and of those that are not 
detected. In particular, study the influence of the checker on the on-line 
test property of the product. 

2. Comment on the following assertion: 

the duplex technique is 0/ no in te rest, since it divides 
the reliability 0/ the product by two. 

Exercise 16.3. On-line testing 0/ a half-adder 

Consider a half-adder wh ich provides the sum and carry functions: s = a 
Ei' b and c = a.b. This circuit was realized by logic gates according to the 
schema in Figure 16.13. We consider the 'stuck-at 0 and 1 of inputs and 
outputs of gates' fault model. 

1. Analyze the existing functional redundancies of this circuit. Deduce the 
on-line detection capability of this circuit. Discuss the limits of this 
property. 

2. Modify this circuit by adding an output noted p, to create a parity code. In 
this way, does it detect every single or multiple eITors of the complete 
circuit? Discuss the checker characteristics. 

3. Modify the previous circuit by using distinct (independent) logic circuits 
for each output. What improvements does this therefore bring? What 
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faults remain undetected on-line? 

4. Study the same thing with a duplex structure. Analyze every detected 
single or multiple faults and those that are not detected. Discuss the 
checker that is necessary for this structure. 

a--,--~ 

b ---t- T"-.,I s 

~--~--------- c 

Figure 16.13. Half-adder 

Exercise 16.4. Double-rail self-checking checker 

Achecker receives two groups of inputs al, az and b l , bz, and delivers 
two outputs Cl and Cz (cf. Figure 16. 14-a). Each pair of signals belongs to the 
double-rail code, i.e. it is defined by the correct configurations: {Ol, 1O}. 
The vectors 00 and 11 thus correspond to error signaling. 

We assume a classical single stuck-at fault model. 

CI C2 

a) checker 

CI C2 

b) internaI struclure 

Figure 16.14. Double-Rail self-checking checker 

1. Show that the logic structure in AND and OR gates proposed in Figure 
16.14-b is code-disjoint and self-testing. For the second property, we can 
use the method studied in Chapter 13 for the search of the faults covered 
by an input vector. 

2. Now we put together several of the previous cells in order to treat the 
double-rail codes of more than two pairs of bits. Study the conditions on 
the input vectors for which a network of cells has the property of being a 
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total self-checking checker. 

Exercise 16.5. Parity self-checking checker 

Achecker is intended to detect errors on an input parity code having 4 
bits, a, b, C and d (3 bits of data plus one parity bit); it delivers two outputsf 
and g coded with a l-out-of-2 code (01 and 10 are the codewords). We 
realize this checker with two XOR gates as shown in Figure 16.15. 

abc d 

Ml:~ 
Figure 16.15. Parity checker 

1. Is this circuit a self-checking checker? Give an example of a minimal 
sub-set of vectors of the parity code that ensures the self-testing property. 

2. Show that this circuit is no Ion ger self-testing if all the input vectors of 
the parity code are not applied. 

3. Does a permutation of the input variables (a, b, c, d) have an influence on 
the property of the previous question? 

Exercise 16.6. Softwarefunctional redundancy 

We consider a function inc1uded in the regulation system of a freezer. 
This function can only be called when the freezer is in astate 'freezing' . It 
receives two temperature values Min and Max, and returns an intermediate 
value obtained by an algorithm which is not considered here. 

Criticize the following solution in terms of on-line detection of faults. 

function Intermediate (Min, Max : in integer) 
return integer is 

I : integer; 
begin 

return I; 
calculation of I 

end Intermediatei 

Propose a better version. 
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Fail-Safe Systems 

In the first part (in Chapter 4), we have mentioned that the failures 
altering a product can be dispatched into several classes according to the 
seriousness of their impact on the system itself, on its user, and on its 
environment. The set of the four classes - benign, significant, serious and 
catastrophic - constitutes an example of such classification. In this chapter, 
we consider faults whose external consequences are dangerous, for example 
serious or catastrophic. Their analysis refers to the safety criterion. 

With fail-safe systems, failures are accepted as long as their external 
consequences are not dangerous. More precisely, the prob ability of the 
occurrence of such non-desired dangerous events must be smaller than a 
given acceptance level. Naturally, such acceptance level depends on the 
seriousness of the external consequences of the failures. Hence, we introduce 
the notion of risk. For example, the specifications of a critical project 
express that the risk of catastrophic failures must be smaller than 10-9. 

This approach refers to the fault tolerance approach, according to the 
analysis made in Chapter 6. However, we distinguish these techniques from 
the more sophisticated fault tolerance techniques presented in Chapter 18 for 
pedagogical reasons. Here, the product may produce a failure as long as it is 
not dangerous. Typically, the stopping of the product is supposed to be non
dangerous, if it is not a high criticality product such as an aircraft piloting 
system. Consequently, the implied redundancy is much smaller, and thus 
fail-safe techniques are often used in marketed products. 

Studies on fail-safe systems have been promoted in the 60' s by several 
professional institutions working for different critical applications, such as 
nuclear plants, terrestrial and air transportation systems. The main goal is to 
reduce the human los ses or injuries during accidents. The raised failures 
must not have dangerous effects. For example, it is acceptable that a traffic 
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light controller be permanently blocked in a (Red, Red) state, as this failure 
is supposed not to be dangerous. Naturally, this failure is not minor, as it 
involves a great deal of disruption of the traffic. However, the drivers will 
pay attention. On the contrary, a (Green, Green) failure is obviously 
dangerous. Let us note that the technical solutions to achieve the fail-safe 
goal may increase the complexity of the resulting products, thus increasing 
the failure probability, and reducing the global reliability. 

In section 17.1, we will consider the relations existing between the risk 
notion and the safety parameter. Then, in section 17.2 we will analyze the 
main techniques allowing the design and the realization offail-safe systems. 

17.1 RISK AND SAFETY 

17.1.1 Seriousness Classes 

Failures altering the behavior of a product are grouped together m 
seriousness classes according to the seriousness of their consequences: 

• on the product itself (which can, for example, be destroyed or not), 

• on the environment (the user). 

When dealing with the consequences on the user, these seriousness 
classes can be based on a quantitative evaluation. For example, the number 
of casualties of road accidents: no effect (0 casualties), individual (1 
casualty), at the level of a group (from 2 to 10 casualties), at the level of a 
state (from 11 to 1000 casualties), at the level of a population (more than 
1000 casualties). The effects are thus quantified. 

The definition of the classes can also be based on a qualitative evaluation 
of the effects. For example, the DO-178B standard for the civil aeronautics 
defines 5 classes: 

a. catastrophic, or disastrous, leading to human lives loss, 

b. dangerous, or serious, leading to a small number of casualties and/or 
serious injuries of passengers and members of the crew, or preventing 
the crew from achieving its task in a precise and complete manner, 

c. major, or signijicant, leading to injuries of the passengers and members 
of the crew and reducing the efficiency of the crew, 

d. minor, or benign, leading to upset of the passengers and a small increase 
of the workload of the crew, 

e. without effects. 
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These same categories can also be defined from a functional point of 
view, according to the degradation level of the functions of the aircraft: 

a. catastrophic, when the flight cannot be continued, or the landing is 
impossible, 

b. dangerous, when the reduction of the functions of the aircraft do not 
allow anormal achievement of the flight, 

c. major, when a significant reduction of the functionality of the aircraft is 
induced by the failure, 

d. minor, when the failure provokes only a partial reduction of the 
functions of the aircraft, 

e. without effects. 

The placement of a failure in a dass is adecision involving numerous 
criteria. Thus, a same failure of a product can be considered as dangerous or 
catastrophic according to the application using this product. For example, the 
stopping of the unique engine of a commercial aircraft is considered as 
catastrophic because this failure generally leads to the death of the 
passengers and the crewmembers. The same failure could considered as 
major in the case of an airfighter, because the pilot can be ejected from the 
aircraft. Aeronautics examples mayaiso show that the assignment of a 
failure to a seriousness dass can depend on the operational phase during 
which the failure occurs: the breakdown of the engine when the aircraft has 
landed or is parked is a minor failure. 

17.1.2 Risk and Safety Classes 

At the beginning of the 20th century, the breakdown of the engine of an 
aircraft had the same tragic consequences as today. However, the risk of this 
faHure, that is to say its occurrence probability was much greater. 

For each event, and in particular for each failure, one can estimate its 
occurrence probability . Then, we define several dasses according to several 
value domains of this event probability. For example: 

• an event is probable if its occurrence probability is greater than 10-5, 

• an event is rare if its occurrence probability is within the interval (10-7, 

10-\ 

• an event is extremely rare if its occurrence probability is within the 
interval (10-9, 10-7), 

• an event is extremely improbable if its occurrence probability is smaller 
than 10-9 • 
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This measure grid is arbitrary. For example, the probable interval can be 
divided into two sub-intervals: frequent (probability > 10'3) and reasonably 
probable (prob ability is within the interval (10'5, 10'\ On the contrary, other 
measurements group together rare and extremely rare in a class of 
probability bel on ging to 10,9 and 10'5. Events with a probability smaller than 
10,9 are frequently qualified as impossible. 

The example of the first aircrafts illustrates another important aspect: the 
notion of risk acceptability. Indeed, the occurrence probability of a 
catastrophic event during a flight was more important than it is nowadays. 
This situation was however accepted by the pilots and the passengers ! 

We call acceptable risk rate the accepted maximum probability value of 
the failures belonging to a given seriousness class. The term tolerable 
probability is also used instead. For example, we only accept a risk lower 
than 10'7 of having a serious accident for a given transportation system. 

Hence, we define safety classes by associating the fai/ure seriousness 
with the acceptable risk rate. The resulting data define the safety 
requirement imposed on an industrial project: which risk level is acceptable 
for a given failure type. For example, the DO-178B avionics standard 
imposes the following values for the seriousness classes: 

• the probability of minor failures can be probable, e.g. greater than 10'5, 

• the probability of major failures must be at least rare, e.g. between 10,7 
and 10'5, 

• the probability of dangerous failures must be at least extremely rare, e.g. 
between 10,9 and 10'7, 

• the probability of catastrophic failures must be extremely improbable, 
e.g. lower than 10'9. 

Let us note that a maximal accepted value is not a value to be necessarily 
reached! For example, it is positive if a major failure has areal occurrence 
probability of 10.8• 

It should also be noted that these standards result from a tradeoff between 
the safety aim and the technologie al possibilities offered at a given time. 
Consequently, these standards evolve according to the continuous evolution 
of the technology: thus, the limits of accepted risks in our modern societies 
are constantly pushed away according to the technology which makes it 
possible to satisfy more and more safety requirements. The considerable 
evolution of the safety requirements in aeronautical industry during the last 
century is a significant example of this positive changing. Figure 17.1 shows 
the steps of the risk acceptability. In order to take the continuous aspects of 
the acceptability notion into account, a curve is extrapolated. This curve is 
called acceptability curve. 



17. Fail-Safe Systems 

Seriousness 

catastrophic 

dangerous 

ma.jor 

minor 

00 effects 

10.9 10-7 

Non-Acceptable 
Risk 

10.5 

Occu"ence 
Probability 

Figure 17.1. Risk acceptability 
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A product is qualitied as acceptable product according to safety 
requirements if and only if the coordinates of all identified failures belong to 
the domain located above the acceptability curve. In particular, this figure 
shows that the risk of a failure is acceptable even if its seriousness is high, 
provided that its occurrence probability is sufficiently low. 

This acceptability notion is often established by reference to natural risks. 
We hence evaluate the seriousness of an event by the number of casualties. 
The occurrence probability is estimated in terms of mean value of the 
casualty number caused by such event in a given duration. For example, here 
are some natural risks analyzed on a 100-year period. The resulting 
seriousness corresponds to the average number of dead persons and the 
probability is the average number of cases observed during this period: 

• avalanches and landslides (400 to 4 000 deaths, 6.74 cases per century), 

• floods (200 to 900 000 deaths, 37.3 cases), 

• typhoons and cyc10nes (137 to 250 000 deaths, 37.5 cases), 

• earthquakes (5 to 700 000 deaths, 330 cases), 

• volcanoes eruptions (1 to 28 000 deaths, 2 500 cases). 

The specialists analyze experimental data of natural risks, or risks 
induced by humans, and they calculate min-max intervals of probability for a 
given situation: for example, a person or a population faced with a disease, 
an industrial site faced with the falling of a meteorite, a flooding or an 
earthquake, a spatial mission faced with the action of radiation or heavy 
ions, etc. The criticality analysis tools introduced in the next sub-section, 
allow evaluating the probability-seriousness relationship associated with the 
failures of a product. 
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17.1.3 Fail-Safe Systems 

We have just defined the notions of acceptability and non-acceptability 
domains associated with failures: for example, a catastrophic failure must 
have a probability lower than 10-9. Now, it is important to answer the 
following question: 

Does a given structured system resulting from a given design process and 
using given hardware and software technologies belong to the acceptable 
domain or, on the contrary, does it correspond to a non-acceptable risk? 

Several criticality analysis methods allow to estimate the risks associated 
with a system, or to compare two systems implementing the same 
specifications. These methods belong to the two different approaches already 
introduced in Chapter 7: the qualitative analysis and the quantitative 
analysis. One of the most popular techniques in numerous industrial 
application fields is the Failure Modes and Effects and Criticality Analysis 
(FMECA). This technique extends the FMEA (see section 10 of Chapter 7), 
taking the probability of occurrence of faults of components into account. 
Thus, the effects of these internal faults are propagated into the structure to 
deduce the product failures and their probability . Then, these results must be 
compared with the acceptable risks defined by the safety classes. 

In numerous practical cases, the safety requirements cannot be satisfied 
in spite of the use of safe design methods. So we ask the following question: 

How to realize a system or how to improve the design of a 
system, in order to comply with the safety requirements? 

The more serious the failures are, the more important the prevention and 
the removal (fault detection and fault extraction) means involved during the 
creation and manufacturing stages of the life cycle are. However, in spite of 
these efforts, errors may occur during the operational stage. The reasons are 
twofold: the impossibility to eliminate all design/production faults, and, in 
the case of hardware technology, the occurrence of new faults at any time 
during the operation stage (according to reliability laws). We will see in 
Chapter 18 how to tolerate their occurrence, that is to say, to continue to 
offer the expected service in spite of faults. The mechanisms used to perform 
fault tolerance are however very complex, and their implementation is 
sometimes not acceptable for economical reasons, but also, paradoxically, 
for safety reasons! Indeed, these complex mechanisms involve new kinds of 
faults. When the tolerance mechanisms cannot be implemented, the client 
accepts the occurrence of failures, but only failures having a low seriousness. 
So, the main goal is to reduce as much as possible the prob ability of 
occurrence of dangerous or catastrophic failures. Fail-safe systems answer 
this need. 
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The methods introduced in the following section aim at mastering the 
fault effects in order to bring the system in an erroneous state whose 
consequences are as minor as possible. 

17.2 FAlL-SAFE TECHNIQUES 

Safety requirements can be handled by two different approaches: 

• the intrinsic safety based on particular characteristics of the technology 
used, 

• the safety design by use of structural redundancy. 

These two aspects will be respectively examined in sub-sections 17.2.1 
and 17.2.2. 

17.2.1 Intrinsic Safety 

Intrinsic safety of a product is obtained by constraining the development 
with technological solutions which are known to be safe. These solutions 
essentially exploit physical properties. The intrinsic safety notion is attached 
to numerous domestic products. A simple example is given by electric plugs 
wh ich are protected from direct contact with the fingers of children. In the 
same way, the electrical products have different plugs, according to the 
electrical power characteristics: alternative or continuous current, low or 
high voltage, etc. Some restrictions are included in the specifications, 
depending on the nature of the inputs and outputs of the product, but also its 
behavior and its robustness to environmental aggressions. For instance, all 
electrical domestic equipment such as oven, microwave, toaster, fridge, etc. 
must comply with official security (anti-shocks) standards. Behavioral 
limitations are illustrated by a microwave oven that should not be able to 
function when its door is opened. 

This intrinsic approach covers various solutions which are particular to 
each product. So, no general guidelines will be presented. We will only 
introduce three quite different examples of intrinsic safety, in order to 
understand this approach and to encourage its using. 

Example 17.1. Railway Switches 

Everyone has observed the curious shape of the manual switches used to 
guide the train on a railway track: they are made of a long stick supporting a 
heavy mass. This is an example of intrinsic safety: the weight of the mass is 
supposed to prevent any wrong manipulation due to a dog, a child or the 
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effects of the wind. 

Example 17.2. Anti-explosion standards 

A lot of industrial processes make use of explosive products (gas or 
liquids). The anti-explosion standards which are defined for physico
chemical processes guarantee that the energy used by the electric systems 
(e.g. a controller) is not higher than a critical threshold above which 
explosion risks exist, for example lOOmW. The design of control systems for 
such processes must integrate this constraint. Consequently, we can be 
obliged to forbid any electrical components and to use pneumatic circuits 
instead. This example illustrates constraints on realization means which are 
defined at specification time. 

Example 17.3. Safety of a Robot 

The robots designed to work in interaction with humans pose important 
safety problems. For example, a cleaning robot must not shock people 
present in the room where this robot is working. A robot operating in a 
workshop must not hurt the human operators. These safety problems towards 
human beings involve the robot itself (the mechanical and electrical parts) 
and its control (task supervision, trajectory generation, control, etc.). 
Concerning the robot itself, technological solutions exist in order to 
guarantee the safety: no use of dangerous tools, limitation of the motion 
speed, and limitation of the weight. If the robot is equipped with an joined 
arm, the choice of the muscles and the energy used to activate them is of 
great importance: thus, a pneumatic flexible muscle may prove to be less 
dangerous than a jack or an stepping electrical motor. To caricature, a light 
robot made of rubber would not be dangerous at all. 

These intrinsic safety means are said to be passive safety techniques. The 
passive approach does not suppress the failures, but it makes them safer. 

Quite different and complementary solutions can be proposed to give 
safety attribute to a robot. They use active safety techniques at the level of 
the control system: use of danger detection sensors, obstacle avoidance 
algorithms, alarm signals provoking the stopping of the robot in case of 
danger. The active approach aims at mastering the effects of faults, in order 
to avoid their extern al dangerous consequences: 

• use of redundant inputs to supervise the product behavior, looking at the 
functional environment state, and/or 

• use of redundant functions to handle numerous erroneous situations. 

This approach based on redundancy technique will be developed in the 
next sub-section. 



17. Fail-Safe Systems 459 

17.2.2 Safety by StructuraI Redundancy 

17.2.2.1 . Principles 

Safety by structural redundancy concerns the design stage: structural 
redundancy techniques are used in order to reduce the occurrence probability 
of failures considered as dangerous. The safety by structural redundancy 
techniques tries to master the dangerous failures and to neutralize them. For 
example, when an error occurs in a system, it rapidly evolves towards a 
special state such that all the primary outputs are equal to zero (typically this 
can mean: all output signals are switched off). Such astate is frequently 
judged as not dangerous to the user (outside world), as the product is 
inactive. 

Functional 
Uni verse 

~.l......I" Normal domain 

~;-... Safe domain 

...,.--I~ Dangerous domain 

Figure 17.2. Fail-safe principles 

Safety by structural redundancy is close to the fault tolerance techniques 
presented in Chapter 18. However, the handled problem is not expressed in 
the same terms. The general principles of fail-safe systems are illustrated by 
Figure 17.2. There is no obligation to maintain the delivered service. As we 
said before, failures can occur as long as the functioning remains in a safe 
domain. Failures leading the functioning in a dangerous domain must have 
a probability lower than a pre-defined value. Hence, we consider this 
approach as a step towards the fault tolerance approach. 

Now we will analyze two simple but significant examples, in order to 
illustrate the fail-safe problems and solutions. The first example is a traffic 
light controller implemented with hardware technology, and the second one 
is a car engine controller implemented with software technology. 

Example 17.4. Traffic light controller 

Let us consider a traffic light controller regulating a two-way crossroad 
(roads A and B), as illustrated in Figure 17.3. The controller sends out two 
signals to two three-color light systems. This control is expressed here in the 
form of a two-variable vector (A, B), each variable taking one of the three 
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values (Green G - fellow f - Red R): the output (G, R) means that the lights 
of the road A are green and those of the road B are red. 

Figure 17.3. Traffk light controller 

The output static uni verse of the controller has 9 vectors represented in 
Figure 17.4 (two independent 3-state variables). The normal static domain is 
made of 5 of these vectors corresponding to a simple evolution (we do not 
include the (f, Y) state in this normal domain). The other output vectors 
correspond to failures. However, we suppose that the vector (G, G) is the 
only dangerous failure, because of an evident risk of accidents. The 
occurrence of this failure is not an acadernic case; it has been observed in the 
case of real electro-mechanical and electronic controllers. The other failures 
such that one light is green while the second one is yellow have no 
dangerous consequences, assurning that the car drivers are cautious when 
they see the yellows signals, reducing the prob ability of accidents and also 
their seriousness. 

Normal 
domain 4---f.....f-{ 

Safe 
domain 

'-_~ Statie 
Universe 

~~-.Danger 

Figure 17.4. Functional domain 

In order to take the safety requirements into account, it is necessary to 
design a controller that cannot provoke the dangerous failure, that is the state 
(green, green) . We will make some assumptions to simplify this problem. 
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We assurne that the normal evolution cycle of the controller comprises 6 
states, according to the state diagram of Figure 17.5. Thus, the controller is a 
synchronous sequential system using a clock signal (Clk) which rhythms its 
evolutions. We also suppose that every output configuration different from 
(G, G) is 'safe'. The controller is supposed to be implemented as an 
electronic circuit, and we make the classical fault assumption of a single 
'stuck-at 0/1 ' fault of the inputs and outputs of gates and flip-flops. Input Clk 
is supposed to be faultless. 

3 

4 

Figure 17.5. State diagram of the controller 

Taking these hypotheses into account, we propose the following steps to 
design the controller as a fail-safe logical circuit: 

• the 6 internal states are coded by means of a 2-out-of-4 coding according 
to the state table of Figure 17.6, each internal variable being materialized 
by a synchronous D Flip-Flop; 

• each internal variable Yi, which is connected to the D input of the Di flip
flop, is realized as an independent SIGMA-PI logical structure using no 
inverters (this structure is said to be 'monotonie'); 

• each output variable R, G, Y going to one of the two light systems is also 
realized as an independent monotonie structure with AND and OR gates. 

Present state 
Y 1234 
1 11 00 
2 1010 
3 1001 
4 011 0 
5 0101 
6 0011 

Nextstate 
y 1234 

1010 
1001 
0110 
0101 
0011 
1100 

State Register ...-------, 

Cl 

Figure 17.6. Fail-Safe design of the controller 
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Exercise 17.1 enters more into the details of this design method and 
proposes the analysis of the influence of the faults on the behavior of the 
circuit. We will only expose here the main results issued from this study. 

Each single fault altering the sequential part (comprising the AND and 
OR gates and the D flip-flops) is transformed into an error that provokes an 
exit of the 2-out-of-4 code. If the number of bits '1' of the state register is 
smaHer than 2, then at the next clock tiek the internal state goes to the weH 
state (0000), and the R, Y, G primary outputs are set to '0': hence all the 
lights are switched off, situation supposed not to be dangerous. On the 
contrary, if the number of bits '1' of the internal register is higher than 2, at 
the next clock tick this state will evolve towards the state (1111) whieh is 
also a weH safe state. Then, the output signals are aH switched on, and we 
suppose again that this situation is not dangerous (the car drivers will be 
alerted that something wrong has occurred, or we can suppose that the 
amplifier electronie circuit inside the light system will no drive any light in 
that case). 

FinaHy, any single fault altering one independent monotonie circuit 
generating the primary outputs will be activated as no light 'on' or several 
lights 'on'. 

Example 17.5. Fuel injection controller 

We consider a software application whieh manages the engine of a car: 
fuel injection, spark ignition, etc. We assume that the normal control of the 
engine is processed after an initial phase named Start_Engine. If the initial 
phase fails, the normal treatments of the cycle must be aborted. The fuel 
injection must be stopped, in order to avoid a dangerous failure. Indeed, if 
the engine does not run while fuel is injected, then a hot engine can explode! 
To avoid the occurrence of this failure, erroneous events occurring during 
the initial phase must absolutely be detected and handled. The reaction will 
be the stopping of the injection function. Consequently, the product fails, but 
the failure is not dangerous. To guarantee the error handling, we will use an 
exception mechanism. 

The exception mechanism offered by some programming languages has 
already be presented. It allows errors to be detected and signaled. When an 
error is raised at run-time, the erroneous component execution is stopped and 
resumed on an exception handler. 

Here is an illustration of an exception handler associated with a 
procedure called Start_Engine: 

procedure Start_Engine is 
begin 

body 
exception 
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exception handler 
end Start_Enginej 
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Thus, this mechanism introduces a structural redundancy. The normal 
treatment (body) is separated from the treatment processed in reaction to an 
error (exception handler). 

In terms of safety, this solution is preferable to the use of an error 
parameter as illustrated by the following specification: 

procedure Start_Engine(Error: out Error_Type}j 

Indeed, this solution requires that the calling subprogram checks the 
value of the retumed parameter. If this checking is omitted, the program 
execution may lead to a dangerous failure, as illustrated by the following 
extract: 

Start_Engine(Error_Status}j 
Increase_Fuel_Injectionj 

Moreover, without exception mechanism provoking an automatie and 
immediate branching to a specific treatment, the disruption of the normal 
execution of the program must be explicitly introduced. Such a specific 
design is illustrated by the following program extract: 

procedure Start_Engine (Error: out Error_Type) is 
begin 

if Conditionl 
then Error:= Failure_In_Electrical_Supplierj 
else ... 

if Condition2 
then Error:=Injection_Failedj 
else 

end if; 
end ifj 

end Start_Enginej 

The resulting complexity is increased by the use of nested i f structures 
to take various considered errors into account. This increases the risk of 
design faults and thus of failures. 

Thanks to exception handlers, treatments leading the system or its 
functional environment to a safe state can be written. For example, the new 
state is assigned and the jacks of the controlled process are closed 
(environment). Then, the exception is propagated to provoke the same 
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reaction mechanism in the calling sub-program. Such a situation is illustrated 
by the following pro gram: 

procedure Start_Engine is 
begin 

exception 
when Error => Shut_Down_Fuel_Injection; 

Engine_State := Stopped; 
raise Error; 

end Start_Engine; 

17.2.2.2 Fail-Silent and Fail-Fast Systems 

By definition, fail-safe systems must not raise dangerous failures. One 
should note that what is considered as a dangerous behavior is a relative 
notion that depends on the application domain. In many cases, the specialists 
consider a 'passive state' as not dangerous: the product stays inactive or 
silent. Tbis kind of fail-safe system is calledfail-silent system orfail-passive 
system. This safe state suits weIl to control applications for which manual 
recovery mechanisms exist. For example, the failure of an automatic flight 
control can be recovered by a switch back to a manual control conducted by 
the human pilot. It is important that the automatic system does not continue 
to act on the actuators of the aircraft. The fact of forcing a failing system to 
enter an inactive state avoids further degradations of its environment. 

The example of the traffic light controller which evolves towards a 'all 0' 
safe state is another example of fail-silent system. Hence, car drivers will use 
the crossroad as if no light control were available. 

On the contrary, in other cases, a degraded minimal service is required in 
case of failure. For a pressurization system of the cabin of an aircraft, it is 
necessary to guarantee that no passenger will be injured and that the flight 
will pursue to its destination. Oxygen masks are therefore provided to the 
passengers. In the case of a failing traffic light controller, one might require 
that both light systems be in a blinking yellow state. It would hence be more 
expensive to achieve this goal. 

The time necessary to reach a non-dangerous state such as a silent state, 
or to start a minimum service, is also an important attribute of fail-safe 
systems. When the detection of an error (erroneous state) is performed, the 
system can produce non-desired transient interactions before reaching the 
safe state. The specifications of fail-fast systems integrate a maximal 
duration to reach the safe sate. 

Tbe use of the exception propagation mechanism (see section 2 of 
Chapter 14) allows answering this fail-fast need. Indeed, this mechanism can 
automatically propagate the error signaling from the subprogram where this 
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error occurred and was detected towards the main pro gram through the 
calling chain. This approach is advised by the standard ISO 15942 when Ada 
language is used. 

17.2.3 Self-Testing Systems and Fail-Safe Systems 

Similar redundancy techniques are used, on the one hand, to increase the 
safety, and on the other hand, to detect errors on-line during the system 
operation (self-testing property examined in Chapter 16). However, the goals 
of these two approaches are quite different. Figure 17.7 compares these two 
approaches, showing their similarities and their differences. 

Self-teltiag systems I Fall-safe systems 

Fm/ure 

U (Ulldloaal univene 
ND normal domaln [ ND (l ED = 0) 
ED erroneous domaln 

[NDVED~SD ) 

Figure 17.7. Comparison between fail-safe and self-testing systems 

1) For a self-testing system, the two functioning domains, the normal 
functioning domain (ND) and the erroneous functioning domain (ED) , 
must be disjoined in order to allow the detection of errors: ND n ED = <p. 

2) For a fai/-safe system, these two domains are not necessarily disjoined, 
but they must be included in the non-dangerous or safe domain (SD): 
ND uEDk;SD. 

Hence, any self-testing system is also fail-safe if: ND u ED k; SD. 

We deduce from this remark that the design of fail-safe system frequently 
makes use of methods coming from the self-testing field. This is the case 
with the use of m-out-of-n or double raU coding. 

Such a technique has been used to design the fail-safe circuit of the 
traffic light controller; we coded the internal states with a 2-out-of-4 code. 
The resulting circuit is then both faU-safe and self-testing. In case of error, 
the circuit evolves towards safe states (all 0 or all 1). Moreover, the circuit is 
self-testing, as the final safe states do not belong to the 2-out-of-4 
codewords. The detection can lead to a later repairing. 
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17.2.4 Fail-Safe Applications 

In this sub-section we present briefly some simplified but significant 
illustrations of design choices involved in up-to-date fail-safe systems. 

17.2.4.1 Automotive Systems 

Example 17.6. Engine control and air cooling systems 

Let us first consider again a system controlling the engine of a car. It is 
implemented by means of a single processor executing a software 
constituted of several tasks managing, in particular, the ignition of the 
sparks, the regulation of the slow running of the engine, and some functions 
of the air conditioning of the cabin. The spark ignition task is activated with 
aperiod which varies according to the speed of the engine. So, the higher is 
the speed (number of rotations per minute), the more frequently the injection 
task is executed, and hence, the more it makes use of the processor. Let us 
note that the choice of a single processor to implement these tasks is typical 
of this application domain and results from strong financial constraints. 

The engine can be rotating at a high speed for short durations. This is the 
case when the driver accelerates to perform a fast overtaking. In order to 
face this brutal acceleration, the designer can chose between several 
solutions. A first solution is to continue the execution of all the tasks, 
according to a circular execution: the time slice allowed to each task is fixed; 
the ignition task will be activated every N microsecond. Thus, the speed of 
the engine reaches a maximum speed which is not due to the mechanical 
resources but due to the software control system. On the contrary, if we 
decide to momentarily suspend the other tasks, the engine speed can increase 
rapidly because the processor is used only for this activity. This second 
choice corresponds to the design of a fail-safe product. Indeed, the product 
has a failure, as the task performing the air conditioning has been suspended 
during the acceleration time. However, this situation is acceptable, whereas 
the first solution, which limits the engine acceleration, is dangerous. 

Example 17.7. Fail-silent ABS System 

Antilock Braking Systems are fail-safe. Any error in the electrical system 
is detected, and the control unit is switched to a safe 'off' mode, allowing the 
conventional hydraulic brakes to be used. Such a system is Jail-silent. To 
satisfy these safety requirements, a redundant duplex technique is generally 
used. Two ABS units run in parallel and, when the slave unit disagrees with 
the master unit, an interrupt lead the whole system in the safe off mode. Let 
us note again that the fail-safe demand does not require fault tolerance 
techniques to be implemented. 
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17.2.4.2 Avionics System 

Let us consider a system embedded in an aircraft. It aims at helping the 
pilot during the landing phase of the flight. Let us suppose, that the software 
integrated in this product has a function which calculates a variable X from 
the knowledge of the altitude of the aircraft: 

x := Y * Altitude; 

This variable X is used by approach equipment. 
When the value of the variable Altitude becomes very important, the 

multiplication operation may provoke an overflow. This situation is signaled 
to the software by an exception rising (Constraint_Error in Ada) if the 
language used offers such a mechanism. The exception handling can consist 
in assigning to X the highest possible value, and to resurne the treatment. So, 
the actual behavior is equivalent to: 

X := Float'last; 

This design has led to a failure, as the value given to X is wrong. 
However, as the landing system is not being used when the aircraft is at high 
altitude, this failure can be acceptable: the value of X is wrong but the 
consequence is 'rninor' or 'no effect'. Here also, we made a fail-safe design. 

On the contrary, another design choice rnight have propagated the 
exception till reaching the task which is then stopped (no specific exception 
handler as x : = Float' last;). This solution could unnecessarily alarm 
the pilot, for example by switching on a panel light indicating that the 
landing function has been stopped. It could also be dangerous to other tasks 
calling for the stopped task. 

The worse solution would have been to do nothing. Then, the overflow 
could assign to X a random value corresponding unfortunately to a ground 
approach, leading to a catastrophic faHure. For example, the landing flaps 
could be opened, or worse, the inversion of the engine may be started. 

17.3 EXERCISES 

Exercise 17.1. Traffic light controller 

Consider the traffic light controller presented in Example 17.4. 

1. Verify that the 2-out-of-4 coding allows to code the 5 internal states of 
the state graph. 

2. Continue the coding of these states in order to obtain the logical 
expressions controlling the D inputs of the state synchronous D-flip
flops. 
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3. Verify that every single stuck-at fault leads the circuit into one ofthe two 
'safe' internal states: 'all flip-flops at 0' or 'all flip-flops at l' . Verify also 
that these two states are states from which one cannot exit. 

4. What is the influence of a fault affecting the Clock? 

5. Start the preceding study again with another coding of the internal states, 
for example a l-out-of-n coding. 

Exercise 17.2. Mathematical function processing 

The development of a 'real-time application requires to design a task 
which calculates a value Y from a value X. This ca1culation must be realized 
by a fail-safe program with regard to the following error: 

'the deadline of the task is reached' . 

Traditionally, the implementation of mathematical functions (Y = j(X)) 
can be made according to two different approaches: 

• the analytical approach which produces a result Y from the input value X, 
after a certain duration D, 

• the approach by successive approximations which ca1culates Y by means 
of the series Yn = j(Yn-1> X). 

Compare these two approaches. 
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FauIt-Tolerant Systems 

With this chapter dedicated to fault tolerance, we reach the term of our 
exploration of dependability techniques. All protective fault tolerance 
mechanisms are defined and implemented during the creation stages of the 
life cyc1e, but their action is effective during the operational stage. They aim 
at guaranteeing the continuity of the service delivered by the product in spite 
of the presence or the occurrence of faults. 

18.1 INTRODUCTION 

18.1.1 Aims 

A product must assure its mission in a given environment. The fault 
prevention and fault removal techniques allow to increase the reliability 
(reducing the probability of fault occurrence), or the availability in case of 
repairable systems (by detect-and-repair mechanisms). The safety criterion 
led us to ex amine the techniques related to on-line testing and fail-safe 
design. Now, we want to provide the designed product with the highest 
dependability properties by integrating mechanisms which allow the full 
continuation of the mission despite the presence of faults. In the best cases, 
these mechanisms guarantee the continuity of the delivered service without 
any reduction of the performances. In other cases, a possible degradation of 
the performances of the delivered service is accepted. The fail-safe systems 
constitute extreme situations. The fault tolerance techniques have a direct 
positive impact on the safety, reliability and availability criteria. 

We insist again on the fact that one must not oppose the fault avoidance 
(prevention and removal) and the fault tolerance techniques. They have 
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complementary objectives and they are all necessary. For instance, the effort 
necessary to remove faults during the design process is more important if the 
prevention means have been neglected. In the same way, the efficiency of 
the fault tolerance means is based on some fault hypotheses such as the 
'single fault assumption' . Hence, the use of fault avoidance techniques 
during the creation stages is a necessary condition. 

18.1.2 From Error Detection Towards Fault Tolerance 

The on-line error detection mechanisms presented in Chapter 16 are 
based on the use of redundancy: 

• redundancy of the function, such as the duplex technique with the 
comparison of the results provided by the two duplicates in order to 
detect the occurrence of errors, 

• redundancy of data representation with the typical use of error detecting 
codes, 

• redundancy of both function and data when the checking of the data 
depends on the function, such as the case of likelihood checking. 

These three situations are illustrated by Figure 18.1, Figure 18.2, and 
Figure 18.3. 

o Error 

Figure 18.1. Redundancy of the function 

Figure 18.2. Redundancy ofthe data 
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Figure 18.3. Redundancy of function & data 

Redundancy is used again in order to implement fault tolerance 
mechanisms. Three main approaches can be considered. 

First, structural redundancy can be used to increase the number of 
duplicates of the function to implement. All these duplicate modules treat in 
parallel the input values and produce output values; the final output value of 
this structure is the one which is the most frequently given by the duplicate 
modules. This technique called N-Versions is symbolized in Figure 18.4. It 
will be developed in section 18.2, and we will show that this technique does 
not require any error detection mechanism. 

Figure 18.4. N-version 

The second approach consists in executing again the same function after 
its first execution has reached an erroneous state. This technique called 
backward recovery is illustrated by Figure 18.5; it will be presented in 
section 18.3. It makes use of temporal redundancy, as the execution of the 
function is resumed from a recorded previous state. 

I : ______ F ~ Check ~I 
.L I Error . 

Figure 18.5. Backward recovery 
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The third possibility implies structural redundancy like the first approach, 
but here a second version is executed only if an error has been detected 
during the execution of the first version. This approach, called forward 
recovery (illustrated by Figure 18.6) will be explained in section 18.4. 

Figure 18.6. Forward recovery 

So, sections 18.2, 18.3 and 18.4 respectively analyze these three groups 
of techniques. In particular, the implementation problems are discussed. 
Then, these three different approaches are compared in section 18.5. This 
comparison deals first with theoretical aspects: general structure of the 
system, nature of the redundancy involved, etc. Secondly, the three 
approaches are compared according to some criteria: efficiency to tolerate 
fault elasses, extra-cost, mission duration. This analysis will allow to choose 
the most appropriate solution to a given application context. Frequently, the 
simultaneous use of several complementary techniques is necessary, in order 
to satisfy the set of requirements given by the specifications. 

The practical use of these techniques often interferes with the design 
choices. For example, at which level of a hierarchical design must a 
tolerance mechanism be implemented: elose to the technological 
components, or at the level of the system architecture? Moreover, the use of 
these techniques impacts the development process itself, making, for 
example, more complex the test of redundant system. These important points 
are considered in section 18.6. Finally, the fault-tolerant techniques are 
illustrated by several examples in section 18.7. 

18.2 N-VERSIONS 

18.2.1 Principles 

The principle of the N-Versions technique is to simultaneously execute 
several sampies, or versions, of a same functional module. If these vers ions 
have also the same implementation, they are called duplicates or replicas. 
The results calculated by these versions are then compared in order to 
produce the final result considered as correct. A typical example of this 
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technique is the 3-Versions, or TMR (Tripie Modular Redundancy), also 
called Triplex . This fault tolerance mechanism has been employed in some 
high critical applications such as spatial missions since the 70' s. As shown in 
Figure 18.7, the product is constituted of three vers ions or modules 
functionally identical, and a voter which elaborates the final output from the 
three outputs of these modules. Any single or multiple functional or 
technological fault wh ich produces errors altering the functioning of only 
one module is tolerated, as it has no influence on the final output. 

The voter is supposed to be fault-free: its faults cannot be tolerated. For 
example, if this voter is implemented as an electronic circuit, any 'stuck-at' 
fault of its output signal may produce a failure of the product. 

Inputs 

Figure 18.7. TMR or 3-version structure 

So, the TMR makes use of passive redundancy (cf. Chapter 8) to mask 
the failure of one module thanks to the other modules (error masking). This 
approach is said to be a compensation technique, as the failure of one 
version is compensated by the contribution of the other versions. 

This basic TMR structure has been generalized to the case of structured 
products. In that case, the TMR technique is not applied to the complete 
system, but to each individual module. This approach is easier and more 
efficient, but the local voting is more complex to manage. 

18.2.2 Realization of the Duplicates and the Voter 

If the fault to be tolerated is due to ageing phenomena, then it seems 
sufficient to use three strictly identical modules to implement the 3-versions. 
However, it is a wrong approach when identical stress (the environmental 
conditions are very similar) can lead to simultaneous faults on two or even 
three modules (hence, producing a violation of the basic hypothesis). More 
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generally , many faults, called common mode faults, can provoke 
simultaneous errors or failures of the redundant modules. 

To tolerate design faults, either in the case of hardware or software 
technology, the different versions must absolutely be developed by 
independent design teams. Moreover, these independent development 
processes must be constrained by different design mIes: for example, the 
algorithms and programming languages used to implement a software 
function must be different, or the technologies or means used to develop an 
integrated circuit must be different. Indeed, the used tools can have faults, or 
else the human developers can have the same scientific culture leading to 
identical faults. 

Let us now consider the voter. This function must perform two 
operations: acquire the values Zj produced by the different versions, and give 
the final correct output value of the redundant system. 

First of all, the acquisition, by the voter, of the three values Zj coming 
from the duplicates implies some intelligence from the voter. Indeed, the use 
of distinct algorithms and technologies in each version Mi implies different 
response times from these duplicates. Hence, the voter must manage the 
synchronization of the received Zj values. This voter must also detect the 
occurrence of a blocking of a module that will never provide any result. This 
situation arises, for example, when the program implementing a version Mi 
executes an infinite loop due to a fault. 

When the values given by the outputs Zj belong to a finite domain, then 
the determination 0/ the final output value Z generally implies a majority 
vote: a value produced at least twice is considered as correct. On the 
contrary, if the Zj values belong to real numbers, the algorithm used to 
ca1culate the final output is more complex. Indeed, different but elose values, 
such as '14.31', '14.30', and '14.32', can be considered as correct, even if 
they are not strictly identical. The results provided by the different versions 
can be analyzed: ca1culation of their distance to the average value, in order 
to eliminate possible incoherent values. 

This complexity of the functions realized by the voter can also be 
encountered in the case of discrete values. For example, if the output values 
are 'colors' coded by integers from 0 to 65 535, one can consider that the 
values '271', '273' et '274', respectively provided by 3 versions, define the 
same color because of different algorithms used to ca1culate them. 

Thus, the election, by the voter, of the correct result requires an analysis 
which is proper to each application: it is a 'context dependent solution'. We 
have noted that it is not always possible to simply elect the value appearing 
twice or more, as this situation may never occur. The easy solution 
consisting in providing an average value of the given Zj, is generally not 
acceptable; it must be proven that this value is significant. For the preceding 
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example, one of the received values, and not the average value, could be 
retained as a final result. Indeed, Zl + Zz + Z3 = 271+273+274 = 818 cannot 
be divided by 3. Hence, 273, wh ich is closer to the median value, may be 
adequate. 

18.2.3 Performance Analysis 

18.2.3.1 Quantitative Analysis 

The TMR is taken again as a reference example of the N-Versions 
technique. We assume that all the versions (modules MI, M2 and M3) are 
identical and have no design faults . The TMR is then used to cope with 
ageing faults. Their reliability is only influenced by technological problems 
and supposed to follows simple exponential law. The voter is supposed to 
have a failure probability much lower than the failure probability of each 
version. Moreover, we assume that the technological implementations of the 
three modules are different, in order to reduce the probability of having 
multiple similar faults. We should mention that these remarks have already 
been formulated when dealing with the self-testing duplex structure. Now, if 
we add the hypothesis that the three modules have exponential reliability 
laws R(t) with identical failure rates, 1.., then the resulting reliability law of 
the global system is given by the expression: 

RTMR(t) = 3 R(t)2 - 2 R(t)3 = 3e ·21..1 _ 2e -31..1. 

This result is obtained thanks to the reliability block diagram method 
examined in Chapter 7 and applied to redundant structures. Annex B 
analyzes the reliability of some significant redundant structures. 
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Figure 18.8. ReJiability efficiency of the TMR 
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The reliability curve is drawn in Figure 18.8, for A = 10.4 . We observe 
that for t = 0, the tangent is horizontal. Hence, the reliability of a TMR is 
better than the reliability of one module as far as the du ration of the mission 
is smaller than approximately t <7 500H, corresponding to the intersection 
between the two curves, that is R(t) >= 0.5. For missions having a duration 
greater than this critical value, the one-module has a better reliability than 
the TMR. The ca1culations show that the MTTR of the TMR is only 5/6 of 
the MTTR of one module. 

18.2.3.2 Qualitative Analysis 

The main drawback of this technique is the impossibility to know the 
internal state of the system from the outside. This is said to be a 'bunker' 
structure. Indeed, an external ob server cannot decide if one of the modules 
fails or not. As one of the negative consequences, the production or the 
maintenance testing of a TMR structure is not easy. 

The TMR uses a passive masking technique; this does not reduce the 
occurrence of faults. As the global complexity is approximately multiplied 
by 3, the number of faults is also multiplied by 3. For long duration mission, 
it has been shown that passive approaches are not efficient, because of the 
risk of fault accumulation along the mission, and consequently the risk of 
provoking the violation of the basic hypothesis: only one module has a 
failure at a given time t. Thus, much more efficient active techniques have 
been developed instead. 

18.3 BACKWARD RECOVERY 

18.3.1 Principles and Use 

The principle of the backward recovery technique is to resurne the 
execution of a module M after an error has been detected by the checking of 
its output variables. This technique is represented by Figure 18.9. Thus, in 
case of error, we return to the past of the system, to start again its execution 
from a safe previous state. A trivial example of such a recovery is the reset 
of the module before resuming its functioning. 

M~~k~ 
I Error 

Figure 18.9. Backward recovery 
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The main difficulty of the backward recovery implementation comes 
from the choice and the management of these safe states called recovery 
points (also called retry points or rollback points). These states must be 
saved when they are reached, to be restored latter, when an error occurs. We 
analyze the saving and restoring mechanisms in sub-section 18.3.3. 

One typical application of backward recovery technique deals with the 
tolerance of transient faults in electronic circuits. The transient fault 
occurring at the first execution is supposed to have disappeared at the second 
execution. For example, a simple reset, when possible, can be sufficient to 
resurne the proper function of such a product subjected to transient faults. 

This technique has been adapted to the software technology as retry 
mode. It is mainly used to tolerate transient faults on parameter values: the 
procedure P is executed a second time after the acquisition of new values of 
the parameters, given by actuators or provided by the user. 
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Figure 18.10. Retry mode 

The implementation of this technique is not as easier as it seems to be at 
first. Indeed, the first execution of P can have affected some elements of the 
context, others than the parameters, as for example the global variables. In 
that case, it is absolutely necessary to also save these variables before any re
execution of the procedure P. Thus, we must save all altered variables with 
the parameters for their ulterior restoring. Let us consider as an example a 
procedure P calling several sub-programs belonging to a package (or a 
library). The execution of these sub-programs during a first execution of P 
can have modified the local variables of this package (or this library). We 
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are then obliged to restore their initial values before a second execution of P. 
The means described in the next sub-section are dedicated to the 
management (save and restore operations) of this state of the 'context'. 

Figure 18.10 illustrates the principles of this tolerance technique. 
Procedure P is the module that must be made fault-tolerant, Check is the 
error detection function, also caBed acceptance test, and R is the component 
in charge of the recovery operations (save and restore). Exercise 18.6 
proposes the study of an example of fault-tolerant acquisition program using 
this technique. 

18.3.2 Recovery Cache 

Backward recovery requires the implementation of saving and restoring 
mechanisms of the execution context. One of the most popular techniques is 
named recovery cache. After an error has been detected, this mechanism 
allows the previous stored context to be restored. A context is defined as the 
system execution state at a given time. In practice, it is implemented: 

• by a set of values of the variables, the instruction pointer and the stack 
pointers for software products, 

• by the states of the physical devices for hardware products. 

Several recovery cache strategies exist to store and give back the state of 
the recovery points. Two of them will be illustrated hereafter on software 
technology even if their principles are more general. 
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Figure 18.11. First backward recovery implementation 

In aB cases, the context data are copied from the main memory (i.e. the 
variables used without fault tolerance mechanism) in a cache which is a 
specially allocated memory part. This copy is labeled by (1) in Figure 18.11 
and Figure 18.12. We will analyze in sec ti on 18.3.3 at which instants this 
saving operation is performed, that is, the choice of the recovery points. 
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First strategy 
The assignment of the variables is done in the main memory during 

normal processing, as shown by are (2) in Figure 18.11. When an error is 
detected (3), the values stored in the cache are transferred to the main 
memory (4) to restore the previous context. 

Second strategy 
Another possibility consists in adopting a symmetrical strategy. During 

execution, the new values of the assigned variables are temporarily stored in 
the cache (2). If an error is detected (3), the main memory already contains 
the initial values. So no actions are necessary to restore the initial context. 
On the contrary, if the execution is successful (4), the memory must be 
updated (5). 
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Figure 18.12. Second backward recovery implementation 

The advantage of the second technique is that it only modifies the values 
in the main memory if there are no errors. Thus, there is no degradation 
(even temporary) of the integrity of the data during execution. However, the 
first technique is quicker if no erroneous states are reached, because it does 
not require updating at end of execution. 

18.3.3 Recovery Points 

18.3.3.1 Context Saving 

It is generally not easy to choose the recovery points at which the 
contexts will be saved. 

• This choice can be independent, both from the function executed by the 
system, and from the structure of this system. This is the case, for 
example, when aperiodie saving of the current state of the system is 
performed. Für a program, we make what is called a snapshot üf the 
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memory. This image will then be restored if an error occurs before the 
end of the pre-defined period. 

• The recovery points can also characterize the important states of the 
system. Hence, the recovery of these states only requires the storage of 
some characteristic data. 

If the first solution is easier to implement, it is certainly the less efficient. 
Thus, during a long duration with a small activity of the system, numerous 
save operations will be made whereas most of the values have probably not 
been changed. On the contrary, the system can evolve through numerous 
states during aperiod separating two save operations. This situation occurs 
during traffic peaks implied by fast evolution of the environment of the 
system. In such a case, the restoring of the saved context will bring back the 
system in astate far from the state reached when an error has been detected. 
In many applications, critical phases are specified, for which the recovery 
must lead the system in astate elose to the one reached before an error 
appeared. A periodic save operation cannot satisfy this requirement if the 
period is too long. If the period is too short, this technique is untractable, 
because the system overhead to perform the save operations is too important. 
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Figure 18.13. Frame nesting and recovery points 

Moreover, the management of the memory used for context saving at 
recovery points is generally not lirnited to the assignment of a static memory 
area and the substitution of the old values by the new ones. More complex 
mechanisms must frequently be implemented. This is the case for software 
using nested frames (subprograms, blocks, etc.). Thus, the hierarchical 
structure of the programs influences the recovery technique implementation. 
If the recovery point denoted Point 1 exists in a first frame (see Figure 
18.13), and if this frame calls a second frame which defines its own recovery 
point Point 2, then, when exiting the second frame, the recovery context of 
the calling frame must be restored (Point 1). This obviously requires a stack 
mechanism to manage the recovery caches. 
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18.3.3.2 Context Restoration 

Sometimes, the mechanism used to restore the context is much more 
complex than a simple copy back of the values saved at the last recovery 
point. Such a situation arises, for instance, in real-time applications 
implemented by several tasks or processes. Let us consider the example 
shown in Figure 18.14. It represents from left to right the evolution of the 
execution of three processes: PI, P2 and P3. A character 'X' signals the 
moment when the cOITesponding process context is saved. The vertical 
dotted lines specify the communication or synchronization times between 
two processes. 

P3--~~---M--------~~------__ ~ 
(5) 

Present time 
X : recovery point I : communication or synchronization 

Figure 18.14. Domino effect 

If an eITor occurs at 'present time' during P3 process execution, then the 
context of this process execution must be recovered in (1). As a 
communication or synchronization SI occurred during the time intervals 
[(1), present time] between process P3 and process P2, the resumption of P3 
requires to go backward through process P2 to its last recovery point (2) 
before time (1). Process P2 handled a communication or a synchronization 
with PI (S2), so the backward movement in P2 must generate a backward 
movement in PI to the recovery point (3). This implies backward movement 
of P2 to (4) (due to S3) and then backward movement of P3 to (5) due to S4. 

This phenomenon is called domino effeet. Mechanisms have been 
proposed to handle this phenomenon. We will not present them here, as this 
book does not cover distributed systems. 
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18.4 FORWARD RECOVERY 

18.4.1 Principles 

The forward recovery technique consists in resuming the execution of the 
system in a new state after the detection of an error. This state is qualified as 
'new' if it has not already been reached during the past execution. The state 
of the system is characterized by the values of its inputs and outputs, and 
also its internal functioning state. Any never assigned value of one of these 
elements (inputs, outputs and internal state) leads to a new state. Two 
situations are often considered: 

• return to previous input values, but with new internal state of the system 
functioning (recovery blocks), 

• preservation of the current value of the outputs and evolution of the 
system functioning into a new internal state (termination mode). 

We will now study these two situations in the following two sub-sections. 

18.4.2 Recovery Blocks 

The recovery blocks technique makes use of a passive redundant module 
(or component) which is activated when an error is detected in the first 
module. This approach is illustrated in Figure 18.15. The thick gray arrows 
wh ich represent the data flow show that the redundant module Q starts its 
execution with the same data as P (the execution of which has been detected 
as erroneous). 

This technique requires a backward recovery of the input data, 
implemented, for example, by a recovery cache. However, globally, the 
recovery may be considered as forward because a new module is used; 
hence, the internal functioning state is new. If the implementation of the 
modules is made by a software technology, this new internal state will 
contain the address of the redundant subprogram (Q) that offers the same 
functionality as (P). 

We have just considered the case of a passive redundant module. In 
order to tolerate the occurrence of an error in this second module, it is 
necessary to use a third module, and so on. These spare modules are also 
called alternates. The word version is also used, but this word does not 
explicitly express that the executions are alternative (P then Q) and not 
simultaneous (P and Q). 

The technique of recovery blocks is generally considered as a backward 
recovery technique. This is true from a functional viewpoint of the system, 
or if a hardware implementation based on two identical components is made. 
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Indeed, in these two cases, P and Q are the same. On the contrary, software 
implementation of P and Q are generally different. This discussion 
highlights the limits of our general presentation. So, recovery blocks can be 
introduced conventionally as a backward recovery technique, signaling the 
particular case of software implementation. 
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Figure 18.15. Recovery blocks 

18.4.3 Termination Mode 

The termination mode technique consists in finishing the processing 
started by a first module (or component) P in which an error is detected. 
Figure 18.16 illustrates this technique. We see that Q achieves (or 
completes) the activity actually realized by P, without starting with new 
initial data but by using the current context. The data remains the same, as Q 
uses the outputs issued from P, but the internal state of the functioning is 
new, as Q replaces P. 

The termination mode is, for instance, implemented by the exception 
mechanism of the Ada language. P is the current treatment and Q is the 
exception handler: 

begin 
Pi 

exception 
when others=> Q; 
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end; 

When an error is detected in the execution of the P statement block, an 
exception is raised in order to signal this error. The processing is resumed by 
execution of Q. The values of the variables modified by P are preserved (no 
backward operation), while the instruction pointer has a new content (the 
memory address where Q starts). 

A second example of fault-tolerant mechanism based on the termination 
mode is given by the on-line use of error detecting and correcting codes. 
Indeed, the results produced by a module P are detected as erroneous by a 
code violation, but theyare exploited by a corrective function Q (program or 
circuit) in order to produce a correct final result. 

In these two different examples (Ada exceptions and EDCC), the 
treatment does not return into any previous state. In particular, the initial 
input values are not re-used to handle the error. Even if the chosen state used 
to resume the execution preserves the data obtained by the erroneous module 
(outputs of P), the internal execution state is new, branching to (Q). Thus, 
this technique is a forward recovery technique. 
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Figure 18.16. Termination mode 
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18.5 COMPARISON 

The developers can chose between numerous and varied tolerance 
techniques to design a specified high-dependable product. We must compare 
their similarities and their differences to help for a better choice. In practice, 
it will frequently be necessary to combine these techniques to deal with 
many different c1asses of faults that have to be tolerated. 

18.5.1 Similarities 

18.5.1.1 Redundancy 

All proposed fault tolerance techniques have an essential common 
feature: they are based on the use of redundancy. The dependability of a 
system evolves from 'fault detection' towards 'fault tolerance' by aglobai 
increase of its redundancy. In all cases, this added redundancy is however 
structural. 

The redundancy involved by the N-versions approach is passive, as the 
(N-l) replicates modules can be suppressed if no faults alter the first module. 

The forward recovery approach is also based on passive redundancy, as 
the new module (Q) to be executed in case of error in the first module (P) 
can also be suppressed as far as no error occurs. 

Another attribute characterizes the fault tolerance mechanisms: the 
presence or the absence of error detection means. The tolerance mechanisms 
that make use of an error detection action followed by a recovery of the error 
are qualified as active tolerance. On the contrary, if no error detection is 
explicitly needed, the tolerance is said to be passive. All techniques 
presented here, except the N-Versions, belong to active fault tolerance. 

18.5.1.2 Tolerance Mechanism Framework 

Even if each technique presented in the preceding sections seems 
specific, it belongs to a very general framework, which involves three 
synchronized stages: 

1. error detection, by on-line testing techniques previously studied, 

2. error diagnosis by localization of the failing module (determination of 
the state of the degradations caused by the fault just before the error 
detection), 

3. error recovery by the following sequence: 

~ protection against further propagation of the detected error by anti
contamination process, 
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~ then error correction and/or evolution towards a safe state, 

~ and finally reconfiguration, leading to resume the normal activity of 
the producl. 

In the case of the N-Versions technique, the two first steps do not exist 
since the error recovery is performed by compensation. The successive 
degradation of the modules during a mission can lead to a 2-version system 
which is no longer fault-tolerant. The introduction of error detection into the 
N-Versions structure, proposed hereafter (such as the NMR technique) will 
provide a useful knowledge of such degraded situation. 

In the two other techniques, the detection and the diagnosis are 
completed by a backward or forward recovery. It seems curious to use error 
diagnosis in the case of backward recovery since the corrective treatment 
starts from a previous state. However, the effects of the erroneous treatment 
must be corrected before returning to any previous state. For example, if a 
resource has been accessed but not released, this release must be done before 
the recovery process calls again for the resource; thus, we avoid a deadlock 
situation. 

Depending on the alternative treatment Q, the tolerance mechanism can 
either: 

• restore the entire ability of the product to deli ver its service, 

• or proceed to a progressive and graceful degradation of this service 
when the available resources are not Ion ger sufficient. 
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Figure 18.17. Reconfiguration process 



18. Fault-Tolerant Systems 487 

Figure 18.17 illustrates such general active reconfiguration process. 
InitiaHy in a faultless state (state I of the graph), the product is affected by a 
passive fault (state 2), and then this fault is activated as an error (state 3). 
This error is propagated by contamination in the product structure (state 4), 
until an integrated on-line testing mechanism detects one of the active errors 
(state 5). Then, the contaminated part of the product is isolated to block any 
further error propagation, and a rescue service is provided (state 6) until a 
correctionlrepair operation aHows to restore the initial capability of the 
product (statel). 

18.5.2 Differences 

The choice of a tolerance technique must take several criteria into 
account: the fault c1asses to be tolerated, the duration of the mission, the 
'know how' and the mastering level of the development team, and the 
impact of the technique on the development process. 

18.5.2.1 Faults to be Tolerated 

Each one of these techniques suits to the tolerance of some particular 
c1asses of faults. It is thus important to know which fault c1asses are most 
probable in a given project. 

Techniques based on the backward recovery are weH adapted to transient 
faults which have then disappeared when the module is executed again. Such 
approach is then not relevant to handle design faults. However, a particular 
case must be mentioned: applications very sensitive to values of parameters, 
which have a very low probability. For example, areal-time application can 
reach an error for some very particular configuration of its tasks. Such a 
situation can have a very low occurrence prob ability . For example, the error 
is reached when a temporal parameter has a precise value. For instance, to 
avoid such error, the time between the arrival into a internal state and the 
date of occurrence of an external event must not be between 0.07 ms and 
0.08 ms, knowing that this event occurrence date is always between 0.00 ms 
and 10.0 fOS. If these two dates are not correlated, the occurrence probability 
of this external event when the system has reached the specified state is 
1/1000. If this state is reached scarcely in a short duration mission, the 
occurrence prob ability of the error is low. In this case, a simple retry in a 
previous state has little chance to conduct again in the erroneous state. 

Forward recovery techniques are weH adapted to tolerate design faults, as 
another module replaces or completes the erroneous treatment. NaturaHy, the 
redundant module must have been developed by an independent design team 
with different realization constraints that prevent the introduction of identical 
faults in the various modules. If the recovery blocks are implemented with 
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two identical systems (P=Q), then no design faults are tolerated (cf. the 
analysis of the failure of Ariane 501 in Appendix D). The only faults to be 
effectively tolerated in that case should be those due to the ageing of the 
electronic components. However, the stress puts on the product can bring 
simultaneous faults of the hardware components used by the alternates P and 
Q, making thus again inefficient the fault tolerance mechanism. 

In the same way, the N-Versions technique does not tolerate design faults 
of identical versions, or common mode faults, such as simultaneous faults 
due to operational stress (temperature, etc.). The TMR makes the 
fundamental assumption that only one module can fail at the same time 
(single fault assumption). 

18.5.2.2 Acceptable Extra-Cost 

During the development stages 
The development of a fault-tolerant system is very expensive: choice of 

one or several specific techniques, design and verification of the system. 
We have shown that fault-tolerant systems involve redundant 

components. This implies quantitative extra-costs due to supplementary 
components. Qualitative difficulties are added to these quantitative aspects: 
for example, the realization of a fault-tolerant pro gram based on the 
termination mode is complex, as the primary program P detected as 
erroneous can be stopped at many different locations during its execution. 
Hence, the program Q that must achieve the task started by P must behave 
differently according to locations as weH as the nature of the detected error. 

The example of the termination mode also shows that the implementation 
of a fault tolerance technique influences the design choices. For example, if 
a program P deli vers a result, an iterative algorithm is more suitable than an 
analytical resolution to implement a termination mode. Indeed, if an error 
occurs in the first treatment (P), the approximated result can then be taken as 
input of the second treatment (Q) to produce the precise final value. On the 
contrary, analytical algorithms generaHy produce no intermediate results that 
can be properly exploited by a second algorithm. 

The development of fault-tolerant applications requires also designing the 
elements which are associated with the chosen technique: the voter for the 
N-Versions, the recovery cache mechanism, the recovery point management 
for the backward recovery, etc. 

FinaHy, extra-costs and difficulties are added to verify the redundant 
system. Two problems are encountered: the testing of the elements (versions, 
etc.) of the application, and the testing of the fault tolerance mechanism. The 
first difficulty is illustrated by the test (design, as weH as production or 
maintenance test) of TMR structures whose failures of the modules are 
masked. Consequently, a fault may exist in one of the three versions, which 
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cannot be detected at the outputs of the system, because of the fault-tolerant 
mechanism. In such a situation, the product is accepted, whereas it will not 
tolerate the occurrence of a second fault on another version. In fact, the 
compensation mechanism does not use any error detection techniques. 

The second difficulty concems the fault tolerance mechanism testing. 
This difficulty can, for instance, be due to the necessity to activate faults in 
order to test the error detection means. Of course, the product is designed to 
prevent faults, so more complex methods and devices have to be used, such 
as the fault injection techniques which artificially add faults. 

During the fabrication and the operation of the product 

Extra-costs are also implied by the fabrication of a fault-tolerant product. 
For example, each sampie of an electronic product implementing a TMR 
technique will cost at least three times the cost of a basic component. In the 
same way, every fault-tolerant software requires more memory space to be 
embedded and executed. 

The overhead due to the fault tolerance mechanisms can be expressed in 
terms of supplementary execution time (CPU time), or necessary increase of 
CPU performances to treat these mechanisms. We have noticed the 
complexity, hence the duration, of the implementation of the context save 
and restore procedures involved by the backward recovery techniques. When 
time constraints belong to the specifications, and when faster components 
(such as CPU) cannot be used for technological or economical reasons, the 
redundant modules must realize approximated calculus. The recovered 
function is hence degraded. The N-versions seems to be the more efficient 
technique since a11 versions are active. N processors are then necessary for 
efficient concurrent executions. This efficiency is to be paid by an extra-cost 
in terms of electronic components (redundant processors). 

The economical aspects of the fault tolerance are not to be neglected. 
There are domains where quite expensive redundant solutions are accepted 
(military, avionics, spatial). Will they be always accepted? In other cases, 
where cost reduction is essential, only simple solutions can be envisaged. 
For example, the re-initialization of a system and the re-starting of the whole 
processing is a cmde but cheap implementation of the retry mode technique. 
Obviously, such a technique treats the transient fault c1asses (due to parasitic 
interference, or a rare blocking situation). Methods and technology choices 
always result from trade-off between economical constraints and 
dependability performance. 

18.5.2.3 Mastering tbe Development and Mission Duration 

The designer must know that the complexity of the fault tolerance means 
can introduce new faults. This complexity is due to the fault tolerance 
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mechanism itself, but also to its impact on the design process. This last point 
will be considered in section 18.6. 

In fact, the faults handled by the tolerance mechanism and the faults due 
to the complexity of the implementation are coupled. For example, the use of 
the N-versions technique by inexperienced development teams is not 
advised: -the increase of the global complexity of the system (versions, voter 
and integration of the modules and the voter) can bring new faults added to 
those of the versions. On the contrary, the use of identical electronic boards 
in order to tolerate transient and localized hardware faults (on one board 
only) is efficient if it results from a weIl-rnastered manufacturing process. 

The duration of the mission must also be taken into account to choose a 
technique. For long duration missions, it has been shown that the TMR 
approach is inefficient because the progressive accumulation of faults can 
invalidate the fundamental single failing module assumption. 

By the way, let us again stress on the fact that fault tolerance mechanisms 
do not prevent fault occurrence during the operational stage. On the contrary, 
in the case of the TMR, the probability of faults is about three times greater 
(the complexity is three times greater). Also, the occurrence of errors at the 
output of the modules is not reduced; masking technique only prevents final 
output errors, i.e., failure occurrence. 

The development of redundant components simpler that the original ones 
is frequently justified by this need to minimize the fault risk as weIl as by the 
need to reduce the execution times. For instance, the alternate module in a 
recovery block technique will offer a degraded but safe service. This 
approach is weIl known by tennis players who take less risk during their 
second service ball. 

18.5.3 Use of Multiple Techniques 

Practically speaking, different techniques are often combined together to 
implement a fault tolerance strategy. For example, if transient faults are the 
most probable faults altering an electronic component, a backward recovery 
technique is interesting. It can be completed by an approach based on 
forward recovery to treat the case when several successive trials fail. We will 
mention some other examples. 

18.5.3.1 An Extension of the TMR: the NMR 

The voter implemented in the N-versions approach has to determine the 
correct result from the outputs given by the versions. Frequently, this 
function could also be exploited to reveal the incorrect results given by the 
versions, thus detecting their bad functioning. In the case of a majority vote, 
all results different from the majority of the produced results are considered 
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as false. When the values produced by the versions belong to a 'dense' 
domain, the conclusion is not so obvious. We have already mentioned that 
the 3 values 14.0, 14.1 and 14.2, although different, can be considered as 
correct if the acceptable calculation uncertainty is 0.2. 

Let us now consider a TMR. We add to this structure adeteetion deviee 
which compares the outputs z}, Z2 et Z3, two by two, and signals an error as 
soon as a difference is detected (see Figure 18.18). 

The logical function performed by this detection block is: 

error = (z) $ Z2) + (z) $ Z3) + (Z2 Ei' Z3) ($ is the XOR operator) 
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Figure 18.18. Improvement of the TMR: error detection 

Still continuing to deliver a correet final output, this system is able to 
signal any error of one module. We have thus given to the TMR passive 
redundant structure an on-line testing property. Moreover, it is now easy to 
localize the erroneous module (this will be studied in Exercise 18.3). 

We finally reach the NMR (N-Modular Redundancy) by adding several 
spare modules, and areconfiguration mechanism which neutralizes the 
failing module and replaces it by a spare module. Hence, we have combined 
the TMR with a recovery block. Figure 18.19 shows the principle of this 
structure: three modules MI, M2, M3, are active (they participate to the 
vote), while (n-3) modules are waiting. When the detection circuit observes 
an error, the failing module is identified, and a recovery procedure excludes 
it, for instance by switching its power off, and aetivates one of the spare 
modules that now participates to the vote. Reliability and availability 
calculus show that the NMR is better than the basic TMR. 
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Numerous variations and extensions have been imagined from this basic 
scheme. In particular, some of these modifications concern the functioning 
mode of the spare modules. When dealing with electronic components, the 
best solution would be to keep the spare modules inactivated or cold 
standby; these spare modules should be stored outside the product, in good 
environmental conditions (temperature, protection against aggressions) in 
order to preserve a better reliability than the one of the active modules. This 
idea is not always excellent because when a spare module has to replace a 
failing one, it is necessary to insert it and to initialize it by restoring the 
reached context (cf. recovery points and recovery cache sections). For 
systems implementing software, this operation is relatively long, the 
resulting delivered service being slowed down. 
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Figure 18.19. NMR 

In many present systems, the cold standby technique has been improved 
by the use of hot swap modules. The faulty module can be replaced in-line, 
without switching off the power of the system. The new inserted module is 
rapidly and automatically initialized. 

In more critical applications, one often prefers solutions using hot 
standby modules. In this case, the redundant modules get the current 
evolution of the context. The electronic components are powered on and 
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they receive and treat the input signals; however, they do not participate in 
the final vote. When an error recovery occurs, any spare module is in the 
same state (flip-flops, registers, variables, etc.) as an active module; hence, it 
can easily be switched as an active participant of the vote (by a simple 
electrical switch) without any initialization procedure. 

This approach is used by a lot of recent modular, flexible and efficient 
techniques, offering fault-tolerant systems using active redundancy with 
reconfiguration. The possibility to integrate continuous or discontinuous on
line testing mechanisms inside the modules lead to numerous redundant 
architectures based on vote and switch operations: double-duplex, 2-out-o/-4, 
3-out-o/-4, etc. 

18.5.3.2 Structure with Adaptive Vote 

The structure with adaptive vote is a particular case of the N-Version 
technique. When an error occurs at the output of one module, this module is 
switched off, the vote function being now performed on the (n-l) remaining 
modules. This degradation process is continued as far as there are still at 
least three functioning modules. 

This idea has been adapted to various techniques such as the selj-purging, 
the Shift-Out, etc. The selj-purging technique is explored by Exercise 18.5. 

One can also implement such an idea in the case of distributed tasks on a 
computer network. Other combinations of techniques will be presented in 
section 18.7. 

18.6 IMPACT ON THE DESIGN 

The high complexity of the design of the mechanisms necessary to 
implementing fault tolerance techniques has already been signaled several 
times. Unfortunately, difficulties encountered during the development of a 
fault-tolerant system are not restricted to specific problems relevant to these 
techniques. Other difficulties result from architectural choices. Without 
entering the details of such problems, we would like to illustrate one of these 
aspects: the choice between confinement and error propagation. 

Let us consider a system' s component introduced during a design step. If 
an error is detected during the execution of this component, two actions can 
be envisaged: 

• the error is locally handled: the error is confined into the component, 

• the error is communicated to the 'parent component', that is to say the 
component who used the erroneous component: the error is then 
propagated. 
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The aim of the confinement is to avoid: 

• collateral effects on the other components introduced at the same design 
level that the erroneous component, 

• parent effects on the components belonging to higher hierarchical levels 
(parent, grand-parent, etc.), 

• effects on the resources used be the components, such as the hardware 
(microprocessor and memory) and the software elements (operating 
system). 

By avoiding this error contamination, we try to avoid the failure of the 
global system. 

Confinement of the effects of faults/errors on the resources is a more and 
more important need, as recent systems use a same plate-form to execute 
several various functions of one application. Formerly, a natural confinement 
resulted from the fact that each function was executed on an independent 
plate-form. This new situation is for example encountered in embedded 
avionics systems: the 1ntegrated Modular Avionics concept. 

Confinement means must prevent: 

• direct contamination, 

• indirect contamination. 

As example of direct contamination, an erroneous task T2 assigns a 
wrong value to a variable shared with another task Tl. Indirect 
contamination is illustrated by a task T2 that enters an endless loop because 
of an error and does not release the processor, causing a schedule failure of 
another task Tl (starvation phenomenon). 

Different and independent of the confinement mechanism, the error 
propagation mechanism aims at signaling an error occurrence. This 
propagation is justified if the erroneous state has been reached, not because 
of the component itself, but because of its external environment, or because 
of the other components of the system. For example, a subprogram can 
behave incorrecdy because of the way it is used: incorrect values of the 
calling parameters, inadequacy of the state at the calling time, etc. For 
example, the call to a Pop function applied to an empty stack cannot be 
correctly treated by this function. However, the caller is not necessarily 
informed of this situation if this empty state is an internal attribute. The Pop 
subprogram detects an error of which it is not responsible. Consequently, 
this pro gram must propagate this error. 

On the contrary, if a call to a Push subprogram is made when the stack is 
full, two design choices can be made: 

• error confinement by increasing the stack size in order to be able to store 
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the value passed to the Push program as a parameter; we then consider 
that the fault is due to a bad estimation of the stack size necessary to the 
execution; 

• error propagation by signaling the impossibility to execute the function; 
the fault is then attributed to the component using the stack. 

Frequently, these two possibilities are simultaneously used: the 
component detecting an error makes a part of the error recovery, while 
communieating the error to the user component for complementary actions. 
For example, if the component is a subprogram, its partial execution before 
the error detection can have modified some local or global variables; hence, 
these variables must be restored to their initial values before the signaling of 
the error to the calling program which will make other actions. 

Whatever the choiee, adecision must be taken by the designer. The 
worse case would be: 

• not to explicitly signal an error which is not fully treated in the 
component having detected it, 

• not to perceive from the outside an error signaled by a component. 

In the events chain that caused the destruction of the first Ariane V 
launch, this last situation occurred. The two implicated components are the 
Inertial Reference System (in charge of the determination of the rocket 
position according to the vertieality) and the On-Board Computer (whieh 
controls the evolution of the launcher: engines, etc.). A same parameter 
shared between these two components could be interpreted as flight data or 
diagnosis data (an error identifier). When the failure of the first computer of 
the Inertial Reference System was detected, the second computer took over 
(Recovery Blocks technique). This second computer reached rapidly the 
same erroneous state. This alternate signaled then this error to the On-Board 
Computer which interpreted this information as a flight data, provoking the 
rocket swiveling. In this example, the communication of an error not 
handled, caused an error contamination. 

The implementation of tolerance mechanisms requires to explicitly 
separate the expression of a correct execution of a module and the signaling 
of an error. Thus, in the case of a pro gram, an error parameter, even distinct 
from the normal output data returned to the calling routine, can be ignored or 
misunderstood by this calling routine. On the contrary, the propagation of an 
exception will interrupt the normal execution control flow by an automatie 
branching to the exception handler. 
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18.7 SOME APPLICATION DOMAINS 

In this section, we briefly present some fault-tolerant applications, in 
order to illustrate the techniques introduced in the preceding sections. We 
also point out that numerous combinations and variations of the basic 
techniques can be used. 

18.7.1 Watchdog and Reset 

At first, we consider an industrial electrical power distribution control 
system. Several control units (boards) are connected through a CAN Bus, as 
shown in Figure 18.20. The Master Control (MC) Board, connected to the 
process, activates a watchdog every 500 ms, sending it a signal. If this 
operation is not performed, the watchdog provokes areset of the board (re
initialization of the internal registers, the pro gram counter, the IIO interface 
and the CAN bus circuitry). This example illustrates a retry mode technique 
applied to the MC board by using a deadline detection mechanism. Very 
simple, this technique allows escaping from blocking situations due to 
transient faults (e.g. extern al perturbations or exceptional conflicts to the Bus 
access). 

This basic mechanism can be extended to other boards of the network 
which must periodically answer identification requests emitted on the Can 
Bus by a supervision module. These simple techniques belong to detection 
and correction mechanisms implemented in this medium-criticality 
application. 

Figure /8.20. Use of a watchdog 

18.7.2 Avionics Systems 

The electrical flight control system of the Airbus A320 tolerates faults 
using two techniques called N-selJ Checking and Double-Duplex. These fault 
tolerance approaches jointly use techniques previously introduced. 
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The specification of the system is used to produce several versions 
created by different design teams. All the versions are embedded and are 
executed, but the spares are only used if an error is detected. Bach version or 
group of versions is self-checked, that is it possesses an acceptance test to 
check the result. Two implementations will be now exarnined: N-SelJ 
Checking, and Double-Duplex. 

18.7.2.1 N-Self Checking 

For the N-Self Checking, the N versions are executed in parallel, but the 
N results are not compared. If an error is detected by the acceptance test of 
the first version (V1 in Figure 18.21), then the result of the version is not 
accepted. Therefore, the conclusion of the check (AT2) of the second version 
(V2) is considered, etc. So, each version is self-checked and the first correct 
result is supplied. 

This solution combines the advantages of: 

• the N-Versions, as the actual parallelism of the version computation saves 
time, particularly when one or several versions run erroneously, 

• the Recovery Blocks, as the detection of the failed version makes 
maintenance easier. For instance, the identification of the erroneous 
hardware subsystem is memorized and this subsystem can irnmediately 
be changed after the aircraft landing. 

Figure 18.21. N-Self-Checking 

18.7.2.2 Double-Duplex 

Double-Duplex structure provides another rnixing of tolerance 
techniques. To avoid complex self-checking, couples of versions are 
considered. The results of 2 versions are compared. If the results of the first 
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couple are different, they are not considered, and those of the following 2 
versions are examined. Figure 18.22 represents such a structure. 

The simultaneous running of the N-Vers ions saves time. The comparison 
of the results of 2 versions makes the check of the results easy. The second 
version may be simpler than the first version and provide an approximated 
result. Then, the checker examines the coherence between the two results, 
and not their strict equality. This corresponds to a likelihood technique. The 
final result is naturally taken from the first version. 

The switching to the second couple uses the Recovery Blocks principle. 
This avoids the implementation of a complex voter required by an 
N-Versions technique. 

Double-Duplex structure has a drawback: we know that at least one of 
the versions of the couple detected as erroneous fails. However, additional 
test must be applied to obtain its identity: the first, the second or both? 

I ...---_ ..... _--.,. ......... . 

Figure 18.22. Double-Duplex 

18.7.3 Data Storage 

From the beginning of the Computer Science, detection and correction 
mechanisms have been introduced in the computers in order to compensate 
the reliability weaknesses of the technology. This has been especially the 
case for the main memory, then for the mass memory. lliM began to use 
error-correcting codes in the lliM 7030 (Stretch) computer with a modified 
Hamming SEC/DED (Single Error Correcting, Double Error Detecting, code 
presented in Chapter 15) for main memory. Besides, various redundant 
techniques have been used in other units of this computer: parity checking 
for registers, modulo-3 residue check for floating point arithmetic unit, 



18. Fault-Tolerant Systems 499 

parity codes for tape recording, and SECIDEC codes for disk. 
Mastering of faults of main memory and mass memory reveals quite 

different problems, as the used technologies are also quite different. 
Consequently, the proposed solutions are also original. 

18.7.3.1 Main Memory 

Nowadays, Random Access Memories use semiconductor integrated 
circuits (Static or Dynamic RAMs). These circuits can be affected by two 
main classes of technological faults : 

• permanent faults qualified as hard faults, such as a 'stuck-at l' fault of a 
memory cell, 

• temporary faults qualified as soft faults, such as a discharge of a memory 
cell due to an alpha particle which enters the chip. 
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Figure 18.23. Main memory EDC 

The use of error detecting and correcting codes like the Hamming 
modified code to code the data stored in the memory allows the on-line 
detection and the correction of certain errors. The general structure of such 
an on-line detection and correction structure is illustrated by Figure 18.23. 
For example, any single error due to a 'hard' or a 'soft' fault is corrected. 
This correction mechanism is based on a forward recovery because it does 
not use the incoming data value (k bit word); the correct value is elaborated 
from the current output value (k+r bit word). A simple example of such code 
is proposed in Exercise 18.8. 

The differences between 'hard' and 'soft' fault can be exploited, in order 
to increase the fault tolerance of this memory. For this purpose, we add a 
memory management unit (EDC Unit) aiming at coding, decoding, detecting 
and correcting. Moreover, this unit brings another functionality (Figure 
18.24). Besides the classical detection/correction function, each time a word 
is detected wrong, the unit checks if the detected error results from a 'hard' 
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or a 'soft' fault. This is obtained by re-writing in the memory the corrected 
word: if a new read gives again an error, it implies that it was a hard fault 
wh ich is signaled at the error logging output, else, the word has been 
corrected. 

These scrubbing operations are conducted off-line, without any penalty 
in the normal relations between the memory and the external units (CPU, 
Direct Memory Access etc.). Specific integrated circuits are proposed by 
various IC manufacturers to interface the main memory and to manage 
errors. 

.... Error EDC .... ... ... :-CPU 

... Memory 
Unit ::: ... .. 

~ 
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.... 
" Data Bus .. 

~ Control Bus: 

Figure 18.24. Main memory error management unit 

18.7.3.2 Mass Memory: Introduction 

All mass storage devices, magnetic - optical - or magneto-optical, use 
redundant EDC codes for on-line carrection of certain dasses of errors. The 
faults that can affect such media are not exactly the same as those occurring 
in main memories. Thus, a new fault dass leads to read erroneous words that 
were however correctly recorded. These random problems are due to the 
access technology, such as, for example, imprecision of the positioning of 
the flying heads above the tracks of a magnetic disko Consequently, in 
addition to EDC-ECC codes, a retry technique is used: when uncorrectable 
read errors are detected, the word is read again several consecutive times (for 
example ten times). We should note that this repetition is a cause of the 
slowing down of the read access times of some mass memory units having 
bad quality disks. 

Error detecting and correcting mechanisms must be located as dose as 
possible to the disk drive (in the external controller or entirely within the 
disk drive), in order to eliminate the need far delay in the case of errors and 
thereby to improve the system performance. Thus, no penalty is put on the 
communications between the disks and the DMAC (Direct Memory Access 
Controller). 

Independently from the previous EDC code implementation, one can also 
duplicate storage units on distributed storage systems for high dependability 



18. Fault-Tolerant Systems 501 

applications. An example of such redundant approach is the RAID 
(Redundant Array of Independent Disks) technique, which is presently very 
much used by many computer system and network manufacturers. Berkeley 
University has developed this technique wh ich offers several safety levels. 

18.7.3.3 CRC for Disc Drive 

Disk drive is also subject to errors during read and write operations. The 
errors can be induced by random noise, correlated noise, media defects, 
mechanical non-linear phenomena, and other causes. The purpose of error
correction is to improve the integrity and the recoverability of data. 

Burst-correcting code are appropriate to master such problems. Codes 
that are frequently used are the Fire codes which are CRC codes (see 
Chapter 15). 

Example of generator of a Fire code: 

g(x) = (x23 + l)(xI2 + x lO + x9 + x7 + x6 + x4 + 1). 

This code allows the correction of a single 12-bit burst in a sec tor of the 
disk (2147 bits). During a write of data to the disk, a division module the 
above polynomial occurs. The remainder is appended to the data and written 
onto the disko Hence, 35 bits are added in this coding process. 

During a reading, the data stream is again divided modulo the chosen 
polynomial. If the remainder, or syndrome, is equal to zero, the data is 
correct. If the syndrome is not equal to zero, then an error has occurred. 
There are two error types: correctable and uncorrectable. For a correctable 
error, the syndrome contains information ab out the error pattern and the 
error location. 

Error detection/correction on Reads 
Error detection is critical to ensure the integrity of customer data. The 

Fire code can detect most uncorrectable errors. But there is a chance that an 
uncorrectable error will be mistakenly found to be correctable and correction 
attempted! To prevent this, a 16-bit CRC code is appended to the data on a 
write before encoding. It is used for error detection after error correction 
with the Fire code has occurred. This decreases the probability of undetected 
errors to less than one occurrence in 1015 bits transferred. 

Moreover, the correction is performed in real-time, during the normal 
data access operations. 

Fault Detection on Writes 
A read operation is appended to the write operation, in order to detect a 

bad recording. This helps preventing a customer from storing bad data 
without knowing it. 
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18.7.3.4 CD ROM 

Data stored on CD-ROM also implement cyclic codes for the detection 
and the correction of errors occurring during write and read accesses. The 
solutions are different in the case of Audio CD and Data CD. 

Audio CO ROM 
An Audio CD-ROM has 330000 sectors; each sector has 3234 bytes and 

is structured according to the format of Table 18.1. The User Data contains 
the useful data coding the sounds. The control block stores information 
conceming the duration and the number of each selection. 

The EDCIECC (Error Detecting Code / Error Correcting Code) part 
contains two groups of 392 bytes. The Reed Solomon code which is a BCH 
cyclic coding (see Chapter 15) has been first used on the R-DAT (Digital 
Audio Tape). This code has then been improved as the Cross Interleaved 
Reed Solomon Code (noted CIRC). The code wh ich is used for the compact 
disk adds some parity symbols and makes an interleaving of the bytes. 
Thanks to 2 cyclic codes, one before and the other after the interleaving 
operation, it is possible to detect many faults: thus, 4000 consecutive bits can 
be recovered and 12000 bits compensated . 

.. ", 
Userdata EDClECC Control 

19part 2- part 

2352 392 I 392 98 

Table 18.1. Audio sector 

Oata CD ROM 
The binary data stored in CD-ROM are structured in a quite sirnilar way. 

The 3342-byte sectors are divided into three parts, as described in Table 
18.2. A header and synchronization block is followed by the user data. Then, 
two 441-byte EDC-ECC blocks integrating the control data are added, and 
the sec tor is completed with a third 288-byte EDCIECC block . 

Hlmder User 
.2 ", 

J;DC/ECC 8I1,d eo~tt~l 
& 

Synebron.b:aUon dafa parts 1, 2 & contI'GI 3rd pari H 

124 2048 882 I 288 

Table 18.2. Data sector 
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Comparison 
The tables given above show that the redundancy necessary for 

synchronization, control and EDC-ECC respectively represent 27% of the 
sector length in Audio CD and 38% in Data CD. The EDC-ECC parts 
represent redundancies of respectively 32% and 35%. 

The two domains do not have the same reliability requirements. A 
perturbation of one sec tor of a 74-minute audio CD-ROM will affect 13 
millisecond of the produced sound. This will probably have no consequence 
on the user. On the contrary, any loss of a byte in a data file of a data CD
ROM can have severe consequences on the use of a file that is read 
(executable program, parameters, etc.). 

In fact, the reliability of actual Data CD-ROM units (media, read and 
write operation, transfers) is high: we find industrial products with 
announced values of 10.12 errors per CD (of 650 Mbytes). 

18.7.4 Data Transmission 

Data transmission makes use of classical EDC codes since the first ages 
of this science. Thus the classical protocols, such as SDLC, HDLC, X25 use 
cyclic codes. For example, the following standard polynomial code is used 
for signature in disk controllers and data cornmunication protocols: 

g(x) = x l5 + x l2 + x5 + 1. 

The redundant codes are not often used in the classical data Bus of 
computer systems. Frequently, only simple parity bits are used, which does 
not allow error correction. On the contrary, in high-critical applications, 
more sophisticated codes are implemented. 

We will describe the tolerance mechanisms used by some significant 
LAN industrial networks which does not belong to high-critical applications: 
the Ethernet Bus, used in general purpose LAN network (cornmercial or 
scientific networks), and the CAN and V AN Busses, more recent, which 
belong to Industrial LAN dedicated to real-time applications. 

18.7.4.1 Ethernet Network 

Two error checks are made at the ISO level named 'control': 

• detection of erroneous bits on the physical media, 

• detection and recovery of message collisions. 

The complete error handling is relegated to higher levels of ISO 
architecture. 
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According to the security criterion (confidentiality and integrity 
parameters), we should note that no encryption of the transmitted data is 
made. 

Alarm Thresholds 

Several parameters are used to detect the occurrence of errors in the 
global functioning of the network. 

First, the maximum workload on the network is evaluated and compared 
to a maximum value. It is estimated that a network is overloaded when its 
average use is higher than 25%. This figure corresponds roughly to traffic 
peaks of 60%. Above, it is necessary to re-route apart of the traffic activity. 
This threshold corresponds to: 

• 750000 bytes per second for a lOMbitslsec with a load of 60%, as the 
Ethernet network traffic is (lOMbits 1 8bits) x 0,6 = 750 000 bytes per 
second; 

• 3000 frames per second because, for an average frame length of 250 
bytes, the network transmits 750 000/250 = 3 000 frames per second. 

A network is considered as reliable if its error rate does not exceed 
0,01 %. At full admissible load, 3 000 frames per second being transmitted, 
this rate corresponds to an average of 0,3 error 1 second, thus 1 080 errors 1 
hour. By experience, we admit that there are 3 brief error peaks per hour. 
Hence, these peaks must not exceed 1 080/3 = 360, which justifies a guarded 
peak limit at 300. The maximum value is then of 300 errors 1 second. 

The workload is a first parameter used to detect errors; the message 
collision number is a second one. The maximum number of message 
collisions on the Ethernet Bus is estimated at 50. This result corresponds to 
an average using, with peaks of 35 to 40%. 

Finally, the broadcast frames are special frames send to all the stations 
connected to the network. The average number of broadcasts per second is 
about 0.3. We can use this threshold to separate possible broadcast storms 
from the normal background noise. These storms are frequent under TCP/IP, 
due to a bad interpretation of a local address. Unfortunately, they can 
paralyze the network: a broadcast is treated by all the stations, resulting in a 
saturation of the equipment. Thus, the reaching of the threshold must be 
detected as error. 

Error Model 
The detection of anomalies leads to error logging. The erroneous frames 

are stored in memory. These errors are, for example: 

• too short or too long frame, 
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• wrong CRC (redundant EDC-ECC), 

• bad alignment of the data. 

The 20 to 63 byte frames are considered as erroneous frames that do not 
result from message collisions. Indeed, a collision produces a non-significant 
frame whose length is generally between 5 and 20 bytes. 

The too long frames correspond to a length greater than 1512 bytes. 
Finally, errors on the transmitted data are detected if they alter the CRC, 

or if they produce a bad alignment (wrong positioning). 
The addresses of the erroneous frames are also recorded, in order to 

diagnose the source of the problem (thanks to the identity of the emitter). 

Diagnosis and recovery 
The detected errors lead to a diagnosis and a recovery treatment. Here are 

some examples: 

• Short frames without significance: they are characteristic of collisions 
which are tolerated thanks to the re-emission technique (retry mode). 

• Erroneous frames coming from the same station: the station is declared as 
failing, leading to a maintenance procedure. 

• Intense traffic at certain times during the day: this is due to peaks of use, 
leading to re-routing of some transactions. 

• Intense traffic between two distant stations: they must be moved and 
connected to a same network segment (reconfiguration). 

• broadcast traffic over the pre-defined threshold. The destination address 
of such frames is FFFFFFFFFFFF (12 'F'). A broadcast overflow can 
come from a failure of the emitter of a station (stuck-at 1 type), or of one 
application. Under TCP/IP, this can be astation that sends a wrong 
broadcast by emitting the local address '0' instead of the correct 'F' one. 
All the other stations will try to make this frame follow, as it should 
normally be done; as they do not recognize the address, they send a 
broadcast message. Hence a saturation occurs. 

18.7.4.2 CAN Bus 

Initially developed in Europe for automotive applications, the CAN 
(Controller Area Network) protocol is now used in more general industrial 
loosely coupled systems using control devices, sensors and actuators. It has 
been standardized under ISO 11898, and many micro-controllers now 
implement a CAN interface. 

The CAN Bus is a two wire serial data bus able to transmit random 
asynchronous information at up to 1 Mbit/s. It follows the ISO protocol 
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standard and implements the levels 1, 2 and 7. Each frame contains aStart 
bit, an identifier field for address and priority of the message (11 bits in 
CAN version 2.0 A, and 29 bits in CAN version 2.0 B), a RTR (Remote 
Transmission Request) bit, a 6-bit contral field, a data field of 0 to 8 bytes, a 
15-bit CRC + I-bit delimiter (at high value), a 2-bit ACK field (including an 
ACK delimiter at high value), and a lO-bit EOF + Inter Frame Space. The bit 
stream is coded according to the NRZ technique (Non-Return to Zero). The 
electrical level 'low' is dominant while the level 'high' is recessive. This 
means that if two nodes emit a 'high' and a 'low' levels at the same time, the 
'low' level is transmitted (wired AND). The bit stuffing technique is used: 
after the 5th bit with equal polarity, a 6th additional bit with opposite polarity 
is stuffed into the bit stream. The CRC delimiter and the ACK and EOF 
fields have a fixed form and are not stuffed. When the Bus is not used, the 
line is idle (level high). Any active node of the system is allowed to start a 
message transfer. The CAN Bus is a multi-master with a CSMNCD + AMP 
(Carrier Sense Multiple Access with Collision Detection and Arbitration on 
Message Priority) Bus access method. Each node, which emits a message, 
reads back the transmitted bits. As soon as it detects a collision (according to 
the wired AND principle), it stops the emission and switches to the reception 
mode. It will try again later when the Bus is free: this is a delayed retry 
mode. 

A CRC checksum is used for error detection only. It is possible to detect 
up to 6 single bit errors or up to 15 bits burst errors. 

The CAN controller contains an error management unit, which handles 
errors. Each time an error is detected by anode, it will be immediately 
noticed to the remaining part of the network by an error frame. After this 
error message, all nodes discard the received bits and the emitter will repeat 
its message later (retry mode technique). This activity is managed at low 
level, by the CAN controllers. 

The error process comprises 2 main steps, error detection, and error 
handling, which are examined in the following paragraphs. 

Error detection 

Five different errors are detected on the CAN Bus: 

• bit error: when the value which is monitored on the Bus is different from 
the bit transmitted, according to the basic signal coding, 

• bit stuffing error: when 6 consecutive bits have the same value, 

• CRC error: when an error is detected by the cyclic code checking, 

• form error: when a fixed form field (CRC delimiter, ACK, EOF) contains 
illegal bits, 
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• acknowledgment error: each active node that detects a correct message on 
the Bus overwrites the recessive (high) delimiter of the ACK field with a 
low level; if the transmitter does not monitor a dominant bit (low) during 
the ACK field, it detects an acknowledgment error. 

Error handling 
When a CAN controller detects an error, it notifies this error to the 

network by an active error frame which uses a violation coding. This error 
frame contains a flag which is made of 6 or more 'dominant bits' realizing a 
bit stuffing violation or destroys a bit field in fixed form. This violation is 
detected by all the nodes which send error frames. In order to avoid error 
contamination, an algorithm is used to disconnect the defective nodes and 
restore the correct Bus access. 

Two kinds of error frames, active (dominant) and passive (recessive), are 
used on the Bus, and each node has three states according to Figure 18.25: 

1. Error active: the node can communicate on the Bus, and it sends an 
active error flag when an error is detected; 

2. Error passive: the node can communicate on the Bus, and it sends a 
passive error flag when an error is detected; 

3. Bus off: this state is a fault confinement state in which the node cannot 
send or receive any message. 

Two counters, Transmit Error Count and Receive Error Count, are used 
by each node to evolve between the normal state 'error active' and 'error 
passive' state, and then possibly in Bus off state (which is a trap state which 
need areset operation to return to the error active state). 

RECs; 127 
AND TEC s; 127 

Figure 18.25. State graph of error handling 

18.7.4.3 VAN Bus 

The VAN (Vehicle Area Network) Bus is another random asynchronous 
serial Bus used in Automotive industry and which offers interesting 
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protective mechanisms. The V AN protocol normalizes the levels 1 and 2 of 
ISO model (reference ISO 11519). The medium uses 4 wires (two Data 
wires, Ground and V cc), and the Data are transmitted according to a 
differential current mode for a better quality of service: better resistance to 
electromagnetic perturbation, and possibility to continue the transmission if 
one Data wire is cut or is in short-circuit to Ground or Vcc. The signal is 
coded with a E-Manchester coding wh ich is a mix of NRZ and Manchester 
introduced in Chapter 15. 

The arbitration is based on a non-destructive CSMAlCD technique on all 
the frames of the messages. A 15-bit CRC is used for error detection and 
correction. The generator is: 

g(x) = xl5 + x ll + x lO + x9 + x8 + x7 + x4 + x3 + x2 + 1 

= (x7 + 1)( x8 + x4 + x3 + x2 + X + 1) 

This Fire code is able to detect isolated errors, burst errors of length 
lower than 15 bits and double burst errors of length lower than 8 bits. 

18.8 EXERCISES 

Exercise 18.1. Reliability ofthe TMR 

Calculate the reliability of a TMR described in section 18.2, for 
exponential reliability laws with constant failure rates: 

1. If we neglect the reliability of the voter; 

2. If we suppose that the failure rate of the voter is ten times smaller than 
the failure rate of the duplicated modules. 

Exercise 18.2. Fault tolerance ofthe TMR 

Analyze the TMR structure and determine single and multiple faults 
which are tolerated and those which are not tolerated. 

Criticize this structure. 

Exercise 18.3. NMR 

We want to make the logical design of the detection and correction 
module of a NMR structure. 

1. Verify the logical expression of the error detection signal proposed in 
sub-section 18.5.3. 

2. Find the logical function having three inputs (S1, S2 and S3) and three 
outputs (M 1, M2 and M3), and which identifies the failing module. 
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3. Determine the logical function of a 3-input voter, then a 4-input voter. 
What use would be a 4-input voter? 

Exercise 18.4. Study olthe double duplex 

Detail the analysis made in sub-section 18.7.2.2. Ca1culate the Double
Duplex reliability. 

Exercise 18.5. Study 01 selj-purging technique 

Each one of the n modules of a self-purging system compares its output 
with the final output of the system. In case of difference, it switches itself 
off, and the vote is continued with (n-l) modules. 

What is the interest of such technique? 
Imagine its implementation as several software tasks distributed into a 

computer system. 
Which properties still has this system when two modules only remain 

active? 
This question can also be applied to the double duplex redundant 

structure of Exercise 18.4. 

Exercise 18.6. Example 01 a tolerant program based on retry mode 

A procedure Get ( I ) reads the characters which are pressed on a 
keyboard until the 'return' key has been keypressed. These characters are 
then converted into a decimal value which is assigned to the variable I. If 
characters different from the figures are provided, the execution of the 
procedure is suspended and the exception Data_Error is raised. 

Define a procedure Safe_Get (I) able to tolerate the keypressing faults. 

Exercise 18.7. Programming and evaluation ofrecovery bocks 

1. Programming. Let us consider a function P having one parameter C of 
type T, and returning a Boolean value signaling an error. Propose two 
implementations of a procedure tolerating the faults of P, thanks to an 
alternate Q, according to the two approaches of the recovery block 
technique examined in section 18.4.2. 

2. Performance. Study the temporal performance ofthese two solutions. 

Exercise 18.8. EDC in a RAM 

We consider a Memory Management Unit such as the one introduced in 
sub-section 18.7.3.1. The data words have k = 8 bits, and they are coded with 
a linear code using n = 12 bits (hence r = 4). The coding relations are the 
following: 

Y1 = U1 Er> U2 Er> u4 Er> U5 Er> U7, 

Y2 = U1 Er> U3 Er> U4 Er> U6 Er> U7, 
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Y3 = U], 

Y4 = Uz EE> U3 EE> U4 EE> US, 

Y5 = Uz , Y6 = U3 , Y7 = U4, 

Ys = U5 EE> U6 EE> U7 EE> US, 

Y9 = U5, YJO = U6, YJ1 = U7, Y12 = Us· 

Chapter 18 

1. Draw the generator and the control matrices, G and H (see Chapter 15). 
Study the coding and decoding of the 8-bit word: (00111011). Determine 
the Hamrning distance between all codewords. 

2. Analyze the influence of a single error on the previous word. How to 
correct this error? 

3. Discuss the implementation of this code in the MMU. 

4. Is this code appropriate for scrubbing 'soft faults'? 
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Conclusions 

In this book, we have, for pedagogical reasons, introduced problems and 
solutions in a progressive way, providing separated viewpoints on the design 
of dependable computing systems. In this concluding chapter, with the same 
pedagogical objectives, we will first make a synthesis of the numerous 
aspects we have encountered. This synthetic view is now necessary to 
reorder the most important notions explained in the preceding chapters. 
Section 19.1 summarizes the needs and the impairments which are at the 
origin of studies on dependability. In section 19.2, we consider the three 
classes of protective means introduced to obtain dependable products: fault 
prevention, fault removal, and fault tolerance. For each of these classes, we 
have studied numerous techniques. The question of their respective 
efficiency is now addressed. These techniques aim at increasing the 
dependability, that is the reliance that can justifiably be placed on the service 
delivered. Hence, we must evaluate them using the dependability attributes 
and assessment techniques discussed in section 19.3. We analyze here only 
three attributes of the quantitative approaches: the redundancy which deals 
with the structure of the product andlor its intermediate models, the 
reliability and the safety. An overview of the qualitative approaches is then 
provided. 

Finally, we conclude in section 19.4, with a brief analysis of the 
difficulty of choosing adapted dependability means, but also a discussion 
about the real (undeniable) contributions of dependability techniques. 

From the basic knowledge provided in this book, the reader is now able 
to go deeper into some aspects of the large domain dealing with the design 
of dependable computing systems. 
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19.1 NEEDS AND IMPAIRMENTS 

19.1.1 Dependability Needs 

One of the main evolutions of computing systems is the increase of the 
responsibility delegated to them. Thirty years ago, their role was limited to 
simple services explicitly controlled by users. These systems were 
employed: 

• to increase the human activity productivity such as numerical 
computation allowing simulation results to be quickly achieved, 

• to improve everyday life such as electronic ignition systems, reducing car 
pollution. 

Then, many systems became human assistants. For instance, an ABS 
(Anti-Blocking System) prevents the car wheel blocking, taking the 
reactions of the driver as weIl as the environmental conditions into account 
at braking time. However, the driver sends an order to the system, pressing 
the braking pedal. Nowadays, computing systems are substituting for human 
to take themselves decisions. The airbag opening in a car is controlled by 
such a system. 

The increase of computing system complexity is a second characteristic of 
the advancement of these systems. This increase is due to a greater number 
of provided services (quantitative complexity), to complicated algorithms 
(qualitative complexity) and to the increased interactions between the 
constituent subsystems. Once again, computing systems embedded in cars 
provide good examples. Their number increases: systems for fuel injection, 
ignition of the sparks, management of braking, steering and stability of cars, 
air conditioner regulation, etc. The implemented control laws are more and 
more complex. For instance, the engine control algorithms are more 
sophisticated to decrease pollution (ignition advance, feedback of data 
characterizing the non-bumed gas composition, etc.). These systems become 
more and more highly coupled. For example, to control a car going too fast 
into abend, the engine control systems and braking management systems 
must handle complex interactions. 

The two quoted characteristics, that is, increase of the responsibility and 
increase of the complexity lead to a contradiction. On the one hand, the 
increasing complexity of the systems makes inevitable the rise of the faulty 
design risk and, consequently, of system failure risk during operation. On the 
other hand, more and more responsibilities being delegated to these systems, 
the occurrences of such failures is more and more unacceptable. 

This contradiction leads the computing system users to ask for 
dependable systems. This demand is justified by numerous tragic isues, 
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including patients killed by the failure of medical equipment, drivers injured 
in a car accident due to untimely airbag opening, the loss of the first 
launching of Ariane V. 

Dependability requirement has been extended to non-critical systems. For 
years, computing system failures were accepted by users as inevitable. 
Nowadays, economical constraints imposed on users of computing systems 
(service quality, hard deadlines, etc.) make them less lenient. 

19.1.2 Dependability Impairments 

The book aims at defining the basic concepts associated with the 
dependability domain. Setting the problem to be solved, structuring the 
requirements at the origin of this problem and the means to solve it are 
essential aspects. They constitute the basis allowing dependability to be 
considered as a science and not as an aggregate of experimental techniques 
used by engineers. 

Faults, Errors, Failures, Consequences 

This foundational work at first took up studies on dependability 
impairments. Four essential notions were defined: 

• Failure characterizes a wrong service delivered by the computing system. 
The product has an actual behavior that is not in compliance with the 
expected behavior, as defined by the specification. This notion concerns 
the product considered as a black box. 

• Fault is a failure cause. 1t is often expressed as a non-respect for a 
property on the designed system structure. A connection of an integrated 
circuit being broken, or a wrong program statement, are two examples. 
Thus, this notion concerns the structure of the product, that is a system 
defined as assembled components, and more precisely a static view of 
this structure. To point out the failure origin is sometimes difficult, for 
instance when detailed knowledge on the structure is not available, or 
when the causes come from outside or are multiple and combined. 

• Error is an intermediate notion. 1t characterizes the fault effect as an 
undesirable internal functioning state of the system behavior. A gate 
output stuck-at 1 or the access to an array element that is out of range are 
two examples. Therefore, this notion concerns the dynamics of the 
system. 

• Consequence is an external notion. 1t defines the effects of the failures on 
the environment (user and non-functional environment), and on the 
product itself, as it may be destroyed. 
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A cause and effect relationship exists between fault, error, failure, and 
consequence. However, all faults do not mandatory lead to an error, which 
does not necessarily provoke a failure. For example, a bad statement of a 
program (that is, a fault) may have no effect (no error produced) if this 
statement is not executed (particular use of the pro gram, or dead code due to 
reuse). The assignment of a value in an array, out of range, is an error. It 
does not provoke a failure if the assigned address is in the memory data 
segment and if the crushed value is no longer used by the pro gram 
execution. In the same way, a failure causes more or less perceptible or 
acceptable consequences. 

Modeling Tools 
As in other sciences, dependability looks for modeling tools of the 

handled concepts: faults, errors, failures and their consequences. Models 
then allow generic solutions to be deduced, that is, solutions applicable to a 
dass of problems or systems and not limited to one specific problem 
concerning one system. These modeling tools also allow assessing the 
efficiency of the means proposed to handle the impairments. For instance, 
the test method relevance depends on its capability to detect the presence of 
faults. As actual faults existing in a system are generally unknown, fault 
models are often used to evaluate the test techniques. 

The possible faults in a computing system are innumerable. They depend 
on the functional characteristics of the system, on the used design modeling 
tool, on the design process, on the implementation technology, on the user of 
the system and on the non-functional environment (temperature, radiation, 
etc.). The proposal of only one model of faults, errors or failures is not 
realistic. On the other hand, the handling of each specific fault of each 
system requires empirical and expensive studies. So, numerous modeling 
tools for faults, errors, failures, or consequences were proposed. Modeling 
tools being generic, that is, independent of specific characteristics of 
particular systems, they led to a scientific approach of dependability studies. 

A first set of modeling tools aims at characterizing the failures and their 
effects. The considered modeling criteria concern human, economical or 
environmental damages. The seriousness of the consequences of the 
perturbations caused by the failures is assessed. The modeling tool based on 
the following dasses is a conventional example: benign, significant, serious 
and catastrophic. It is a model, that is, an abstraction of the termfai/ure; fault 
models provide other abstractions on dependability impairments, which are 
independent from this first abstraction. For instance, a given hardware fault 
in a micro-controller may have quite different consequences depending on 
whether this circuit is used in a game station or integrated in an embedded 
flight control system. Seriousness is one model among many characterizing 
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failures. For example, inertia, that is, duration between failure occurrence 
and its consequences, or Jailure risk, that is, the occurrence probability of a 
failure, are other criteria leading to other classes characterizing the system 
dependability. This example shows that various modeling tools must be used 
to express dependability impairment concepts. Each modeling tool providing 
one point of view, several of them are necessary to characterize faults, 
errors, failures and consequences. 

The study of system faults and of means to handle them requires the 
choice ofJault modeling tools. A fault-modeling tool is defined by properties 
on the system structure model. For instance, the programming language 
syntax definition implicitly expresses a fault modeling tool: each violation of 
a syntax rule by a program text is a fault. Of course, the fault modeling tools 
depend on the modeling means used to express the system structure. 
However, several fault models may be proposed for one system modeling 
means. To define a fault modeling tool, the expected or unexpected 
properties must be generic, that is, independent of specific systems. For 
instance, a particular statement of a given program, which is not in 
accordance with a rule of the programming language syntax, contains a fault 
specific to this program. Nevertheless, the syntactic rules, which define a 
fault-modeling tool, are applicable to any program. 

Fault modeling tools have numerous applications, such as efficiency 
measurement of fault detection techniques used to extract faults (fault 
removal) or to tolerate activated faults (fault tolerance). Unfortunately, the 
exclusive use of these models is not sufficient. In particular, numerous actual 
faults cannot be expressed with these models. They do not offer a full 
coverage. Such a situation exists for instance to study software design faults. 
Consequently, the faults are also studied from their effects on the internal 
system functioning. Bad states are defined by error modeling tools. Once 
again, numerous error modeling tools have been proposed. Some of them are 
general, that is, they do not depend on the system modeling means. For 
instance, characterization of errors as permanent or temporary defines two 
classes. Other models are derived from the semantics of the modeling means. 
The use of the value of a variable not previously assigned is an example of 
an error model associated with the behavioral model defined by the 
programming language semantics. The run-time stack overflow defines 
another property violation, that is, an error model, associated with the object 
code model. A deadlock, that is, a system state progress blocking due to 
internal interactions of subsystems is another error model for systems 
modeled by Petri nets or concurrent tasks. 

The assessment of the relevance oJ the Jault or error modeling tools is a 
difficult issue. The answer often depends on the use of the models. For 
instance, the program test technique evaluation method based on mutations 



516 Chapter 19 

considers the replacement of an arithmetic operation by another as a fault
modeling tool. Of course, no engineers probably do such a fault. He/she 
makes more complex wrong structure modifications. However, these 
mutations produce errors characteristic of behavioral effects of actual design 
faults. Thus, these fault models are successfully used to assess functional test 
sequences. Besides relevance, these modeling tools must be examined in 
term of tractability, that is, their capabilities to be processed. For instance, a 
fault simulation with a too precise model may take prohibitive duration. 

GeneriC fault or error modeling tools do not allow to express numerous 
faults or errors which are specific to the structure or the functioning of each 
system. Therefore, specific faults or errors must be expressed. However, to 
preserve the capability to do generic studies on them, macro-models (or 
macro-Ianguages) are proposed to express them. 

19.2 PROTECTIVE MEANS 

To improve the computing system dependability, three approaches are 
proposed: 

• Fault prevention aiming at reducing the creation or occurrence of faults 
during the system life cyc1e. 

• Fault removal aiming at detecting and eliminating existing faults, or at 
showing the absence of faults. 

• Fault tolerance aiming at guaranteeing the correctness of the services 
delivered by the system despite the presence or appearance of faults. 

19.2.1 Fault Prevention 

Fault prevention aims at reducing the creation or occurrence of faults 
during the computing system life cyc1e. Several techniques can be used 
during the system design phase. Some of them have an impact on the created 
system. Others prevent faults occurring during its future useful life 
(operational phase). These means concern the system modeling tools 
(inc1uding implementation technologies), the system models and the 
processes used to obtain these models. These three viewpoints are developed 
hereafter. 

The modeling means has an important effect on dependability of the 
modeled systems. This fact is weIl known for implementation modeling 
tools. Certain technologies are safer than others. For instance, they prevent 
faults introduced during the hardware system manufacturing step or 
occurring during the operational phase in ho stile environment (space for 
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example). Some investigations concern the software implementation 
modeling tools. Studies on requirement, specification and design modeling 
rrieans, using their capability to prevent faults as analysis criterion, is 
relatively little-developed. 

A modeling means being selected, numerous modeling choices, and 
therefore numerous system models, exist for one particular product. 
Generally , the choice is guided by performance or maintainability criteria 
but rarely looking for fault prevention. At first, the obtained models aim at 
being operational, that is executable. Due to this single goal, the pieces of 
information corning from the system origin (Why this system is useful? 
What system must be designed?) are lost: they are not present in the created 
model. They are substituted for data associated with the realization, 
answering to question: How the system is designed? The preservation of the 
first type of pieces of information in the models, certainly not useful for 
operation, is an efficient means to prevent faults. This example illustrates the 
general concept of redundancy, also used for fault removal and fault 
tolerance purposes. Whereas the term 'redundancy' is conventionally 
regarded as the meaning 'supplementary' and 'not useful', we showed that it 
is an efficient concept to obtain dependable computing systems. 

Mastering the model creation process is a third means of fault 
prevention. This point is correlated to quality policies, processes and 
procedures. They aim at modeling the development process, at assessing its 
efficiency to prevent faults and at improving the process. This approach is 
original as it concerns neither the developed system, nor the means used 
(modeling tools, etc.). It studies the human process used to create a system. 
The underlying idea is that numerous design faults existing in systems are 
corning from faults occurring in the design process. To avoid the 
introduction of these faults, guidelines may be provided to master the design 
process phases. Some of them were given to illustrate this approach on the 
requirement, specification, design, and implementation stages. 

Relationships exist between studies concerning tools, models and 
modeling process. For instance, the intellectual capabilities of humans being 
lirnited, the designers cannot simultaneously handle numerous concepts 
(process issue). So, the modeling tool must allow abstraction hierarchies to 
be expressed, offering suitable features such as modules (modeling tool 
features). 

19.2.2 FauIt Removal 

Fault removal aims at detecting and eliminating existing faults, or at 
showing the absence of faults. Studies on fault removal are older that those 
on fault prevention. They were initially justified by manufacturing checks of 
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hardware systems. Then, they were extended to model checking. The 
proposed techniques are therefore numerous and varied. We do not want to 
expose them again one by one. We synthesize hereafter their presentation, 
introducing criteria allowing them to be dassified. 

Firstly, fault presence may be detected by static analysis (for instance, 
inspection or property checking) or dynamic analysis (for instance, testing). 
The first dass of techniques does not need system execution which is 
required by the second group. 

Secondly, the examined model concerns the system realization 
(structural approach), the function provided by the system (junctional 
approach) or both (structural-Junctional approach). In the first case, the 
presence of faults is highlighted; in the second case, the studies handle 
failures; in the third case, error notion is the main concept as weIl as 
relationships between faults, errors and failures. 

Thirdly, fault detection turns on a certainty (for example, a specific fault, 
error or failure) or a risk. In this second situation, the techniques search for 
the potentiality of the presence of fault, error or failure (presence 
probability). Measurements on systems are defined and associated with risk 
levels (cf. section 19.3). For instance, the more complex the control flow of a 
program is, the more difficult is the mastering of the program by its designer 
and so, the greater is the risk of a design fault being present. The 
measurements assess the model (complexity measurements) or the use of the 
modeling tool features. For instance, the use of the 'goto' statement or of 
shared variables increases the fault risk. On the contrary, the use of an 'else 
null' option if no action is necessary when a test is negative, decreases the 
risk of an omission fault. 

Detection generally requires a reference model which is compared with 
the created model. This reference model concerns system requirements or 
specifications, but also system design or implementation. This model 
expresses what is expected (approach based on good functioning) or 
unwanted (approach based on bad functioning). The reference model is 
given by extension (everything which is expected or not) or by intention 
(properties). The reference model may be the one used by the current step 
(for instance, the specification model at design step) or another. Certain 
techniques do not need additional reference model. Faults, errors or failures 
are detected by examining the current system model. Taking the 
programming model as example, data flow analysis techniques show 
variables assigned two times without being used, that is, an error. 

Most of the techniques handle one of the three notions (fault, error or 
failure). Some aim at handling links between them. Fault diagnosis methods 
provide such an example. Faults at the origin of an occurred failure, or a 
detected error are searched. 
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From the origin, fault removal techniques are used to detect the presence 
of faults. They are also useful to prove the absence of faults. Then, they also 
provide means to assess dependability of computing systems. 

Finally, assessment of fault removal techniques is another large issue. 
What are the interests and limits of these techniques? What are their specific 
contribution and so their complementarity? The answers to these questions 
are essential to define fault removal policies. This knowledge has an 
immediate practical interest, as economical constraints do not allow all the 
various offered techniques to be usedjointly. 

Fault removal techniques are often considered at the end of the model 
definition, particularly when an operational model of the system is 
completed. However, these means may have a great influence on the system 
model or on the modeling process. For instance, we showed how error 
detection mechanisms can be introduced at design time to make on-line 
detection easier at run-time. 

Fault prevention and fault removal domains are put together under the 
term Fault avoidance. Studies associating these two dornains are useful. For 
example, the definition of a development process aiming at preventing faults 
often uses fault removal techniques at each process step. 

19.2.3 Fault Tolerance 

Fault tolerance aims at guaranteeing the services delivered by the system 
despite the presence or appearance of faults. 

Fault tolerance approaches are divided into two c1asses: 

• compensation techniques for which the structural redundancy of the 
system masks the fault presence and, 

• error detection and recovery techniques, that is, error detection and then 
resumption of the execution from a safe state previously reached and 
stored (backward recovery) or not (forward recovery), and/or after an 
operational structure modification (reconfiguration). 

In numerous industrial systems, intensive use of fault tolerance 
techniques is too expensive, both in terms of development and resources. In 
particular, this last expenditure is added to each produced system if a fault
tolerant hardware platform is developed. To reduce these over-costs, some 
benign or at least not dangerous or catastrophic failures are accepted. For 
instance, when a car quickly overtakes another car, the processor is full-time 
used to control the engine; then, tasks managing the air-conditioner are 
temporary suspended. Fail-safe techniques jointly study failure seriousness 
and fault tolerance. 
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Assessment of the efficiency of fault tolerance techniques is another 
important problem. 1t uses fault and error models and again poses the 
problem of the pertinence of such models. These faults or errors are injected 
and the system operation is simulated, or their effects on the product 
behavior are assessed (cf. next section). 

Fault tolerance concerns the system for architectural viewpoint as weIl as 
software and hardware implementation technologies. The projection of the 
results of studies done on system modeling onto technological levels is not 
so easy. This issue comes from the fact that hypotheses often implicitly used 
at system level are not correct when technology characteristics are 
considered. For instance, the switch from a failed component to a duplicate 
is efficient to tolerate faults of hardware technologies. This technique is 
inefficient to tolerate design faults or most of the software technology faults. 
Moreover, most of the assumptions associated with a fault tolerance 
technique are in accordance with one technology, whereas complex 
interactions exist in real systems between hardware and software elements. 

The various approaches used to obtain a dependable computing system 
(fault prevention, removal and tolerance) were introduced separately. They 
provide complementary contributions. However, we signaled that they are 
also correlated. For example, fault tolerance mechanisms aim at increasing 
the system reliability. However, as these means are often complex, they 
increase the fault risk and thus they go against fault prevention requirements. 
Moreover, they can make fault detection more difficult by reducing the 
system observability. Thus, fault tolerance techniques may lead to a system 
reliability decrease. 

19.3 DEPENDABILITY ASSESSMENT 

Whatever the protective means used to avoid failure occurrences, the 
reliance placed on a computer system must be justified. The measurement of 
this reliance (quantitative approach) or an evaluation of the presence or 
appearance of faults and their effects (qualitative approach) provides this 
justification. 

19.3.1 Quantitative Approaches 

Dependability, that is, the justified reliance placed on the services 
delivered by a system, must be assessed to be justified. Numerous attributes 
exist, taking various meaning for the term 'reliance on the services'. For 
most of them, a measurement is defined as a conditional probability, which 
is a function of time. 
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Attributes 
Reliability is one of these attributes. It defines the aptitude to accomplish 

a required function in given conditions. Thus, reliability measurement is a 
function expressing the probability that the system has survived without 
failure at time t, given that it was operational at time '0'. Availability, safety, 
integrity are other introduced attributes. 

Mathematical models describe probability laws of the correct operation 
of system components. Parameters of these laws frequently depend on the 
used technology. Their values are coming from experimental facts. Other 
parameters influence these laws, such as the temperature for hardware 
technologies. 

As a system is a structure of components whose probabilistic models are 
known, composition operations provide laws for the complete system. 

Non-probabilistic models also exist. For instance, some of them are based 
on the measure of the structural or functional complexity of the system: the 
number of statements in program blocks, the number of paths in the control 
flow of a program or in a behavioral model, etc. Since humans (the system 
designers) have limited intellectual abilities, they cannot master highly 
complex systems. A fault presence risk is therefore defined from the 
designed system complexity measurement. 

Redundancy 
Redundancy is another criteria useful to evaluate a product and the 

different protective mechanisms used to improve the dependability. It 
measures the extra-cost implied by the use of the chosen technique, in terms 
of quantity of resources (number of electronic components, of functions, 
etc.), but also its effects on the system dependability. 

In Figure 19.1 seven groups of techniques analyzed in this book are 
summarized and ordered vertically according to the importance of the 
implied redundancy. This figure symbolically shows the main life cycle 
steps involved by each group of techniques (specification/design, 
production, and operation). We observe that the redundancy of these groups 
vary from a magnitude '1' (no redundancy) for most of the functional fault 
avoidance techniques, to a magnitude '2' (100% redundancy) for self-testing 
techniques, and finally to a magnitude '3' (200% redundancy) for fault 
tolerance techniques by compensation (e.g. 3-Versions). In fact, these figures 
are purely symbolic; redundancy figures of real dependable product are 
frequently much greater: 

• integration of redundant specification elements in the design model in 
order to prevent or detect faults, 

• fault-tolerant design techniques using quadrupie duplicate modules 
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(Double-Duplex) for avionics control systems, or else using quintuple 
duplicate modules for spatial applications. 

Specificlltionl 
Dnlg,. 

PrOdllctiOll 
Operlllioll 

Avoidanee/Removal ....... 
of fllDetionai faulll 

Avoldance of 4. 0 ~ technologieal fau]lI 

Off-Une testing 

Designfor 
te,t&bWty 

.,. .... rn (on-Une testl;g) H 

Fall-safe systems 

FanJt toleranee 
4_ 

~ 
Redundancy 

Figure 19.1. Dependability techniques and Redundancy 

Let us note that one must not confuse redundancy with financial cost of 
the product. Indeed, although globally related to the dependability level 
required, the financial cost of a project is not at all proportional to the final 
product' s structural redundancy. This cost also depends on human and tool 
means implied by the chosen techniques. Unfortunately, this cost increases 
very fast, in a non-linear way, along our symbolic vertical redundancy axe. 
In other respects, the manufacturing processes, which lead to highly reliable 
components, are very expensive. Consequently, the cost of a product 
integrating highly reliable integrated circuits is high, even if no redundancy 
is involved in this product. 

Conversely, we insisted several times on the prohibitive cost of selling 
failing products with the reason of making financial savings (of not using 
dependability methods) . Not only the products but also the credibility of the 
marks and the manufacturers is questioned by such approach. 

The use of techniques based on redundancy is frequently criticized 
because it increases the cost of each resulting product. This senten ce is true 
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if structural redundancy is introduced in the final implementation of the 
product (for example, the use of redundant modules). On the contrary, it is 
false if the involved redundancy is used in the development steps in order to 
prevent or to remove faults. For example, consider the following sentence 
«the use of the Ada language is inefficient because the redundant 
information imposed by its programming features make the generated code 
heavy ». It is true that Ada imposes redundant elements. However the 
sentence is false. Indeed, the redundant information allows verification 
operations at compile time, which detect numerous design faults; moreover, 
most of the redundant elements do not induce redundant object code. 

In the same way, design guidelines may introduce redundancy in the 
design models without any redundancy in the operational models. For 
instance, the writing 

if Condition then Action; 
else null ; 

end if ; 

instead of 

if Condition then Action; 
end if ; 

is obviously redundant. However, it avoids any fault omission of the else 
branch. Moreover, the code optimizers inc1uded in c1assical Ada compilers 
do not produce any supplementary object code. 

Reliability and Safety 
The attributes used to assess dependability are sometimes antagonistic. If 

we consider reliability and safety criteria only, we can note a potential 
conflict between groups of dependability techniques of Figure 19.1. 
According to the hypotheses generally made for hardware technology, 
reliability is inversely proportional to the complexity expressed in terms of 
number of elementary components. For example, with an exponential law 
with constant failure rate, this failure rate is doubled when the number of 
electronic components doubles; thus the MTBF or MTTF is divided by two. 
Consequently, some techniques used for high reliability design try to reduce 
the total number of components used. On the contrary, many safety 
techniques try to detect and correct the errors, or to mask these errors; this is 
accomplished thanks to the use of redundant codes which adds more 
components. As a consequence, the resulting products have a higher 
prob ability of fault occurrence. From this analysis one can deduce the 
assessment: 

« more safety = less reliability » 
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The use of redundancy allows to create a safe product, as demanded by 
the dependability requirements. However, this can lead to a final product 
which is frequently performing error detection and reconfiguration 
procedures. As a consequence, this can provoke adegradation of the normal 
activity of the application (reduction of the performance), or even, to timing 
failures. 

19.3.2 Qualitative Approaches 

Qualitative approaches examine relationships between faults, errors and 
failures. The proposed qualitative assessment methods are distributed in the 
two following classes. 

• Deductive approaches consist in deducing potential failures from the 
system faults or errors for instance specified by modeling tools. They use 
structural and/or behavioral models of the system to process this 
deduction. In this book, we have mainly introduced the FMEA (Failure 
Modes and Effects Analysis) technique. 

• 1nductive approaches consider unwanted failures and infer errors or 
events, which may lead to these failures, or show that such failures 
cannot occur. For instance, proof of properties, or FfM (Fault tree 
Method) are tools to implement these approaches. 

These two classes of techniques are complementary. On the one hand, 
inductive approaches seem to be more realistic, in particular when fault or 
error modeling tools used by deductive methods may leave out actual faults 
or errors. On the other hand, inductive approaches are often not tractable, as 
a huge number of functioning cases may lead the system into one given 
internal state. Such a problem occurs, for instance, when a program uses 
'whi 1 e' loop statements, as the actual number of iterations is often 
unknown. Inferences are then constrained by hypotheses always debatable. 

Two basic concepts have been associated with the introduced approaches, 
namely: 

• Controllability that defines the capability to put the system in a given 
functioning state, by acting on its inputs, 

• Observability that defines the capability to observe the internal state of 
the system from the outputs, mainly by acting on its inputs. 

These notions apply to faults, errors and failures. For instance, they 
estimate the capability to activate a fault, changing it into an error, and then 
to propagate this error to the output, as a failure. 

Controllability and observability are two characteristics, which are 
sometimes desired, and sometimes unwanted. Thus, controllability and 
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observability are desired for testing, as they increase the testability of the 
system. On the contrary, fault tolerance required during system operation, 
needs to reduce fault activation, error contamination and failure occurrence, 
that is, to reduce global controllability and observability. 

To conc1ude this section, let us note that the techniques dealing with 
dependability measurement and impairment analysis are useful at first when 
system design is completed. They provide means to assess the reliance that 
can be placed on this system. These means are also efficient during the 
design steps as they provide predictive tools. Design choices are validated or 
rejected taking the obtained measures into account. Moreover, quantitative 
and qualitative analyses are often handled jointly. For instance, the FMECA 
(Failure Modes, Effects and Criticality Analysis) is a deductive qualitative 
method using quantitative data. We have also noticed that the Fault Tree 
Method could provide quantitative results. 

19.4 CHOICE OF METHODS 

Among the so numerous and varied dependability methods and 
techniques how to choose one or several ones which are weIl adapted to a 
given target application? Figure 19.2 caricatures some of these techniques 
offered to the designer. How to make an efficient tradeoff between the 
various and often contradictory dependability and performance criteria? 

During the expression of the requirements of a product, according to the 
c1ass of application considered, we can prioritize the attributes, for instance, 
ensuring the continuity of service (e.g. reliability) or, the safety. Let us 
consider as an example a robot aimed at human interactions (it could be a 
domestic or an industrial robot application). One can easily identify several 
complementary dependability requirements: 

• concerning the safety refined into two categories: 

~ safety relatively to the human (in order to prevent any injury of an 
operator or the public), 

~ safety relatively to the process (for example, in case of manipulation 
of fragile objects), 

• concerning the availability and the maintainability (if the product is 
supposed to be repairable). 

In order to satisfy these different elements of the specifications, different 
solutions will possibly be implemented and mixed. Thus, the safety 
problems can lead to 

• passive solutions (choice of non aggressive technology: the 'rubber' 
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robot) , 

• and/or active solutions (use of sensors to detect dangerous situations and 
implementation of emergency reaction mechanisms). 

The continuity of service can be increased by the use of high reliability 
electronic and mechanical components and design choices facilitating the 
maintenance. Naturally, independently from these actions, it is obvious that 
the creation steps of this product must justify the required reliance placed in 
the final delivered service. 

HF High Reliability FSS Fail-Safe Systems 

OFLT Off-Li ne Testing TMR TripIe Modular Redundancy 

DFT Design For TestabiJity (passive) 

RM Reed-Muller circuits NMR N-Modular Redundancy (active) 

BIT Built-In Test OAR Other Active Redundancy 

BIST Built-In Self Test I Interwoven Logic 

FR Functional Redundancy D Dotted Logic 

ST Self-Testing Q Quadded Logic 

Figure 19.2. Some fruits of dependability 
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Error Detecting and Correcting Codes 

In this Appendix, we compare some redundant codes: 

• the single parity code (separable), 

• the m-out-of-n code (non-separable), optimal for m = rn / 21, 

• the double rail code (separable), particular case of m-out-of-2m code, 

• the Berger code (separable), optimal for r = rlog(k+ I) l, 

• the modified Hamming code (separable) which is a basic cyclic code. 

We use the following notations: N is the total number of codewords, k the number 
of bits of the words to be coded, n the number of bits of the codewords, and r the 
number of redundant bits (n = k + r). All these parameters do not apply when the 
code is non-separable. 

Table A.I gives the general features of these codes and their error model (S and 
NS means Separable and Non-Separable). 

code parity m-out-of-n Double Rail Berger Hamming 
(m 12m) modified 

k, n, m, r k = n -1 m=fn/21 k=n/2=m r= n=2(r-l) 
rlog(k+l)l 

Separable S NS S S S 

N 2k n 
(m) 

2k 2k 2k 

errors odd unidirectional . unidirectional unidirectional double detected 
detected , multi. / I rail single corrected 

Table A.l. Basic properties 
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Table A.2 shows the evolution of the number of codewords that can be made 
when n increases. Cells noted '-' correspond to situations without interest or 
impossible. 

parity m-out-of-n Double RaU Berger Hamming 
n (m 12m) modified 

4 N=8 6 4 4 -
5 16 10 - 8 -
7 64 35 - 16 -
8 128 70 16 32 16 

9 256 126 - 64 -
10 512 252 32 128 -

11 1024 462 - - -
12 2048 924 64 256 -
16 32768 1287 256 4096 2048 

19 262144 92378 - 32768 -
21 1048576 352716 - 65536 -
32 2147483648 601080390 65536 134217728 268435456 

36 34359738368 9075135488 262144 214783648 -

Table A.2. Evolution with n of the number of codewords N 
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Reliability Block Diagrams 

The Reliability Block Diagram is a very simple model used to represent 
redundant structures and to analyze their reliability. It was one of the first tools to be 
employed, and it remains pedagogically very interesting. We have introduced the 
principles of 'series' and 'parallel' redundant structures in Chapter 7. The aim of this 
appendix is to bring some complements on the reliability analysis of non-repairable 
redundant structures, with simple hypotheses. We assume that the modules have 
exponential reliability laws with constant failure rate. The reliability of the reference 
module is: 

RO = e -At, which gives MTTFO = 1/A.. 

1. ON-LINE REDUNDANCY 

All modules are operating in parallel. As far as k of them are faultless, the system 
functions correctly. The value of k depends on the technique used. This corresponds 
to a passive redundancy according to the observability of the errors affecting each 
module. 

Structure n modules in parallel 

The system does not fail as far as one module is faultless. In the general case of n 
modules, we have: (1 - R) = ni (1 - Rj), MTTF = MTTFo . Li (1/ i), where R is 
the global reliability, R j the reliability of module i. 

Hence, for n = 2 (Figure B.1), R j = Ro; this gives: 

R = 2 Ro - Ro 2 = 2 e -AI_ e -2).1, MTTF = 1,5 MTTFo. 

Numerical value: if A. = 10-4, t = 103, then, R(103) = 0.9909. 
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For t = 103, the reliability of the reference module is Ra (l03) = 0.9048; hence, 
R( 103) > Ro{lO\ 

Figure B.l . Structure 2 modules in parallel 

Structure m-out-of-n 
The system does not fail as far as m modules are faultless. The outputs are 
elaborated by a m-out-oJ-n voter. Hence, the global reliability is: 

n 
R = ( L (~ ) Ro m (1 - Ra) n.m) Rv , where Rv is the reliability of the voter. 

i=m l 

3 

a) 2-out-of-3 b) 3-out-of-4 

Figure B.2. Two examples of structures m-out-oJ-n 

a) Structure 2-out-of-3 (calIed TMR) 
This technique, illustrated by Figure B.2-a), has been presented in Chapter 18 as 

the trip/ex or TMR. The voter elaborates the final outputs from the outputs of the 
three modules. This module is supposed hereafter to be faultless. Hence, the 
reliability can be simply determined by enumerating the disjoined cases of good 
functioning: 

• one case where all modules are faultless (probability: R3), 

• three cases where two modules are faultless and one module is failing 
(probability: R2 (1 - R». 
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With a perfect voter, R = R03 + 3 R02 (1 - Ro) = 3 R02 - 2 R03 = 3 e -21.. 1 - 2 e -31.. \ 

MTTF = (5/6) _ MTTFo. 

The MTTF of the TMR system is lower than the MTTF of the basic module. 
However, these two reliability curves have an intersection point (see Figure B.5): for 
missions of small duration, the TMR has a better reliability, and for greater mission 
duration, the basic module is better. 

b) Structure 3-out-of-4 

This structure is represented by Figure B.2-b. For a perfect voter, we have: 
R - 4 R 3 3 R 4 - 4 -31.. 1 3 -41.. 1 - 0- 0 - e - e . 

Structure Double Duplex 
Four modules are associated as two pairs. One of these pairs is connected to the 

process, while the second one is in standby. As soon as a failure is detected on the 
active pair, the second one replaces the defective pair. The detection results from the 
comparison between the two outputs of a pair. The reliability of this quadri
redundant structure corresponds to the survival probability of one of the two pairs: 

P«l.1 AND 1.2) OR (2.1 AND 2.2» = P(1.1 AND 1.2) + P(2.1 AND 2.2) -
P(l.1 AND 1.2) . P(2.1 AND 2.2) = P(1.1).P(1.2) + P(2.1).P(2.2) - P(1.1).P(1.2) . 
P(2.1).P(2.2) (all probabilities are independent). 

Hence, as all modules have the same reliability: R = 2 R02 - R04 = 2 e -21..1 _ e -41..1. 

Figure B.3. Double Duplex 

2. OFF -LINE REDUNDANCY 

An off-line redundant structure pos ses ses n element:, one of them is connected to 
the process, while the (n - 1) other modules are in off-line or cold standby. We 
assume that faults only occur in active modules; thus, the reliability of the redundant 
standby modules is supposed to be perfect. When the active module is failing, it is 
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replaced by a standby module. The detection and reconfiguration mechanism is not 
considered in the reliability block diagram: it is supposed here to be faultless. 

As the events are not independent, the reliability calculus is made easier by the 
use ofthe Laplace transform. We obtain: 

n 
R = e 'AI. L «A, t) i-I) /( (i -1) !), MTTF = n ,MTTFo. 

i =1 

Special case: n = 2 

R = e ,A.I + A, t e ,A. I, MTTF = 2 . MTTFo, 

Numerical value: if A, = 10,4 and t = 103, then R = 0,9953 . 

1 

2 
'--_-' Standby 

b) n = 2 

n 

a) general case 

Figure BA. Off-line redundancy 

3. COMPARISON OF SOME STRUCTURES 

To conclude this Appendix, we show in Figure 8.5 the reliability curves of some 
redundant structures: 

• TMR, 

• 2 modules in parallel, 

• 3-out-of-4, 

• Double Duplex, 

• and off-line redundancy with n = 2. 

These curves are drawn for A = 10'4, and they are referred to the reliability of a 
single module called 'basic module'. 
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R(t) 1 

0,9 

0,8 

Redundant Structures 
1. Basic Module 
2. TMR 
3. 1-out-of-2 
4.3-out-of-4 
5. Double-Duplex 
6. Standby 2 

Figure B.5. Reliability of some redundant structures 
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Testing Features of a Microprocessor 

All semiconductor manufacturers are very much interested in the dependability 
features of the components they produce (ASICS, microprocessors, micro
controllers, etc.). Naturally, this interest deals with all design and fabrication aspects 
of their products: use of fault prevention and fault removal techniques during 
specification, design and fabrication stages. In this general dependability framework, 
production but also maintenance test has apredominant place. In particular, design 
for testability techniques are integrated in the design process. We have already 
mentioned the present IEEE 1149-1 boundary scan standard. 

Some semiconductor companies go a step ahead in that direction and consider 
critical applications with the use of redundant microprocessor structures. We report 
in this appendix some very general information about the Pentium microprocessor, 
interpreted from an Intel documentation. The interest of this presentation is to show 
the rather great variety of dependability techniques offered by a general purpose 
integrated circuit. Naturally, such an approach can be found in many other 
concurrent circuits such as those produced by Motorola, AMD, etc. We will identify 
three main levels of means: Aid to the debugging of microprocessor applications, 
Off-Line testing, and On-Line testing. 

1. DEBUGGING AID 

During the debugging of an application running on a microprocessor, it is 
necessary to understand the execution of the implemented programs. Like all 
processors, the Pentium offers a debugging mode called 'Probe Mode' which allows 
accessing from the outside to the internal registers, to the system memory 1/0 
spaces, and to the internal state of the microprocessor. The Pentium has 4 debugging 
registers used to insert breakpoints. Moreover, the specialist in charge of the 
debugging can access to internal counters that records some events of the internal 
evolution. All these features obviously belong to the design verification group of 
techniques. 
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2. OFF-LINE TESTING 

The Boundary Scan (IEEE 1149.1) standard has been implemented in the 
microprocessor for testing at 'global board level'. This means that in any system 
comprising a microprocessor connected to other circuits (such as memory unit, 
interface circuits, etc.) on a PCB, it is possible to access through the Pentium to 
these others circuits in order to apply test sequences to them and to collect the 
resulting outputs. 

The following pins of the test bus are accessible: TCK, TDIITDO, TMS, TRST, as 
weIl as the test logic (the TAP automaton). 

Finally, the Pentium integrates a BIST procedure that is automatically executed 
when the microprocessor is switched on. This off-line testing procedure is called 
Reset Self-Test but in reality the term 'self-test' refers here to a Built-In Self-Test 
technique. Intel announces that this integrated test covers 100% of the single stuck
at Oll faults of the Micro-Code PLAs, memory caches (instruction and data caches), 
and some other internal circuitry (TLB, ROM). 

3. ON-LINE TESTING 

This component also offers on-line testing features: 

• internaion-line error detection, thanks to error detecting codes, 

• redundancy capability allowing Duplex redundant structures. 

Error Detection 
During the functioning of the Pentium, some error detection mechanisms are 

activated by a specialized automaton called the Machine Check Exception. These 
errors are revealed by the use of single parity error detecting codes: 

• single parity test on the Data Bus (DATA PARITY): 

64 bit-Data Bus + 8 parity bits (one bit per byte of data), 

• single parity on the Address Bus (ADDRESS PARITY): 

32 bit-Address Bus + 1 parity bit, 

• some other internal parity codes. 

Microprocessor Redundancy 
Finally, the circuit has been designed in order to allow a Duplex redundant 

structure to be easily implemented, thanks to the Functional Redundancy Checking 
(FRC) technique. Figure C.I illustrates this technique. 

A 'Master' microprocessor performs the normal functioning of the application 
and is connected to the extern al process. 

A second microprocessor, called 'Check', plays the role of an observer. When an 
error is detected (by simple comparison of the two functions), the output signal IER 
is activated, calling for an external action (alarm, switch-off, recovery, etc.). The 
commercial document of Intel ensures that more than 99% of the faults are thus 
detected. 
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Figure C.l . Duplex Structure 

IER 

error 
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Study of a Software Product 
Ariane V Flight Control System 

The first launch of Ariane V led to the destruction of the rocket, due to a failure 
of the embedded computing system. Whereas most of the firms whose projects 
failed had hidden the causes, the CNES (French national space agency) provided 
numerous pieces of information whose study concurred in the improvement of 
knowledge on dependability. The following presentation is based on the published 
documents. The analysis developed in this appendix must above all strengthen the 
opinion that the mastering of faults in complex computing systems is very difficult, 
illustrating this idea on areal example. 

1. FAlLURE SCENARIO 

A simplified view of the architecture of the computing system embedded in the 
rocket is provided in Figure D.l . 

SRI 

fromAriane 4 

Running Expecting 

OBC 

Engines 

SRI = Inertial Reference System 
OBe = On-Board Computer 

Figure D.l. Architecture of the Control System of Ariane V 
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The engines (Vulcan main engine and boosters) are controlled by the OBC (On
Board Computer) which receives data from various sensors which are autonomous 
complex sub-systems. The SRI (Inertial Reference System) is such a sub-system. It 
provides flight data concerning the rocket position. The OBC as weIl as the SRI 
have redundant hardware boards based on a recovery block. The first hardware 
board is in operation till an error is detected; then, the second board replaces the first 
one. These hardware systems execute complex software real-time applications using 
a multitasking kernel. The programs executed on the two hardware platforms SRIl 
and SRI2 or OBCI and OBC2, are the same. 

Among its numerous treatments, the program of the SRI (SRIl or SRI2) calls a 
function which make a conversion between areal value expressed in a particular 
format and an integer value. This function was previously used in the software 
managing the flight control of Ariane IV. Being dependent on the acceleration, the 
actual values handled by this function at Ariane IV launch time were in a given 
range. Unfortunately, the acceleration of Ariane V being higher, the conversion 
function was called with a value out of this range. This situation raised an exception 
during the function execution. 

The fault-tolerance mechanism implemented in SRIl handled this erroneous 
state, switching on the SRI2 redundant system. Executing the same program, the 
same exception raised. Its handling by SRI2 consisted in communicating a diagnosis 
data to the OBC before switching off the SRI system. Thanks to this information, the 
OBC should continue the flight in a degraded mode, for instance extrapolating the 
evolutions of the rocket positions. Unfortunately, the diagnosis data communicated 
by the SRI2 were interpreted by the OBC as a flight data. Thus, the OBC reacted by 
swiveling the engines. 

2. ANALYSIS 

2.1. Fault Diagnosis 
The first question raised is "who is responsible?" that is, "where is the fault?" 

The conversion function seerns to be the obvious guilty: it was unable to convert the 
given data. Is it so simple? We mayaiso consider that the failure comes from: 

• the OBC because it interpreted a failure identification as a flight data, 

• the OBC which did not perceived these flight data as erroneous, for instance, by 
likelihood check, 

• the SRI2 as it did not provide correct flight data, 

• the SRI which did not tolerate a software fault, 

• the conversion function which raised the exception, 

• the too important acceleration of the rocket at launch time, 

• the development team which did not detect the presence of a fault, 

• the managers who required the reuse of this part of Ariane IV, etc. 
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So, it is difficult to adjudge the fault to apart of the system or to a partner of the 
project. However, this example illustrates several aspects highlighted in the book. 

2.2. Fault Prevention 
At first, the specification is an important phase of the development. The 

specification model must define the role of the system but also the domain in which 
the services will be provided. For instance, the constraints associated with the values 
of the input parameter of the conversion function were not precise. 

Secondly, the presence of redundant elements may be dangerous if redundancy is 
not mastered. For example, the conversion function input presents a large functional 
redundancy: the integer and real types constitute the Uni verses whereas the Static 
Domains were reduced to ranges. On the contrary, the use of one output parameter 
of SRI for two concepts (the flight data and the diagnosis data) was possibly due to 
performance reasons. As several times mentioned, the dependability requirements 
are often against the performance requirements (time, memory, costs, etc.). So, a 
compromise must be found to develop industrial dependable real-time systems. 

The fact that the conversion function is a component successfully used in Ariane 
IV shows the difficulties of reuse. Apriori, the reuse of a component increases the 
reliance which can justifiably be placed on the service it deli vers, that is, its 
dependability. However, the justification of this reliance was obtained for a specific 
functional and non-functional environment; this reliance was not preserved when the 
environment changed. 

The Ariane V control system is a complex system in which numerous elements 
interact: hardware platforms interact with software applieations to detect errors and 
to handle them (switching from the initial platform to the redundant one), complex 
coupling between the sub-systems SRI and aBC, ete. These complex interactions 
are at the origin of numerous faults in the recent systems which use the integration 
of sub-systems. Each sub-system operates correctly, whereas errors occur when the 
sub-systems interact each other. Most of the errors propagated during the first flight 
of Ariane V are coming from integration issues: SRI2 interprets the exception raised 
by SRIl as a hardware failure and aBC interprets the diagnosis data as a flight data. 

2.3. Fault removal 
The reader is probably amazed that the fault of the eonversion function was not 

detected during the reviews and test procedures. Probably, as previously mentioned, 
the reuse of the SRI was the cause of less eheeking. The successful use of a 
component during several years increases an unjustified reliance on the component, 
and then decreases the time and the money spent for its testing. 

To be efficient, the fault detection in a component requires the handling of 
information on the component domain. In particular, the coverage of 100% of a 
structural testing may not detect any faults due to use out of the domain. The 
structural test should take into account the domains of the components used to 
implement the system: can a sequence lead the system operation to reach states out 
ofthe domain? Consider, for instance, the following statement: 

K :=. . I * J. ., 

The assessment of the program must detect values of land J such as I*J 
provokes an overflow, that is, the result of this multiplication is greater than the 
higher integer which can be expressed by the run-time resources. 
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FinaIly, the complexity of the global system and of the physical devices of its 
functional environment often limits the integration testing. 

2.4. Fault Tolerance 
After the failure, most of the criticisms concerned the exception mechanism 

which raises the error. Several persons proposed the suppressing of the raising to 
continue the execution. This viewpoint is dangerous. The absence of error detection 
does not prevent the occurrences of errors; it just allows masking them. In this case, 
as weIl as when the exception handler consists in doing nothing, the behavior of the 
system is hazardous and causes an uncontrollable contamination of the errors in the 
system. This situation is Illustrated by the relationships between the SRI and the 
ÜBC: the SRI signals its failure considered as anormal data. The use of an 
exception would force the ÜBC to take this information into account. 

The wrong but not detected communication between SRI and ÜBC also shows 
the importance ofredundant elements to detect error on-Une. For instance, the use of 
likelihood checking certainly would have detected the flight data inconsistency. In 
the same way, redundant information would be useful to detect that the exception 
raised in SRIl was not due to a hardware failure but software one. This diagnosis 
probably leads to another reaction to handle the error. 

The described scenario presents a contamination of errors: from the conversion 
function to SRIl then to SRI, ÜBCI and the engines. To handle the problems 
coming from integration of components, the designer must pay a special attention to 
the error conjinement. 

Finally, the fact that only hardware faults were tolerated illustrates that engineers 
or managers assume that the problems come from the aggressions of the 
environment. üf course, these causes exist, particularly for spatial applications. 
However, the Ariane V failure shows that the human is also often at the origin of the 
faults. 
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Answer to the Exercises 

FIRST PART 

Exercise 3.1. Failures of a drinks dispenser 

1. Static failure: the money change or return operations are incorrect. 

2. Dynamic failure: when the machine has delivered a eoffee, the red light stays on 
one minute before authorizing the next drink to be selected. 

3. Temporary failure: this morning, the machine was unable to deliver tea. 

4. Static and persistent failure: the ~$ coins are no longer accepted by the machine. 

Exercise 3.2. Faults of a drinks distributor 

1. Examples of functional and hardware faults. 

Functional fault. The machine does not test the state of one of the resources 
(coffee, tea, chocolate, cup, sugar, and spoon). Consequently, the service is no 
longer delivered to the user who has paid and selected his/her drink. He/she obtains 
an empty cup. This is a persistent and static failure. Thus, the 'money manager' 
automaton which uses the state diagram is correctly functioning. On the contrary, 
the 'drink delivery' automaton which interprets the orders and delivers the drink 
does not execute the order. 
Hardware fault. A fault of the tea selection button may lead to a quite different 
failure. If this button become inactive, the machine does not receive any tea 
selection order, so it stays in the 'seleetion' state, waiting for a user selection. This 
user who would like to drink tea has to cancel or select another drink (for example a 
coffee). The finite state machine cannot directly pass from the global 'selection' 
state to the 'delivery' state allowing for a tea selection. 
This fault is equivalent to the cut of the are connecting the state 'selection' to the 
state 'delivery' for a tea selection. 

543 



544 Appendix E 

2. Money management alteration. Money is implied in states 'payment', 'cancel' 
and 'change'. Hence, functional and hardware faults altering this money service 
are to be found in these states. The panel of possible faults is rather large: coin 
rejection, impossibility to cancel a drink, incorrect money change, etc. 

3. Functional transformation. The new proposed functionality can be obtained by 
modifying the global functional state graph as shown in Figure E.l. When the 
drink is delivered, its price is subtracted from the value of the total amount of 
money introduced in the machine; then, the system comes back in the 'selection' 
state. The user can then choose a new drink or order the return of the remaining 
money (by pressing the 'cancel' button). 

Modifled Graph 

Figure E.l . Initial graph and modified graph 

Exercise 3.3. Study of a stack 

1. In order to simplify the study, we suppose that the real size of the stack is only 
10 objects. We will now study some faults. 

Design fault. The real size of the stack has been underestimated (for instance, 10 
locations only), whereas the storing of 15 objects is envisaged. If 15 objects are 
pushed, the fault produces a failure. Assuming that the stack memorizes integers, let 
us consider the prograrn: 

for i varying from 1 to 15, loop 

PUSH A(i); 

end loop; 

If the Stack_Full mechanism is used, the preceding treatment will stop at the first 
stack overflow. This overflow can raise an exception in the case of a software 
implementation. Hence, the fault provokes a failure which is detected. 

Hardware fault. If a breakdown affects the Stack_Full signal and maintains it 
at '0' (no signaling) despite excessive stacking, the calling program can send too 
many different values to store. In the case of the preceding program, what will 
occurs after the 10th value sent to the stack? 
If the stack refuses to store more than 10 values, 5 values will remain not stored. 
The stack could accept all coming values and store the 5 values 11 to 15 at the 10th 

memory address. Or else, the stack could return to the first address and store the 
values 11 to 15 at the addresses 1 to 5, hence erasing the preceding stored data. 
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These possibilities depend on the implementation of this stack: hardware with gates 
and registers, or simulation of the stack in the main memory. 

A test sequence detecting this fault could be to Push 15 integers (from 1 to 15), and 
then to Pop 15 values and to compare them with the initial values. Let us note that 
this test sequence also detects the previous functional design fault. 

External fault. The user of the stack ignores the signal indicating an overflow. The 
sequence given for the case of design fault will transform this fault into a failure. In 
both cases, the failure is the same, (but without any detection). 

2. Anormal use of a stack is to apply a same number of Push operations than Pop 
operations. If a fault provokes the application of a Pop action to an empty stack, 
a failure occurs. The situation is very similar to the overflow studied in the 
previous question, and the use of Stack_Ernpty signal allows the detection of 
such situation. 

Exercise 3.4. Study of a program 

For an addition such as Exp1 + Exp2, where Exp1 and Exp2 are two arithmetic 
expressions, the compiler generates a sequence of executable instructions allowing 
the evaluation of these expressions. The two obtained results are placed in two 
distinct registers. Then, the compiler adds an instruction which perform the sum of 
the content of these registers. However, the programming language does not define 
the order of evaluation of these two expressions: one can first evaluate Exp1, then 
Exp2, or the opposite! This means that, for our example, we will compute first F1, 
then F2, or the opposite. 

Let us exarnine the functioning with '1' as the initial value of A. 

After execution of F 1, A = 2, which is also the value returned by F 1. Then, after 
execution of F2, the value of A and the value returned by F2 are equal to 4. Hence, B 
will then take the value: 2 + 4 = 6. On the contrary, if F2 is evaluated first, the value 
of A and the value returned by F2 are equal to 2 (A being initially equal to 1). Then, 
the execution of F1 returns 3. Hence B will be equal to 2 + 3 = 5. 
Consequently, according to the executable code generated by the compiler, the final 
result of B is either 6 or 5! 

What could be concluded from this analysis? The addition is a commutative 
operation, so both interpretations of the compiler are acceptable. However, this 
commutativity property is only effective for the addition of values (i.e. 5 + 3 = 3 + 
5), and not for the addition of expressions having 'side effects' (in our example, the 
execution of Fl and F2 modify A). Thus, a possible failure (only one of these two 
interpretations is expected) may result from the fact that the designer does not know 
how the technology he/she uses will operate on the source code. Here, the 
technology deals with the implementation of the prograrn by the compiler. 

Exercise 4.1. Latency of an asynchronous counter 

The MSB (Most Significant Bit) will normally switch to the value 'I' after 8 clock 
pulses. Hence, the latency is equal to 8 x 2 ms = 16 ms. 
The fault will lead to a failure that remains 8 clock pulses and then disappear. 

Exercise 4.2. Latency of a structured system 

Error # 1: 10ms, error #2: 110ms, error #3 = failure of the system: 140ms. 
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Exercise 4.3. Consequences of failures 

Mean cost = (2 x 0 + 3 x 5 .103 + 2 x 6 .103 X 4 + 3 (103 + 3 .103 X 4» /10. 
Mean cost = 10.2 ku. 

Exercise 4.4. Fault - Error - Failure in a program 

1. As the actual last right page number is 325, the expected result is (325+ 1)/2 = 
163 sheets. 

If the faulty expression provides 326 instead of 325, the result computed is 
(326+1)/2 = 163, taking the integer division semantics into account. So, the 
result is good: no failures occur. 
Considering 327, the returned value is (327+1)/2 = 164. The procedure execution 
fails. The same result and conclusion is obtained with 328. 

2. An error characterizes an unacceptable state or state evolution occurring at run
time. The states being characterized by values taken by attributes, consider Last
Right-Page as attribute. ''The last right page number of a book is odd" is a 
property. Therefore, no error is detected in the first case (326), no error is 
detected in the second case (327), and an error is detected in the third case (328). 

3. Conclusion. Consider Table E.I which synthesizes the three cases. A fault may 
provoke an error which may provoke a failure. In the first case, the fault is 
activated as an error, but the last statement tolerates it (no failure occurs). In the 
second case, no error is detected, as the observation means is not sufficient. The 
property which characterizes the error is not accurate enough: all even values are 
not correct values. However, the program fails. The last case is the conventional 
one: the fault activates an error, which propagates as a failure. 

case fault error failure 
detection 

1 yes yes no 

2 yes no yes 

3 yes yes yes 

Table E.l. Fault - Error - Failures cases 

Exercise 5.1. Faults of a MOS network 

The determination of the logical expression of a 'structured' MOS network can be 
obtained by an iterative decomposition of this network into 'series' and 'parallel' 
sub-networks, till reaching the basic MOS components. 

1. We perform this analysis for the fault-free network and for the two faulty 
networks: 

• Faultless circuit: R = a b' + b c, 

• Circuit with fault FI: RI = b c, 

• Circuit with fault F2: Rz = (a + c) (b + b') = (a + c). 

The 3 corresponding functions, N (faultless circuit), NI (with fault FI) and Nz (with 
fault F2), are shown in Table E.2. The output takes the same values for four input 
configurations only: 000,010,011, and 111. 
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abc N NI N2 N3 N4 

000 0 0 0 0 1 
001 0 0 1 0 1 
010 0 0 0 0 0 

01 1 1 1 1 1 1 
100 1 0 1 1 1 
101 1 0 1 1 1 
1 10 0 0 1 0 0 
111 1 1 1 1 1 

Table E.2. Normal and erroneous functions 

2. Nz becomes N3 = (a + b) . (b' + c) = a b' + a c + b c = N, without fault. Thus, this 
fault has no influence on the function performed by the network (see Table E.2). 

Let us note that in the faultless circuit, the permutation between transistors 
controlled by band c has no influence on the functioning. However, the same 
fault Fz will have different effects, (failures) according to the chosen network! 

3. Fault F3: the function becomes N4 = b' + b c = b' + c, shown on the previous 
table. It induces two failures highlighted in bold. 

Exercise 5.2. Faults of a full adder 

1. Functional fault F]. The 'sum' output (S) is not modified, but the 'carry' (C) 
becomes Cl = a b + a' b' c. There are three failures on the carry output, for 
abc = 001, 101 and 011. 

2. Hardware fault F2• The c1assical Stuck-At 0/1 fault model supposes that a fault 
occurring on a gate input line has no backwards effects. Here, the NAND gate 
receiving a and b is not altered by the fault a. 
The input b no longer acts on the output S, producing 4 failures. The carry 
function becomes Cz = [(ab)' . «a Et> O).c)']' = a b + a c, instead of ab + ac + bc. 
A failure occurs for a' b c = 1. 

abc CS CI SI C2 S2 

000 00 00 00 

001 01 11 01 

010 01 01 00 

01 1 10 00 01 

100 01 01 01 

101 10 00 10 

1 10 10 10 11 

111 1 1 1 1 1 0 

Table E.3. Truth tables: without fault and with faults FI and F2 
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Table E.3 gives the output values without fault and with faults F1 and F2• The 
values noted in bald characters show the failures. 

3. The two faults produce quite different failures. It is possible to distinguish 
between these faults by applying to the circuit an input vector such as Oll. The 
diagnosis is as folIows: 

• if the output C only is erroneous, then fault F1 is present, 

• if outputs C and S are erroneous, then fault F2 is present, 

• if both outputs are correct, none of these two faults is present. 

Exercise 5.3. Fault models and failures 

1. We draw the truth table associated with each fault. Thus, the erroneous function 
for c stuck at 0 (noted co) is z = a b; it provokes 3 failures for the input vectors 
001, 011, and 101. We observe on Table EA that faults aO, bO and Jl are 
equivalent, and that faults d l , Cl and Zl are equivalent. 

abc z aO al bO bl CO Cl dO dl ZO Zl FFI FF2 

000 0 0 0 0 0 0 1 0 1 0 1 1 1 

001 1 1 1 1 1 0 1 1 1 0 1 1 0 

010 0 0 1 0 0 0 1 0 1 0 1 1 1 -
011 1 1 1 1 1 0 1 1 1 0 1 1 0 

100 0 0 0 0 1 0 1 0 1 0 1 1 1 

101 1 1 1 1 1 0 1 1 1 0 1 1 0 

110 1 0 1 0 1 1 1 0 1 0 1 0 0 

111 1 1 1 1 1 1 1 1 1 0 1 1 0 

Table E.4. Correct and erroneous functions 

2. Let us assume that the functional faults can affect each gate by transforming it 
into any other gate type: AND, OR, NOT, NAND and NOR. We illustrate these 
faults with two cases (Table EA): 

- FFI which transforrns the AND gate into a NAND gate: 
z = (a b)' + c = a' + b' + c. 

- FF2 which transforms the OR gate into a NOR gate: 
z= (a b + c)' =a 'c' + b'c'. 

These two failures do not belong to those induced by the stuck-at fault model. Going 
further, we can wonder if this functional gate-transforming model is able to 
complement the set of all theoretical failures (255 classes!). The answer is not: for 
instance, the erroneous function Z = a b' + b c' cannot be obtained with these fault 
models. Now the question not answered here is: 

Can such ajailure occur, andjrom wh ich technologicalor junctionaljaults? 
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Exercise 5.4. Faults of a sequential circuit 

From the circuit, we can write the logical expressions of the D-inputs of the Flip
Flops; then, we deduce the transition table and the state graph shown in Figure E.2 . 

Correct Functioning 

z= 0 0/1 
state yl y2 DID2 

x 0 1 

1 00 01 01 

2 01 11 10 

3 11 00 00 

4 10 01 11 
z=l 1 z=O 

Figure E. 2. Transition table and state graph of the correct circuit 

1. The transformation of gate A into a NOR modifies the logical expression of D2 
which becomes D2 = y2' + x'+ yl'. Figure E.3 shows the new transition table and 
state graph. We observe that two transitions are modified: the arc joining state 2 
to state 4 when x = 1 is now going to state 3, the are joining state 3 to state 1 
when x = 0 is now going to state 2. 

This analysis led us to represent the initial funetional fault at 'state graph level' by a 
new fault model (arc modification). If we suppose that state 1 is the initial state, then 
by applying the input sequence <0, 1>, the cireuit goes into state 2 and finally state 3 
instead of state 4 ; the final output is z = I instead of z = 0: hence a failure oeeurs. 

Functional Fault 

z= 0 0/1 
state yl yl DIDl 

x 

1 

z = l 1 z=O 

Figure E.3. Influence of the functional fault 

2. The 'stuck-at l' fault noted a modifies the logieal expression of Dl which 
becomes: Dl = yl.y2' + yl' .y2. Figure E.4 shows the new transition table and 
state graph. Only one transition is modified : the are joining state 4 to state 2 
when x = 0 is now going to state 3. Here also, we have transformed the hardware 
fault model into a graph fault model. 
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If we apply the input sequence <0, 1, 0> to the initial state 1, the system goes into 
states 2, 4 and 3 instead of state 2. However, no failure occurs at the output z! A 
failure is produced if a new vector x = 0 is added to this sequence: the incorrect 
circuit reaches state 1 instead of state 3 and gives a final output z = 0 instead of 1. 

Hardware Fault 

z = 0 0/1 

state yl y1 

1 

z=l 1 z=o 

Figure E.4. Influence of the hardware fault 

Exercise 5.5. Software functional faults 

1. FauIt analysis: Line 5: Sum := A( i ) - Sum; 

The Sum is iteratively subtracted from each value A ( i ) . Then, we divide the resuIt 
by the number of values. We obtain a final Sum value = -15 and a final Average 
value = - 3.75 instead of + 3.25. The difference between the correct value and the 
erroneous one is quite important; hence, the external consequences of such a failure 
can be serious. However, this difference depends on the values stored in the array A. 
For example, if we add a fifth figure equal to 0, the erroneous average becomes 3 
instead of 2.6: thus the difference is only 0.4 in that case! 

Line 7: return Sum / (A'last - A'first); 
This fault provokes a bad counting of the total number of numbers to be averaged: 
correct number minus 1. The seriousness of the resulting failure decreases with the 
number of values to be considered. Consequently, this fauIt has more 'regular' 
effects than the preceding one. 

2. The result becomes - 7.375. The performed mathematical function is 
transformed: 

T= 2'\ A(4) - 2-2 A(3) + 2.3 A(2) - 2.4 A(l). 

Exercise 5.6. Software technological faults 

The proposed program converges when N increases, whereas the series 
mathematically diverges. This failure comes from the Iimited precision used to 
represent the floating numbers in computers. When I reaches a certain value, 1.0 / 
f10at (/) is computed as 0.0. This situation is an example of technological fault, as 
the real number representation differs from their mathematical definition. 
Let us note that for most programs, this fault actually exists but has no serious 
effects, even if division operations are used. Such a situation occurs in exercise 5.5, 
as the value of N does exceed the precision limit. 
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SECONDPART 

Exereise 7.1. The 'fault - error - failure - detection - repair' eyde 

1. Figure E.5 shows the interpreted cycle: 

Le J: latency of the fault according to the occurrence of the first error, 

Lf. latency of the fault according to the occurrence of the failure, 

D: detection time, R: repairing time, 

SF: mean time of good functioning to the occurrence of a fault. 

product product product 
availtlble lIoll-tlVlIÜIlble tlVfliltlble 

t I I TIME 

I I 
~ 

fault error detedion repalr fault 

faDure diagnosil 
l.e1 __ + • U ~ 

~ ~ ~ 
D R SF 

Figure E.5. Cycle of a repairable product 

2. MTBF study. MTBF = LI + SF: mean time to the occurrence of a failure. 

The integration of the latency phenomenon increases the MTBF/MTTF: 

MTTR = (D - LI> + R. 
The availability rate of this system is: (SF + LI> / (D + R + SF). 

Exercise 7.2. Reliability of a eomponent 

551 

The component follows an exponential reliability law with a constant failure rate A.. 

1. We perform adefinite mathematical integration of R(t) = e'~, from 0 to 00. The 
mean time is 1 / A., that is to say 106 hours. 

The reliability at the mean time is R(l/ A.) = e -1. 

2. dR / dt = - A. R. It is the derivative of the survivallaw, that is to say the failure 
density at time t. The tangent at the origin is given by the equation: y = A. x + 1; 
this line met the abscissa at time l/A.. 

3. A. = - (dR / R) / dt. It corresponds to the conditional probability of a fault 
occurring at time t during a time unit (1 hour). 

4. The second version is more reliable than the first one, as it has a smaller failure 
rate: R2(104) / Rl(104) = e 0,099 = 1,1041. 

Note. The failure rate has been multiplied by 10, but the reliability at time 104 H is 
multiplied by 1.1 only. 
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Exercise 7.3. Composed reliability 

1. Series diagram. The global reliability function is the product of the reliability 
functions of the constituting modules: 

R(t) = RI (t) . R2(t) = e -Alt. e -Alt = e -(A1+ Al) t. 

Hence, the faiIure rates of the components are added: 

'A = 'Al+ 'A2, MTBF = 1 / ('Al+ 'A2). 

If 'Al= 'A2, the MTBF is divided by 2. We note that the value of the MTBF is 
inversely proportional to the number of components (if they are identical). 

2. Parallel diagram. 1 - R(t) = (1 - RI(t» . (1 - R2(t». 

Thus, R(t) = RI(t) + R2(t) - RI(t).R2(t). 
MTBF (or MTTF) = 11 'Al + 1 / 'A2 - 1/ ('Al + 'A2). 

Ifthe two components are identical, R(t) = 2Ro - R02 (where Ro is the reliability of 
each one). MTBF = 1,5 MTBFo. 

3. Reliability of one module: Ro (103) = 0,9048. 

Series diagram: R( 1 03) = e -0,2 = 0,8187 -+ the reliability is smaller. 

Parallel diagram: R(103) = 0,9909 -+ the reliability is higher. 

Exercise 7.4. Comparison of two redundant structures 

a) Series- Parallel b) Parallel-Series 

Figure E.6. Two redundant structures 

1. Structure 'parallel-series': 

Rps = (1 - (1 - RI) (1 - R2» (1 - (1 - R3) (1 - R4», 

Rps = R4 - 4 R3 + 4 R2, if Ri = R. 

Structure 'series-parallel': 

1 - Rsp = (1 - RI. R3) (1 - R2 . R4), 

Rsp = 2 R2 - R4, if Ri = R. 

2. Comparison of the two structures: 

Rps - Rsp = 2 (R2 - R)2 which is always positive; so Rps > Rsp. 

Thus, the first structure is always more reliable than the second structure. 
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Note. As the faults altering the modules are independent, these reliability results can 
also easily be determined by the composition reliability theorems. For example, for 
the PS structure we have: Rps = P«l or 3) and (2 or 4)) = P«(1 or 3) . P (2 or 4)) = 
(P(l) + P(3) - P(1).P(3)).(P(2) + P(4) - P(2).P(4)) = (2R - R2)2, if all modules have 
the same reliability R. 

Exercise 7.5. Safety analysis by a Markov graph 

The evolution matrix which gives the probability to pass from astate to another 
(with a sampling rate expressed by hour) is shown in Figure E.7. After two 
elementary periods (hours), the probability to reach state 4 (considered as 
dangerous) is equal to pl.p3 + p2.p4. The raising of this matrix to the successive 
power of 2, 3, etc., gives the progression of the probability values to reach this 
dangerous state (hour after hour). As this system does not posses any regeneration 
mechanism, all parameter values always increase and are bounded by 1; this means 
that the degradation probabilities increase with time. 

[

I ~ I I ~ 2 I ~ 3 I ~ 41 [(1- pl- p2) p2 pi 0 1 
p= 2~1 2~2 2~3 2~4 = r2 (1-p4-r2) 0 p4 

3~1 3~2 3~3 3~4 rl 0 (1-p3-rl) p3 

4~1 4~2 4~3 4~4 0 0 0 I 

Figure E.7. Evolution matrix 

Exercise 7.6. Representation of a system by a stochastic Petri net 

Figure E.8 shows the failing and restoring mechanisms of this system. When an 
active unit fails and if the spare is available, the spare unit replaces the failing unit 
with a rate p. This failing unit is then symbolized by a token in place P5, waiting for 
repairing (with rate f.1). Then, it is considered as the new spare unit (a token in place 
P3). The spare unit is submitted to failures and repair with rates Ä.s and f.1s. 

Spare avaiJabk 1'3 As 

Active wriJs 

t.. TI Spare down 

Figure E.8. Stochastic Petri net 

The analysis of this graph can be performed by means of a finite state machine (non
parallel model), called the marking graph, which shows all possible evolutions from 
the initial state (3 tokens in PI and 1 token in P 3). We can notice that the total 
number of tokens is constant. 
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Example 0/ evolution: 

(Pl=3, P3=1) - (Pl=2, P2=1, P3=1) - (Pl=3, PS=l, P3=0) - (Pl=3, P3=1), etc. 

Exercise 7.7. Fault Tree and Reliability Block Diagram 

The fault tree can be analyzed with the knowledge of the reliabilities of the basic 
events (leaves of the tree) . Hence, we start from the leaves and go up towards the 
studied event which is the failure of the system. The probability at the output of a 
AND node is the product of the probabilities at its inputs. The probability at the 
output of a OR node (here with 2 inputs) is the sum of the probabilities at its inputs 
minus the product of these probabilities (this can be generalized to a more 
complicated formula for n inputs). The failure ofthe system has the probability: 

F= Fl2 + F3 - Fl2.F3 = (1-R}).(1-R2) + (1- R3) - (1-R}).(1-R2)·(1 - R3), 

Hence, R = 1 - F = (RI + R2 - RI.R2).R3. 

F = F12 + F3 - F3.F12 

Figure E.9. Fault tree analysis 

Figure E.lO shows the Reliability Block Diagram of this redundant system: two 
modules MI and M2 in 'parallel', in 'series' with M3. The analysis by the method 
already studied gives the reliability: R = Rl2 . R3 = (1 - (1 - RI).(l - R2)) . R3 = (RI 
+ R2 - RI.R2).R3. We obtain the same result. 

Figure E.l O. ReIiabiIity Block Diagram of the system 

Exercise 8.1. Functional redundancy of an adder 

1. The number of input vectors producing a same output value is variable. This 
function increases from 1 to 10 according to a linear law when the output value 
varies from 0 (only one possibility: 0 + 0) to 9 (10 vectors: 0+9, 1+8, ... ,9+0). 
Then, it decreases from 10 to 1 when the output value passes from 9 to 18 (only 
one case: 9+9). Finally, it takes the constant value 0 when the output values are 
between 19 and 99, corresponding to 'impossible' cases. The input values being 
supposed as having the same occurrence probability, we deduce the probabilistic 
domain shows in Figure E.II. 
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P(c) = (c + 1)1100, for c E [0,9], P(c) = (19 - c)/lOO, for c E [9, 18], 
and P(c) = 0 for c > 18. 

P 
P(c) = (c + 1)/100 

0,1 I--_\_ ___ P(c) = (19 - c)/IOO 

c 

o 9 18 99 

Figure E.ll. Probabilistie statie funetional domain 
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Failure detection. A typical application of the functional redundancy deals with 
failure detection. Let us imagine an external observer receiving the output values. 
The preceding domains reveals that the output values belonging to (19, 99) are 
strictly impossible: if the observer receives a value belonging to this sub-domain, it 
can without any doubt signal the occurrence of a failure due to an unknown fault. If 
the output values belong to the acceptable sub-domain (between 0 and 18), this 
observer must record a11 produced output values and compare their occurrence rate 
with their probabilistic rate. In case of significant difference, this observer can raise 
a warning signal indicating that a failure might have occurred. 

2. Input redundancy. There are 2 x 4 = 8 bits, i.e. 256 configurations, but only 
100 of them are used by the considered code: 10 values for A and 10 values for 
B. The resulting input redundancy rate is: (256 - 100) / 256 = 0.61 (number of 
unused vectors divided by the total number of possible vectors). 

Output redundancy. There are also 8 output bits, i.e. 256 configurations. Only 
19 ofthem are used. So, the output redundancy rate is: (256 - 19) /256 = 0.93. 

3. The numbers have 2 bits and they are constrained by the property A :5 B. This 
leads to 1 + 2 + 3 + 4 = 10 cases. Hence, the redundancy rate is: 
(24 - 10) /24 = 0.38. 

Exercise 8.2. Functional redundancy of astate graph 

First of all, we observe that the graph has no redundant unreachable part: from the 
initial state 1, we can reach any other state. Then, we analyze the state graph to find 
if it accepts sequences that are forbidden by the input constraint: 'c is never applied 
after b'. There are two such situations (see Figure E.12): 

a) The first one occurs when the graph is in state 2 or 3, if we apply the forbidden 
sub-sequence <b, c>. As this situation will never occur, the arc 3-2 (by input c) is 
redundant and thus can be removed. Indeed, this transition is never fired by any 
acceptable sequence. 

b) The second one occurs when the graph is in state 4, and if we apply the same 
sub-sequence <b, c>. However, the arc 4-2 (by input c) is not redundant. Indeed, 
the sequence <a, a, c> from state 1 is quite acceptable: it passes through states 2, 
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4, and finally reaehes state 2 by the are 4-2. In that ease, the funetional 
redundaney eannot be expressed as a redundant are but as a redundant path: 
<4 - 4 - 2> is redundant. 

Figure E.12. Redundant graph 

Exercise 8.3. Structural redundancy and faults 

1. This eireuit implements the logical funetions:j = a' + b, g = b'. The table of 
Figure E.i3 shows the resulting input/output eonfigurations. Both faults 
eonsidered here have no effect on f Fault a has also no effeet on g. 
Consequently, there is no failure. On the eontrary, fault ß is aetivated as a failure 
when a.b = 10: henee, the outputjtakes value '0' instead of '1'. 

a ab fg 
b f 

00 I I 

01 10 

ß g 10 01 

I I 10 

Figure E.13. Redundant circuit 

2. We deduee from the previous study that the line a is totally superfluous. Thus, it 
eorresponds to passive redundaney. Going a step further, the analysis shows that 
the output g is independent from the produet term a.b produeed by the AND 
gate. Thus, this gate (noted X in the figure) can be removed, the NOR gate 
producing g being hence a simple INVERTER. 

3. The truth table shows that the input eonfiguration (00) never oceurs at the output 
of the eireuit: this eorresponds to an output junctional redundancy. 

Exercise 8.4. Structural redundancy of several circuits 

We suggest the following analysis to deteet possible 'structural redundaneies'. We 
establish the logical expression of eaeh node of the eircuit, starting from the primary 
inputs (the extern al inputs of the eireuit) and going backwards to the primary outputs 
(the externaioutputs of the eireuit). At each step, the resulting logical expression is 
analyzed in order to determine possible simplifieations. If such simplifieations exist, 
then they reveal structural redundancies. 
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Circuit 1. We determinej= a + a.b' + c = a + b' + c. Hence, the input line b ofthe 
AND gate is redundant. We can remove this line and also the AND gate, a entering 
directly into the NOR gate. This redundancy is passive. 

Circuit 2. This circuit possesses passive structural redundancy: gate (b + c) can be 
removed. No stuck-at 1 faults of this gate can be detected on the output! 

Circuit 3. This circuit realizes the majority function of its inputs without any 
structural redundancy:j= a.b + a.c + b.c. 

Circuit 4. The input lines of circuit 4 are all different, excepted variable b which 
intervenes twice. The XOR being commutative, we can modify the network by 
shifting the terms band b.e to the beginning of this network. The function becomes: 
j = b 61 be 61 ac 61 d. Now, b 61 be = be'; hence, this circuit can be simplified. 
However, there is no passive redundancy: all stuck-at faults can be detected. 

Exercise 8.5. Software redundancy and constraint types 

1. The feature new creates a new type from another one (here the type 'integer'). 
Specific operations (subprograms) must be defined, as the ones provided by the 
other types cannot be used. For instance, two Size_oCShoes cannot be added or 
divided. 

The declaration 

type Size_of_Shoes is new integer; 

P: Size_of_Shoes; 

instead of 

P: integer; 

is not a functional redundancy. The two versions lead to the same executable code 
which allocates one word in memory for the variable P. 

On the contrary, it constitutes a structural redundancy of the source program. It is an 
active redundancy ifsubprograms using parameters oftype Size_of_Shoes exist. 
Indeed, the associated operations are specific to Size_of_Shoes and not to any 
integers. On the contrary, this redundancy is passive if the program makes only use 
of integer operations. 

2. The adding of the constraint 

type Size_of_Shoes is new integer range 28 •• 45; 

reduces the number of acceptable values. For subprograms having parameters of this 
type, this declaration reduces the functional domains, hence having an impact on 
their functional redundancy. The type declaration itself constitutes a structural 
redundancy, as it corresponds to an element of the structure of the 'program model'. 
It seems to be passive, as it omission has no effect on the behavior of the system. 
The reality is more complex. If the structure of the program is such that no value 
outside the interval [28 . .45] can be attributed to P, the answer is 'yes': there is 
passive redundancy. On the contrary, if this hypothesis can be guaranteed, then the 
constraint cannot be removed from the declarative part, because the execution of the 
pro gram leading to the assignment of a value outside the [28 . .45] range produces the 
raising of an exception (Constraint_Error in Ada), and thus a different 
behavior. In this case, the redundancy is active. 
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Exercise 8.6. Exception mechanisms of languages: termination model 

The functional redundancy depends on the types of the parameters and on the actual 
values received and returned by the procedure. Let us signal that if the exception 
handler implements a full-tolerance, the returned values are the same, whatever an 
exception is raised or not during the body execution. 
Structural redundancy exists. The exception handler is not useful if no exception (no 
error) occurs. So, the redundancy is passive. However, let us signal that if an 
exception is raised, it is then propagated in the software hierarchy when no handler 
exits. Hence, the handler removal changes the program behavior where errors are 
concerned. 
This redundancy is separable: the handler is explicitly separated from the body. This 
feature thus constitutes an interesting means to show the normal body and the error 
handling part. 
The redundancy is off-Une (or inactive), as the handler starts its execution only when 
an exception is raised. 

THIRDPART 

Exercise 9.1. Requirement analysis 

Two families of entities are defined in the text. 
The first one concerns the capability of the product to be moved. This notion is 
specified by two entities: the product must be contained in a hand and the product 
must be moved by car. 
The second family concerns the notion of autonomy specified as maximized. 
Let us note that numerous specifications can be derived from these requirements. 
For instance, the autonomy can be provided by an efficient battery included in the 
mobile phone, and/or by a connection to the car battery. 

Exercise 10.1. Verification ofthe adder 

The functional fault considered transforms the adder into the circuit of Figure E.14. 

a_--r:~ 
b ~-4-.-~ 

S S=aE9bE9c 

Figure E.J4. Erroneous adder 

1. Verification by extraction. We determine the new logical expressions of this 
circuit, starting from the primary inputs and progressing towards the primary 
outputs: 

• S = a EB b EB c, the sum is not altered by the fault considered, 

• C = a + b + c, the carry is erroneous (the correct function is ab + ac + bc). 
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There is a failure on output C each time one input only is at '1': so there are three 
erroneous vectors. 

2. Verification by double transformation with intennediate model. We choose 
as intermediate model the modular description of the adder as two interconnected 
half-adders. The fault modifies each one of these half-adders: the behavior with 
and without fault is the same only when both inputs have identical values. The 
combination of these two modules is correct if and only if: a = b = c = 0 or 
a . b . c = 1. All others vectors give a wrong output. 

3. Verification by double top-down transformation. The behavior of the circuit 
is simulated with a functional input sequence significant of the correct behavior. 
For example, we perform an addition without carry (1 + 0 + 0), and an addition 
giving the maximum output value (1 + 1 + 1). Then we compare the results given 
by the circuit with the computed theoretical values. 

Exercise 10.2. Programming style (C language) 

The four situations described hereafter stress examples of bad programming style, 
which increase the risk of introducing faults. Let us note that in each case, the 
program is syntactically and functionally correct. However, the bad style which is 
used makes it very probable to produce faults. Moreover, even for such simple 
functions, the style used for its specification will probably lead to utilization faults 
(calls to the function). 

• The type of the returned value (int) is absent. This is syntactically correct (use 
of default type), but the user of this function may think that this function does 
not return any value. In a general way, the use of 'by default' or 'implicit' 
constructions is not at all advised. 

• The name of the function is not explicit. In particular, the fact that it proposes 
two mutually exclusive treatments is not specified. 

• The value '5' used in the specifications to define the size of the array is then 
reused in the loop! First, no link exists between these two values dealing with the 
same constant (same concept). Moreover, the maintenance operations can 
introduce faults if the size of this array is modified. It is much preferable to 
explicitly define a constant by means of a #define before the function. 

• The parameter B has a non-explicit name; moreover, the associated type (int) 
reinforces this ambiguity. One always must explicitly define the Boolean type by 
an enumerated type or by defining the two constants TRUB and FALSE. 

Exercise 10.3. FSM synthesis 

The reasoning has been presented in section 10.4 of Chapter 10 dealing with 
functional testing. It is based on a simulation of the automata, in order to compose 
them as one automaton. This composition process reveals the input/output relations 
and removes the internal interactions between the automata (these relations have 
been introduced by the design process). 

Exercise 10.4. Functional test sequence 

In order to obtain a functional test sequence of the drinks distributor, we develop a 
three-step procedure: 



560 Appendix E 

• formal specification of the behavior, 

• definition of an input sequence which provokes the complete activation of this 
behavior, 

• deduction of the expected output values in response to the preceding input 
sequence. 

The formal specification is derived from the informal specification. It describes two 
aspects shown in Figure E.15: the interface and the behavior. 

01D ElItend 
alu"ö_ColD) 

D rink_S.lecUd 

-
C all.oo.l1ol1 

ColD. R. turnod 
111) (VoIüo_Co 

-Cofr"_Av aIIablo 

1) Interface 

Coba ElItend 
(Val •• _C'!!") 

AmoRat Provfded :
Am01lll(Providod + Val.o_Coba 

COID_Eat.~ 
(Valuo_Coi;)- ).-

Coffet: AvaUablo 
Do.e Number
CO .... _Retumed 

(Amollllt_Provided - 75c) 

2) Behavior 

Figure E.15. Interface and behavior 

Functional modeling is made by an automaton which is weIl adapted to the 
sequential features of this system. We have added to this automaton some 
annotations dealing with the data treatments (e.g. the addition operations, etc.). Let 
us note that this model describes only functional aspects of the specification. Other 
points, such as those dealing with the ergonomics of the system, are not expressed. 

The formal modeling of the specifications for test generation purpose is interesting 
for two main reasons: 

• Rules allowing to deduce what are 'all possible behaviors' can be defined for 
each modeling means. For example, in the case of an automaton, one might want 
to pass through each state or else through each transition between states. This 
aspect is developed in Chapter 13. 

• The application of the rules can be systematic; that is to say, we are able to 
deduce a sequence activating all behaviors (in the sense of the rules). Tools can 
then automate the production of the test sequences. 

In our case, we will make this work 'by hand', with the following assumptions: 

• every path must be exercised at least once by the sequence, 

• if an arc is conditioned by a Boolean expression, we must pass through that arc: 

~ with one internal value belonging to each domain defined by this expression, 

~ and with the limit values between these domains. 
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At first, we define the set of all paths, we give a name to eaeh path, and we 
enumerate its states. 

• Enter a eoin and caneel: {I, 2, 3, I}. 

~ Enter two eoins and eaneel: {I, 2, 2, 3, 11. The presenee of a loop from state 2 
introduces an infinite number of paths; we limit the number of iterations to 1. 

• Order a coffee after having entered a suffieient number of eoins, if the number of 
doses is greater or equal to 1: {I, 2, 4, 5, I}. The eondition labeling the are (4, 5) 
induces a domain of values for the eouple (Amount_Provided, Dose_Number). It 
is necessary to take a value ~ 75e (for example 1$) and a number of doses> 0 
(for example 2). Moreover, we must apply ' limit tests', i.e. 75e and 2 doses, then 
1$ and 1 dose. Consequently, 3 sequenees must be defined for this path. This 
situation shows also an interesting aspeet dealing with the memory implied by 
the used variables. Indeed, when we apply the first part of the sequenee {I, 2, 3, 
1 }, the expected behavior is the same, whatever the past of the system. 
Moreover, this behavior will have no effeet on the future. On the eontrary, in 
order to test the behavior of the system when only one dose remains, it is 
necessary to first apply sequenees leading the system in the required initial state 
(one dose only); these sequenees are ealled initialization or homing sequences. 
Finally, onee the test consuming the last eoffee dose has been performed, it will 
be neeessary to eontinue the test proeedure with test sequenees, assuming a null 
number of doses. To eonclude, the various test sequenees we have defined are 
not independent; henee, these fragments must be seheduled in a coherent order, 
maybe with extra link sub-sequenees. 

• Case where the user orders one eoffee after entering a suffieient number of eoins, 
but when there are no more eoffee doses: {I, 2, 4, 3, 1} . As said before, the 
preeeding parts of the global test sequenee must have led to a situation where no 
eoffee doses remain. Otherwise, the eondition labeling the are (4, 3) being 
eonstituted by a Boolean expression using one OR, it is also neeessary to test the 
opposite situation, e.g. 'AmounCProvided < 75e', and the two simultaneous 
situations, i.e 'AmounCProvided < 75e and Dose_Number = 0' . 

From this analysis, we ean deduee the various pieces of sequenees assoeiated with 
each tested fragment of behavior. Table E.5 gives an example for the first ease 
considered. We will not develop the whole set of test sequenees. Its obtaining is easy 
as far as we take eare of the necessary relationships between those fragments, 
aeeording to the state of the system. This job may seem to be tedious. However, it is 
systematie, providing a good guarantee that the resulting funetional test sequenee 
aetivates properly the whole set of possible behaviors. 

Input Output 

Coin_Entered (50e) 

Caneellation 

Coins_Returned (X$) 

Table E.5. Sequence 
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Exercise 10.5. Property research 

In the previous Exercise, the need of the client is to ear money. One can ask the 
question: "Is it possible to get a coffee without paying or with less than 75c?". 

This analysis must first be conducted on the specification model. Here the answer is 
'no', as Coffee_Available is conditione by' AmounCProvided ;::: 75c' (because of 
the OR function). On the contrary, one must then ask himself if AmounCProvided 
effectively contains the amount of money which has been entered in the machine. It 
would not be the case if AmounCProvided were initialized to 1$, and then not 
a signed in the model. The analysis of the backward path shows that the amount of 
entered coins is effectively the value of Amount_Provided i state 4. 

Exercise 10.6. Properties oe functional graphs 

Independently from any functional aspect of the product (we ignore its function), we 
try to define properties which are significant of the studied functional graph. 

1. If state 4 is suppressed, the graph is split into two independent sub-graphs; 
hence, it is no more possible to pass from one sub-graph to the other. Let us note 
that each sub-graph is aliv . This situation can corre pond to two independent 
modules. The global functioning res Its from the 'Cartesian product' of these 
two sub-graphs: every state couple from the two graphs is theoreticaUy possible. 

2. 0 the contrary, if we add an arc joining state 5 to state 1 (in bold in Figure 
E.I6), the connexity of the graph is increased. It is then possible to draw a table 
containing all the states reachable from any state: 

from state 1 or 2 or 3, one can reach states 1, 2, 3, 4; from state 4, only state 4 
can be reached; from state 5 or 6, one can reach states 1,2,3,4,5,6. 
State 4 remains astate which definitely blocks the functioning of the system: 
hence, this situation corresponds to a locking. 

Figure E.16. Graph 

Exercise 10.7. Verification of a floating-point unit 

Black box verification by functional simulation. We are looking for a simulation 
sequence which passes through each module of the product and activates a 
maximum of functions and connections. A simple sequence would incIude aseries 
of additions on several numbers: 

Al = MI 10 EI and A2 = M2 10 E2. 



Answer to the Exercises 563 

We must check the module performing the subtraction (El - E2) with different 
exponents: (El > E2), then (El < E2), positive values, then negative values. These 
operations also verify the circuit which performs the 'adjust' operation (right shift of 
the mantissas). 

Then, we must check the circuit ca1culating the final 'sign' of the result. For this 
purpose, we make several '+' and '-' operations with numbers having the same sign, 
and finally opposite signs. The sign S of the final result must take into account the 
carry corning from the +/- circuit. Hence, we consider a situation such that 
M' 1 > M'2 for an adding control (signal +/-): e.g. subtraction of two negative 
numbers, the absolute value of the subtracted one being greater than the first one. If 
the result ofthe circuit '+/-' is greater than 1, there is a carry, and we must perform a 
normalization operation, i.e. add '1' to the exponent and make a one-figure shift to 
the right of the mantissa. 

Finally, the overflow situations must be considered. For example, we add two 
negative numbers with maximum value positive exponents (+999 if Eis expressed 
with 3 digits), and such that IMli + 1M2 I ~ 1. 

Exercise 10.8. Inductive formal proof 

1. We must demonstrate that Al ==> A2 when R ~ B after the execution of R := A 
and Q := O. The second condition of A2 is evident: it is the loop assertion(R ~ B). 
As R := A and Q := 0, then Q*B + R = O*B + A = A. So, the first condition of A2 
is true. 

2. We must demonstrate that Al ==> A3 when R ~ B is false after the execution of 
R := A and Q := O. The condition 'R ~ Bis false' implies that R < B. We have 
Q*B + R = Q*B + A = A. So, the first condition of A3 is also true. 

3. We must demonstrate that, when [A2 is true and R := R - Band Q := Q + 1 are 
executed and then R ~ B ], then A2 is true with the new values of Rand Q. Let us 
note Rb and Qb the values of Rand Q before the execution. The hypotheses are 
A = Qb*B + Rb (relation 1), and Rb ~ B (relation 2). After execution of the loop 
statements, we obtain R = Rb - B (relation 3) and Q = Qb + 1 (relation 4). The 
relation R ~ B is true due to the loop condition. We must demonstrate that 
A = Q*B + R. Relations 3 and 4 give: Q*B + R = (Qb + 1)*B + (Rb - B) = Qb*B 
+ B + Rb - B = Qb + B + Rb = A (relation 1). So the second condition is 
demonstrated. 

4. The demonstration of A2 ==> A3 after the execution of the loop statements and 
when condition R ~ B is false is quite similar concerning the second condition. 
The second condition R ~ B is due to the negation of the loop condition. 

Exercise 11.1. Component choice 

Failure rate of the first structure. The failure rate is the sum of the failure rates of 
the components (as these values are very smaII: this would not be true otherwise!): 

Al = 12.10-7 + 1.10-6 + 3.10-5 = 3.22.10-5• 

Failure rate ofthe second structure: 1.,2 = 4.10-6• 

Thus, the second structure has a better reliability than the first one. 
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Note. This exercise does not consider the influence of temperature or radiations on 
the reliability of these components, or their mutual influence. 

Exercise 11.2. Comparison of the reliability of two products 

The two failure rates 1..1 and 1..2 evolve according to power of 10. Hence, IOglO(A.1) 
and IOglO(A.2) are linear. We deduce from this the two logarithmic equations for the 
two products: 

1) For 1..1: IOglO(A.1(1) = [lOglO(10. A.01) - IOglO(A.01)]T 1 (38-18) + b, where A.01= 
1..1(18°). 

When T = 18°C, we have b = -59/10. 

So, IOglO(A.1(1) = TI20 - 59110. 

2) The same reasoning for 1..2 gives IOglO(A.2(1) = TI10 - 88110. 

Finally, we deduce T for 1..1 = 1..2: from 58°C the reliability of Pl becomes better 
than the reliability of P2. 

Exercise 11.3. Shared FIFO 

1. The result is hazardous, as the data structure (array and indexes) is shared (same 
situation as in sub-section 11.2.2.2). Moreover, the data structure value may be 
incoherent. For instance, consider the scheduling described in Figure E.17, 
where WI expresses the variable Wr i te_Index. 

Write (Xl): Write (0): 

• Buffer(WI) :=Xl; • Buffer(WI) :=X2; 

• WI:= (WI mxl Buffer_Size) + 1; • WI:= (WI mxl Buffer_Size) + 1; 

TIME 
11, 

Figure E.17. Incoherent value ofthe array 

After execution of this sequence of statements, only X2 is memorized, as it 
overloaded Xl, and an empty item is created, as Write_Index is incremented 
two times. Such a situation defines an error, that is to say an unacceptable state 
of the data structure value. 

2. No problems occur if we consider that the list is never empty, as the two couples 
of data structures (Write_Index, Buffer (Write_Index) and 
(Read_Index, Buffer (Read_Index) have no common elements. 
However, no mechanisms guarantee that a reading cannot occur when the FlFO 
list is empty. 

To conclude, this implementation induces a high risk of error occurrences. The 
problems come from a characteristic of the task management implementation: the 
preemption of a task by another task does not guarantee exclusive access to the 
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shared resources. To be safe, a mechanism managing the access authorizations (such 
as a semaphore) must be added. 

Exercise 11.4. Hazards in shared variable implementation 

No problems seem to exist in the sharing of variable using one statement. Indeed, 
the design is correct. However, assurne that the incrementation and decrementation 
operations are processed on a register AX. Then, 1++ is translated as Taskl: 

Move AX, @I 

Inc AX 

Move @I, AX 

In the same way, the statement r' is translated as a Task2: 

Move AX, @I 

Dec AX 

Move @I, AX 

Consequently, several instructions are necessary to implement one statement. Figure 
E.I8 shows the two considered implementations of these tasks: sequential or 
interleaved. 

Taskl Task2 Taskl Task2 

Mlve AX,@I MlveAX,@I 

Inc AX M:lVe AX,@I 

M:lVe @I,AX Inc AX 

Mlve AX,@I Dec AX 

Dec AX MIve@I,AX 

Mlve @I,AX Mlve @I,AX 

TIME ' 
TIME , 

Figure E.18. Hazardous result 

Let us show that the result is hazardous. On the left side of Figure E.I8, the result is 
unchanged at the end of the execution of Taskl then Task2. This is the expected 
result, as the value of I is incremented and decremented. On the contrary, on the 
right side of Figure E.I8, each task saves and restores its own context (in a local 
Task Control Block) at each task switch. After the execution of the second line of 
Taskl (Ine AX), this value is not transmitted to Task2 that decreases its own copy 
ofAX when executing its second line. Thus, the final value of I is incorrect. 

Exercise 12.1. Signature testing 

1. The sequential treatment of the binary flow comprises 64 (i.e. 1024 / 16) XOR 
operations on consecutive 16-bit words. If we suppose that the signature of the 
faultless circuit is known, any multiple error altering one or several words is 
detectable if and only if any modified bit of a word is also modified an odd 
number of times in the same position of several words. According to the output 
stream, this corresponds to erroneous bits repeated an odd number of times 
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modulo 64. For example, a multiple error altering bits 1, 15, 65, 121 is 
detectable: errors 1 and 65 neutralize themselves, but each error 15 and 121 is 
detectable. All functional or technological faults producing such errors are thus 
detected. All other faults are undetectable. 

2. Without any knowledge about the electronics implementation of this system 
(gate or MOS structure), one cannot deduce any class of technological faults that 
produces the preceding errors. 

Exercise 12.2. Toggle test sequence 

A Toggle Sequence is such that every line in the circuit takes the values '0' and '1': 

• each XOR must receive a vector from the set {OO, 11}, and a vector from the set 
{01, 1O}, 

• each NAND must receive the vector (11), and, either the two vectors (01) and 
(10), or the vector (00). 

We propose the following Toggle sequence: <010, 101, 111> (there are other 
solutions). The reader will verify that this sequence applies '0' and '1' to each line. 

Exercise 12.3. Test of components 

1. Statistically speaking, y% of the products are good and are tested with a duration 
of n 'time units'. The faulty products correspond to (1 - y)% of the production. 
As the test coverage is c = 80%, 20% of these faulty products, that is to say 
(1 - c).(1 - y) of the total production, will be considered as good by the test 
sequence after a duration of n time units. Finally, c.(1 - y) products will be 
declared as wrong after a mean duration time of n/2 time units. 

Therefore, the mean time dedicated to the test of this production is: 

d = [n . y + nI2 . c.(1 - y) + n . (1 - c).(1 - y)] = [n .(1 - c / 2 + C.y / 2)] = 0.996 n. 

2. The rate offaulty products not detected as faulty is: (1 - c).(1 - y) = 2%. 

3. If only 70% of the products are submitted to test, the mean time is reduced. 

The ratio of non-detected faulty products has two terms: 

t.(1 - c).(1 - y) + (1 - t).(1 - y). 

The first term corresponds to faulty products which are tested but not detected as 
faulty; the second one corresponds to faulty products which are not tested. 

Numerical value: 4.4%. 

Exercise 12.4. Fault coverage 

Figure E.19. A 3-input NOR gate 
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The NOR gate is symmetrieal, according to its inputs a, band c (Figure E.19). 
Consequently, the study can be reduced to the case of one input only, e.g. a. The 
other inputs (b and c) must be set to the value '0' in order to let the error pass to the 
output. If an input is set to the value '1', it forces the output to the value '0'. 

1. Optimal test sequence. There is only one optimal test sequence comprising 4 
test vectors: <000, 100, 010, 001>. 

2. Coverage. Each input vector covers some stuck-at faults of the 110 Iines. Table 
E.6 shows the fault coverage of each input vector. 

We notice that some input vectors have a very small coverage; they should not 
be taken to test this circuit; thus, (Oll), (101), (110), and (111) test the stuck-at 1 
of line d only. On the contrary, the vector (000) covers half of stuck-at 0/1 faults. 

Input vectors Test coverage 
abc a b c d 

000 1 1 1 0 
001 - - 0 1 
010 - 0 - 1 
01 1 - - - 1 
100 0 - - 1 
101 - - - 1 
1 10 - - - 1 
111 - - - 1 

Table E.6. Fault coverage 

Figure E.20 shows the coverage curves of: 1) the exhaustive sequence, 2) the 
optimal sequence, and 3) the very simple toggle test sequence <000, 111>. 

Faults coverage 
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Figure E.20. Fault coverage evolution 

Exercise 12.5. Simple fault diagnosis 

Let us analyze the coverage table obtained in the preceding exercise. 
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We observe that all stuck-at 0 faults are detected by distinct test vectors. Hence, they 
can all be distinguished by the sequence <000, 001, 010, 100>. All these faults can 
also be distinguished from the stuck-at 1 fault ofthe output. We also observe that all 
stuck-at 1 faults of the inputs and the stuck-at 0 of the output are detected by the 
vector (000) only. Consequently, they cannot be distinguished from the outside. 
Hence, they are said to be equivalent. 

Exercise 12.6. Optimal test sequence 

Figure E.21 rerninds the gate structure of the circuit. Input vector 1 (respectively 2) 
apply 11 to gate A (respectively B), and 10 (respectively 01) to gate C. (see Table 
E.7). Hence, any stuck-at 0 fault is detected: activated as an error, and the error 
propagated to fLet us note that the input vector 111 would apply 11 simultaneously 
to gates A and B, but no stuck-at 0 of these gate would be observable on fLet us 
also note that when receives 11, B (or A) receives one of the vectors 10 or 01; 
unfortunately, these vectors cannot be 'counted' as belonging to the minimal AND 
test sequence, because gate C will not propagate any error coming from B (or A). 

Figure E.21. AND-OR circuit 

Hence, input vectors 3 and 4 are necessary to apply the missing configurations: 01 
and 10 to the AND gates, and 00 to the OR gate. These vectors will detect all the 
stuck-at 1 faults: activation as an erroneous '1' error, and propagation of this 
erroneous '1' to the output. The optimal test sequence has 4 vectors: <110, 011, 010, 
101>. 

Inputs Gates 
abc A B C 

vectors 01 10 11 0110 11 0001 10 

1 110 X X 
2 01 1 X X 

3 010 X X X 
4 101 X X X 

Table E.7. Optimal test sequence 

Exercise 12.7 Sequential circuit testing 

1. Table E.8 shows the evolution of the sequential system submitted to the input 
sequences STI and sn, applied to the same initial state 1. 

2. A simple simulation of the logical circuit allows establishing the different values 
of each node for test sequences STI and sn. Then, we deduce lines that take 
both values 0 and 1. 
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ST1 ST2 

e 0110 011011001 

q 2431 243124231 

s 1010 101010110 

Table E.8. Correct and erroneous functions 

3. Complete structural test. 

• First, we determine those faults which are not detected by the functional test 
sequence sn. This step can be performed thanks to a 'fault simulator' such as 
Verifault of Cadence. Thus we can identify the 5 stuck-at faults which are not 
detected, reducing to 3 classes of equivalent faults. 

• Now, if we want to test one of these remaining faults, we can proceed as for 
combinational circuits. We first try to activate this fault by setting the faulty line 
at the opposite value. Then, a backward procedure is applied. Because of the 
feedback loops, this procedure generally does not easily converge towards a 
solution. The fault is detected when it is transformed into an erroneous output 
value. The Reset input can be useful to perform this procedure, assuming it has 
previously been tested. 

4. The problem of the initialization of a circuit prior to the application of a testing 
sequence is not always easy. Generally, it is assumed that there is areset input 
which switches all flip-flops to the zero state. In the very general case of 
asynchronous sequential systems without such inputs, it is necessary to find 
special initialization input sequences called homing sequences. Initialization is a 
real problem for testing complex systems. 

Exercise 13.1. Test of a small circuit 

1. Fault Table. Faults detected by the different input vectors can be obtained from 
the logical circuit of Figure E.22, by applying the methods studied in Chapter 
13, either column after column, or row after row. 

Figure E.22. Two-gate circuit 

Table E.9 shows the results obtained. There are three 'best test vector': 010, 100 
and 110. Each one covers 4 faults. The input vector having the lowest coverage 
is 111 with only I fault detected. 

2. Minimal test sequence. Some faults are detected by one test vector only; it is 
the case of faults 11 (vector 010), 1° (vector 110), i (vector 100), and 2° (vector 
110). Hence, the 3 vectors 010, 100 and 110 belong to any minimal test 
sequence. There are three minimal-Iength test sequences, for example TS = <001, 
010, 100, 110>. 
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abc 1 2 3 4 S 
000 - - 1 1 1 
001 - - 0 - 0 
010 1 - 1 1 1 
Oll - - 0 - 0 
100 - 1 1 1 1 
101 - - 0 - 0 
1 1 0 0 0 - 0 0 
1 I 1 - - - - 0 

Table E.9. Fault table 

Exerdse 13.2. Test vectors detecting a fault 

The fault aetivation eondition implies to put a '1' value to line 11. By baekward 
propagation of this eondition, we find three possible eases on lines 5 and 6, i.e. 
he = 10, 01 and 11. The forward propagation of the error produeed on <X ean follow 
two different paths: PI (through lines 10 - l3 - j), and P2 (through lines 15 - g). 

These two paths will never simultaneously eonduet errors to the outputsfand g. 

Path PI. The loeal propagation eonditions are 9 = 0 and 12 = 1. 

We find the 5 following test veetors (a b e d): (0 10 -), (0110), (- 010). 

The resulting failure on outputfis a '1' value instead of a '0' value without fault. 

Path P2. The loeal propagation eondition is 16 = O. 

So we must have 7 = 8 = 1. We find the 4 following test veetors: (a b e d) = (- -11). 

The resulting failure on output g is a value '0' instead of a value '1' without fault. 

Summary: there are 9 test veetors for this fault, 5 of whieh produee a failure on f 
(0100, 0101, 0110, 0010, 1010), and the 4 other ones produee a failure on g (0011, 
0111, 1011, 1111). 

Exercise 13.3. Analysis of test procedures 

1. This proeedure explores the input spaee with a partition teehnique. The first 
objeetive is to aetivate the fault. A tree is built, eaeh braneh eorresponding to a 
disjoined input eube (sub-set expressed with '0', '1' and 'x' values). The 
simulation propagates the known values towards the fault loeation (Figure E.23). 

f 

Figure E.23. NAND-gate circuit 
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Then, the fault is propagated to the output with the same exploration procedure until 
a solution is found (if any test vector exists). Obviously, this very simple technique 
can be long to converge towards a solution if the first possible test vector has many 
'1' values for a, b, c, etc. 

Let us now complete the given procedure: 
Now, the objective is to propagate the eITor through gate E. A propagation 
towards gate E of the known values is performed (if it has not already be done!): 
E = 0, so the eITor cannot be transformed into a failure on outputf. We make a 
backtracking in the input assignment. 
Input c is set to 'x', and input b is switched to '1', and a propagation is 
performed: the fault remains passive. 
Input c is set to '0', and a propagation is performed: A = 1, B = 0, C = 1, hence 
the fault is activated. 
Now, the objective is to propagate the eITor through gate E. Input d is set to '0', 
which forces output f to '1': this is a case of inconsistency, so we go backwards. 
Input d is switched to '1', and the eITor is finally propagated to f. 

Thus, we obtain the test vector: (a b cd) = (1 1 0 1). 

2. This procedure makes a backward propagation along one path from the fault 
activation. At a given gate, if several vectors satisfy the desired output value, we 
choose the easiest path only (the closest path to the primary inputs). If several 
inputs must be set (to '0' or '1 '), we choose the hardiest path first (having the 
higher number of gates to the primary inputs). As usual, when the fault is 
activated as an eITor, we try to propagate the eITor along a path. All the process 
uses a backtracking technique in case of inconsistency. This method is close to 
the PODEM algorithm. 

Input b is switched to 1, and we perform a propagation action: it brings nothing. 
Input c is set to '0', and we perform a propagation: A = 1, C = 0, so the fault is 
activated. 
Now, the objective is to propagate the eITor through gate E. Input d is set to '1'. 

We obtain the same test vector (a b c d) = (1 1 0 1). It is the only vector which 
detects the fault. 

Let us note that this procedure is not pertinent for this circuit. Indeed, at step 5 we 
have chosen to set b to '0' in order to force A = 1; this led to an inconsistency. Then, 
we have abandoned this path to try another one. Instead, at this point, we can try the 
second way to have A = 1, which is to set c to '0'. Then, the procedure sets a and b 
to '1'. Thus, the test vector is rapidly found. 

Exercise 13.4. Fault coverage of a test vector 

1. The structural analysis of the circuit gives the fault detection table shown in 
Table E.I0): detection at outputj, and at output g. 

Note about 'reconvergent fanout' structures. We observe that the stuck-at' l' of line 
2 is not detected on output f this fault produces an eITor on line 9 and an opposite 
eITor on line 10, these eITors being neutralized by gate 13. We also note that the 
stuck-at 1 of line 3 is detected on outputf it produces two identical eITors on lines 
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13 and 15, which propagate through the output gate givingj This same fault is also 
detected on output g: it produces two identical errors on lines 15 and 16, which 
propagate to the output g. 

abcd 1 2 3 4 5 6 7 8 9 10111213 14 15 16 17 18 

1001 detection on f - - 1 - I I I - 0 0 0 o 0 0 
detection on g - 1 - - - - - - - - 1 

Table E.I0. Fault detection 

2. This test vector covers 11 of the 36 possible faults. The theoretical maximum 
coverage of a test vector is 18. Now, we can try to find the best test vector by 
analyzing the structure of the circuit. We know that the best test of ANO, OR, 
NANO and NOR gates is obtained when their inputs take the neutral element 
value. The worst case is when all their inputs take the opposite values. The 
circuit we consider is made of a mix of ANO, NANO, OR, and NOR gates; it is 
easy to see that no input vector will apply the optimal configuration to each gate. 
So no test vector will covers 50% of the faults! A good exploitation of all these 
local constraints is given by the input vector (0101) which covers 13 faults! 

Exercise 13.5. Diagnosis of a circuit 

1. Faults 2° and 5° are activated by the same constraint: b = 1. Fault 11 1 is activated 
by b = 0, or by b = 0 and c = 1. Hence, we can separate these two groups of 
faults by applying test vectors with b = I, and test vectors with bc = 01. A first 
test vector could be (a b cd) = (- 0 I 1) which detects fault 11 1 at output g. Now, 
we must try to distinguish faults 2° and 5°. Fault 2° can only be detected onfby 
applying the input vector (1110). Faults 2° and 5° can be detected on f (through 
the path 11 - 10 - 13 - 17) by the input vectors (010-). So, here is an example of 
diagnosis sequence: DS = <0011 , 0100, 1110>. 

The related fault tree is drawn in Figure E.24. It gives all information necessary 
to diagnose one of these faults . For instance, if the signature corresponding to 
the application of the test sequence is <OK, f KO, f KO>, then the identified 
fault is 2°. 

Figure E.24. Fault tree 
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2. We first determine all faults detected by vectors (1000), (1001), and (0110) on 
outputs f, g and both. This step is achieved by using the backward analysis 
method presented in Chapter 13. We obtain the partial fault table of Table E.ll. 
Note that some faults are detected onjonly, on g only, or on both outputs. 

From this table, we deduce the fault tree (Figure E.25) corresponding to the test 
sequence: TS = <1000, 1001,0110>. 

T abcd 1 2 3 4 S 6 7 8 9 10 11 12 13 14 IS 16 17 18 
Tl 1000f - - 1 - I I - - - 0 0 0 0 0 - - 0 -

g I 

T2 100 I f - - I - I I I - - 0 - 0 0 0 - 0 0 -
g I I 

T3 o I IOf 1 - - - - - - - I I I - I - - - I -
g 1 0 0 I 

Table E.II . Partial fault table 

3. The diagnosis power of this sequence is not good. Many faults belonging to the 
resulting fault c1asses can easily be distinguished by adding other test vectors. 

OK 

{.p, 1°,2,30,4, SJ, GI, ,0, So, 
9°,12\ 141, 15, 16°, ISo} 

X 
{51, 61,10°,11°,12°,13°,14°, 17°} 

OK 

X 
{51, 6\ 10°, UO, 13°, 14°, l'tl } 

Figure E.25. Fault tree 

Exercise 13.6. Complete diagnosis of a small circuit 

The minimal test sequence obtained in question 2) of Exercise 13.1 is also a minimal 
diagnosis sequence: <001 , 010, 100, 110>. This sequence separates the following 
c1asses: {I!>}, {li}, {21}, {3°} , {50}, {10, 20, 4°}, {3 1,4I,SI}. 
All faults belonging to these groups are equivalent. They cannot be distinguished 
from the outside 
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Exercise 13.7. Logical test of a full-adder 

1. To activate this fault, we must set input b to ' 1'. This initial error (noted e in 
Figure E.26) is propagated to output S, for any values of inputs a and c: hence, 
we obtain 4 test vectors (a b c) = (- 1 -) according to the output S. 

This initial error can also be observed on output C if it can be propagated 
through the two NAND gates (see the figure). For this purpose, we must have 
a = 0 and c = I. It leads to the test vector: (a b c) = (011). 

a _---r::::::-l 

c 

Figure E.26. Test of the half-adder 

2. In Exercise 5.2, we have found all the failure configurations by a different 
approach: functional extraction, then comparison with the truth tables. 

3. Any input vector detects every functional or physical fault that modifies the 
output value. Hence, it is not surprising if a vector obtained in question 1) is able 
to detect the functional fault consisting in transforming the XOR gates into 
IDENTITY gates. 

Let us analyze the fault on the circuit's structure. Any vector (a b) will provoke an 
error at the output of the first IDENTITY gate; this error (noted e in the previous 
figure) will again be transformed through the second IDENTITY gate and produce a 
correct output value. Thus, the fault is not observed on output S (we have already 
proved this property by extraction in Exercise 10.1). The conditions necessary to 
propagate error e towards the carry output C are exactly the same as for fault a of 
question 1). Hence, the functional fault is detected by the input vector 
(a b c) = (0 1 I) which also detects fault a. 

Exercise 13.8. Functional and toggle test of a full-adder 

The structure of the circuit is given in Figure E.27. 

c 

10 11 
a - __ --r-::-l 1------ S 
b --++"''-i 

4 

3 c 

Figure E.27. Logical structure of the adder 
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1. Function test sequence. A very simple functional sequence will make one 
addition with (SC) = (00), and one addition with (SC) = (11). This sequence is 
TSI= <000, 111>. The two first lines of Table E.12 show faults detected by this 
sequence. These faults have been determined by the structural method proposed 
in Chapter 13 applied to the logical structure (Figure E.27). 

Test abc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Sequence 
Functional 000 1 1 - 1 1 - I 1 - 1 1 - 0 0 1 1 

I 1 I 0 0 0 0 0 0 I 1 - 0 0 - 1 - 0 0 
Toggle 101 0 0 - I I - 0 0 0 0 0 0 - 1 I 0 

001 1 1 - I I - I 1 1 0 0 - 0 0 0 1 
010 I 1 1 0 0 - 0 0 - 1 1 1 0 0 0 1 

Complete 100 0 0 - 1 1 - 0 0 0 0 0 0 - 1 1 0 

Table E.12. Test coverage 

2. Toggle test. In order that each line takes values '0' and '1', we add the test 
vector 101; hence, the sequence becomes: TS2 = <000, 111, 101>. The third line 
of the table shows faults detected by this new vector. We observe that TS2 does 
not detect 4 faults, confirming the fact that a toggle test is generally not sufficient 
to test every stuck-at fault. 

3. Complete test sequence. Faults not detected by sequence TS2 are 31, 61, 91 and 
121• To detect these faults, we must add three test vectors to TS2 : 001 , 010 and 
100. The resulting complete test sequence has then 6 vectors: TS3 = <000, 111, 
101, 001, 010, 100>. This complete test sequence is not optimal in terms of 
number of test vectors. An optimal sequence, is made of 5 test vectors, such as: 
TSop = <001, 010, 100, 110, 101>. 

Exercise 13.9. Test of a structured circuit 

1. Test of the structured adder. We will see that it is possible to apply the given 
complete test sequence to each module. 

Test 0/ module FAI. The controllability of this module is complete, so the five test 
vectors can be applied. The observability of output SI is also complete. The only 
problem that remains is the observability of signal cl. Any error on this line will 
change the parity of the inputs of module M2; hence, this error is propagated to the 
primary output S2. ConsequentJy, the first full-adder is completely tested. 

Test 0/ module FA2 . Here, the only problem to analyze is the controllability of line 
cl . Whatever we put on inputs a2 and b2, it is easy to bring either a value '0' on line 
cl (no carry for bits cO, aO and bO) or a value '1' on line cl (by producing a carry for 
bits cO, aO and bO). 

2. Test sequence. A complete test sequence of 5 input vectors (cO, aI, bI, a2, b2) 
can be obtained: TS = <00101, 01010, 10011 , 11000, 01110> 

In conclusion, this structured circuit is easy to test. Naturally, one should not deduce 
that all structured circuits are easy to test. 
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Exercise 13.10. Diagnosis study of the full-adder 

We draw first the partial fault table indicating, for each input vector, the outputs 
where the faults are detected (Table E.J3). 

abc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
OOOS 1 1 1 I I 1 I I I 

C - - - - 0 0 I 

I lOS 1 1 0 0 0 0 1 I 0 
C 1 1 - - I I 0 0 I 

I I I S 0 0 0 0 I 1 0 0 0 
c 0 0 - - I - 0 

Table E.13. Fault table of the full-adder 

Then, we deduce the fault tree, drawn in Figure E.28, allowing the diagnosis of the 
test sequence <000, 010, 111>. To simplify the representation, all impossible 
situations are not represented. This tree partitions all the 33 possibilities (32 faults + 
one good state) into 11 groups. All the elements belonging to a group cannot be 
distinguished by the sequence (they are said to be equivalent with regard to this 
sequence). In particular, it is not possible to answer the question: "is the circuit 
faultless?". 

Figure E.28. Diagnosis tree of the full-adder 

Exercise 13.11. Complete test sequence of a circuit 

To be tested, each AND gate requires 4 input vectors: 111, 011, 101 and 110. As 
these two sets are not compatible, this leads to 8 different input vectors. Hence, all 
the 8 input vectors constitute the complete test sequence! As a consequence, the 
exhaustive sequence is also the optimal one. 

Exercise 13.12. Redundancy analysis 

1. Structural redundancy. A logical analysis gives:f= a' + b.c, g = b.c + a.b.c. 

Functionfhas no structural redundancy; the gate 'abc' of gis structurally redundant. 
Table E.14 gives the faults detected by all input vectors. It shows that 5 faults cannot 
be detected: 9°, 7°, 5°, 51, 14°. They correspond to a passive structural redundancy. 
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abc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

000 1 - - 1 - - - - - 0 1 - 1 1 0 1 
001 1 1 - 1 - 1 - - - 0 1 - 1 1 0 1 
010 1 - 1 1 - - - 1 - 0 1 - 1 1 0 1 
011 - 0 0 - - 0 - 0 - - 0 - 0 - 0 0 
100 0 - - 0 - - - - - 1 1 1 1 1 1 1 
101 0 1 - 0 - 1 1 - - 1 1 1 1 1 1 1 
110 0 - 1 0 - - - 1 1 1 1 1 1 1 1 1 
111 - 0 0 - - 0 - 0 - - 0 0 - - 0 0 

Table E.14. Fault table 

2. Detection and diagnosis masking. 

Detection masking. The fault noted y in Figure E.29 cannot be detected. The fault 
noted a in the figure can be tested by the input vector (001). The output g takes '0' 
when this fault is present. But if y is also present, the output g remains erroneously at 
value '1': hence fault a is no more detected. 
Distinction masking. We assume that the untestable fault is present in the circuit. 
Its occurrence can lead to a wrong diagnosis if we apply the test sequence <110, 
l1l> aimed at diagnosing between faults noted a and ~ . If the circuit is altered by 
fault a, this sequence will erroneously signal the presence of ß because of a masking 
provoked by fault y. 

4 a 

2 
b 

c 
: 

5 7 9 

Figure E.29. Redundancy 

Exercise 13.13. Stmctural testing of a program 

1. The function modi fy _tempera ture increases or decreases the temperature, 
depending on the action parameter (1 = heating, 2 = cooling, else no action). The 
temperature is increased or decreased by a number of degrees function of the 
duration parameter value. The final temperature is then returned. 

The main function regulator brings back the initial_temperature in 
the range 0 to 90 by a variation of 10 degrees ifvariation = 0, or a variation 
of 20 degrees else. It returns the final_temperature or -3000°C if the 
heater or the fan is damaged (heating_state or fan_state = 0). 
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2. We test the functional correctness of the regulator by analyzing the domains of 
the input parameters: 

• three cases for ini tial_temperature < 0, in [0, 10], and > 90, 

• two cases for heating_state = ° or 1, 

• two cases for fan_state = ° or 1, 

• twocasesforvariation=Oor 1. 

As the domain of initial_temperature is not discrete, we test three 
values: -50, 30, 150, and the limits ° and 90. These values are combined with the 
discrete values of the other parameters. 

3. When this sequence is applied, the coverage depends on the elements considered. 
For a statement testing, the coverage is not 100%. Indeed, the default part of the 
switch statement ofthe function modify_temperature is never executed. 

Exercise 13.14. MCIDC testing of a program 

Table E.15 gives a sequence of Boolean values for ConditionIDecision, compatible 
with the requirements of MCIDC Testing. 

Condition 
A=B C2 D>3 
True True True 
False True True 
True True True 

True False True 
True True True 
True True False 
True True True 

Table E.J5. MC/DC testing 

Exercise 14.1. Ad Hoc techniques 

Te~t: 
OutputSTI 

Decision 
Action 

True 

False 

True 

False 

True 

False 

True 

Olltpllt 

Telt: 
output ST2 

Figure E.30. Ad Hoc technique 



Answer to the Exercises 579 

We suppose that new inputs and outputs can be added to the circuit, in order to 
increase its controllability and observability. Figure E.30 shows the modifications 
proposed to cut the feedback line between the two modules and to directly observe 
the outputs of each module. 

Hence, two inputs (/TI and IT2) and two outputs (STl and ST2) have been added. 
When ITl and IT2 take the value '0', we block any uncontrolled evolution of the 
circuit. Hence, each module can be directly accessed. 

Exercise 14.2. Analysis of a redundant circuit 

1. We have: /1 = a' c, j2 = a' c, ß = a + c'. The output variables do not depend on 
input b: thus, this circuit is redundant. In particular, the stuck-at 1 fault shown in 
Figure E.3I cannot be detected from the inputs/outputs; indeed, to test this fault, 
we must satisfy: 

• the controllability constraint: b = 0, 

• the observability constraints: a = 0 and c = 1; this produces a '1' on line x, a '1' 
at the output of gate A, and finally a '1 ' at output 11 which masks any detection 
of the fault. 

2. The second circuit has a different logical behavior: /1 = a' b' c + a b + b c', 
j2 = a' c, ß = a + c' . The output 11 is a logical function of input b. Obviously, 
this circuit could have been realized with a SIGMA-PI structure; however, it is a 
totally testable circuit. 

a 
C --'--.y,)--I 

b 

a 
C 

f2 

I--..L...-_- f3 

Figure E.31 . Redundant circuit and its simplification 

Exercise 14.3. Anti-glitch circuit 

1. If gate A is removed from the given circuit, the logical function remains 
unchanged: 1 = a b + b' c. However, the output 1 can produce a glitch (a short 
negative pulse) when the inputs switch from (111) to (l01). 

This anti-glitch circuit is useful but not completely testable: no stuck-at 0 of gate 
Aare testable; indeed, their test requires a = c = 1, which implies that either the 
output of gate Borgate C is at '1', hence, the final output 1 always takes the 
value '1' (with or without fault). Consequently, this circuit has passive 
(untestable) redundancy, which cannot be removed! 
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2. The anti-glitch circuit can easily be modified as shown in Figure E.32 in order to 
make it completely testable. When T = 0, the outputs of gates Band C are equal 
to '0', and we can test all stuck-at 0 faults of gate A. 

T-,----t 

f 

Figure E.32. Redundant circuit 

Exercise 14.4. Easily testable gate network 

The initial circuit requires 8 input vectors to be totally tested with the single stuck-at 
0/1 fault model. It is an exhaustive test sequence. 
In the modified circuit, input T must be at '0' during the normal functioning. This 
ensures that all XOR gates behave as INVERTERs, like in the initial circuit. During 
test operation, input T are set to '1', which applies the same inputs to the two AND 
gates. The circuit is completely tested with the 4-vector sequence of Table E.16. 

abcT comments 
01 10 

o 1 0 1 these three vectors 

001 1 detect all stuck-at' l' faults 

I 1 1 1 detects all stuck-at '0' 

Table E.l6. Complete test sequence 

Exercise 14.5. Reed-Muller structure 

1. Test sequence of the SIGMA-PI realization of the logical function: 

TSO = <1010, 1100,0110, 1111, 1011, 1110,0010, 0101, 1101>. 

r--,. a$bc$ad 

output 

b c a d 
inputs 

Figure E.33. RM circuit 
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2. We determine the logical expression of this circuit (see Figure E.33), and we 
compare this expression with the given SIGMA-PI expression. To facilitate this 
logical comparison, we may use an intermediate verification model such as a 
truth table (which corresponds to a canonicallogical form). 

3. A XOR network has a very interesting property concerning error detection: any 
single error occurring on one input is automatically transmitted to the output. 
Indeed, a single input error changes the parity of the number of 'I' inputs. As a 
XOR network produces an output 'I' if and only if an odd number of 'I' is 
applied to it, any change in the input parity of 'I' values provokes a modification 
of the output. The 4 vectors of sequence TS1 apply to each AND gate the three 
testing configurations 11, 01 and 10. Hence, every fault of each AND gate is 
activated as an error which enters the XOR network, and is consequently 
propagated to the final output where it can be observed. 

4. Electronics specialists have shown that a 2-input XOR gate is fully tested by the 
exhaustive input test sequence only. With the previous TS1 sequence, this 
property is not satisfied. It is very easy to verify that the proposed 5-vector TS2 
sequence applies the 4 input configurations to any XOR gate. 

Exercise 14.6. FIT PLA 

1. /1 = a'b + bc,j2 = ab' + bc. Hence, 3 product terms are needed: a'b, ab' and bc 
(common to both functions). 

2. Figure E.34 shows the symbolic structure ofthis PLA. 

x y 
1 2 3 4 

ANDparity 

a 

b c:t=:f=~i=~==~= AND - Net 

c 

Shift Register 

ORparity 

Figure E.34. FITPLA symbolic structure 

3. Test sequence. It is made up of two parts: one sequence of 6 vectors to test the 
AND network, and a sequence of 4 vectors to test the OR network. 

AND network test. xy = 01 -+ TSl = <011,101,110>. 
xy = 10 -+ TS2 = <100,010,001>. 

For example, the test vector Oll forces the first line of the OR matrix to take value 
'0', all other lines being at '1'. Thus, the 4 product terms take the values 10 11; 
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hence, if no faults are present in the AND network, the parity error line is at '1'. Any 
fault equivalent to a stuck-at 0 of one active node (represented by a dot in the figure) 
belonging to columns 1,3 and 4 is detected. 

OR network test. A '1' bit is shifted 4 times from left to right in the shift register 
(scan in input). All single or multiple permanent hardware faults are detected, apart 
from the ones that do not modify the parity property of the AND parity vector (4 
bits) and the OR parity vector. 

Exercise 14.7. Scan Design 

For each test vector Vi: 

• The circuit is switched to Test Mode. 

• Aserial input operation through the Scan In input is performed, in order to load 
in the state register the 4-bit state belonging to the Vi test vector. This state 
loading operation takes 4 clock couples (HM - HE); in parallel, the state register 
containing the result from the previous test vector is read. 

• The circuit returns to the Normal Mode, and one normal treatment step is 
executed with one clock pulse (HM - HE). 

A last reading of the interna! state register completes the test sequence. 

Exercise 14.8. LFSR 

1. This generator elaborates a deterministic cyclic sequence of 3-bit vectors. It is 
based on a synchronous shift register whose input is the XOR of bits 1 and 3. 

Hence, the initial condition gives the starting point of the sequence produced; 
this sequence is shown in Table E.17. 

Clock QIQ2Q3 
0 010 
1 001 
2 100 

3 110 
4 111 
5 o 1 1 
6 101 

Table E.17. Sequence 

2. The modified circuit behaves as a LFSR. From the initial state 111, we obtain the 
following cycIic output sequence: <111, 011, 001, 001, 100,010, 110>. 

Let us note that the LFSR property is not guaranteed for any XOR feedback 
function. For example, if we take the XOR of bits Ql, Q2 and Q3, and if the 
initial state is 111, then the circuit remains al ways in this state! 

3. We analyze in Figure E.35 the evolution of the circuit from the initial state 100 
when the first input vector 111 is received. Values in gray are the next state of 
the register. This study can easily be extended to the rest ofthe applied sequence. 
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I. 
(lk. --"""'T'"---I---"""'T'"-- --...., 

1 1 

o 

Ql Q2 

Figure E.35. Analysis of the PSA circuit 

4. Non-detectable errors are necessarily multiple errors on several words of the 
incoming sequence. For example, is not detectable the modification of the first 
two words as folio ws (two single errors): <110, 111, ... . >. Naturally, based on 
the mathematical properties of the Galois Fields, the class of non-detectable 
errors can be formally determined. 

5. Such a BIST technique is very attractive, because the coding and decoding 
functions are easily implemented as logical circuits or software procedures. 
Moreover, the speed of the corresponding circuitry is high. Unfortunately, the 
efficiency of this technique in terms of fault detection strongly depends on the 
product to be tested. 

FOURTHPART 

Exercise 15.1. Single parity code 

1. The redundant parity bit is obtained by making the XOR of all the other bits. The 
redundant codeword becomes (10111). This code detects: 

• any single error, i.e. 5 errors (the parity bit belongs to the codeword), 

• any tripie error, i.e. 10 errors (all 3-out-of-5 words), 

• any quintuple error, i.e. 1 error (the word: 01000). 

Trus makes 16 detected errors, amongst the (25 - 1) = 31 theoretically possible 
errors; hence, the error coverage of this simple code is c = 16/31 = 0,516. 

2. Example of odd non-detectable error: 11101 (bits 2 and 4 are erroneous). 

3. Characteristics of the code: 
n· ( 

Capacity: N = 2 = 16. 

Density: d = NI 2n = 16/32 = 0.5. 

Coverage rate for each codeword: C = number of detected errors/total number of 
n-l n 

possible errors = 2 1 2 -1 = 0.516. 
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Redundancy: rr = r 1 k = 114 = 0.25 (or 1/5 ofthe codewords). 

Exercise 15.2. Hamming Code C(7, 4) 

1. This separable code adds to the initial bits three redundant bits, Yh Y2 and Y4, 
calculated by the expressions given in the exercise text. One can easily deduce 
three properties, called control relations, which allow to detect and/or correct 
errors. We order these relations as follow to make error correction easier: 

Y4E9Y5E9Y6E9Y7=0 (1), YZE9Y3E9Y6E9Y7=0 (2), ylE9Y3E9Y5E9Y7=0 (3) 

We call syndrome, noted s = (sI, s2, s3), the vector obtained by computing these 
expressions. This syndrome is equal to zero if no error occurred; it is different 
from zero if a single error or a double error occurs. For example: 

• if Y3 is false, expressions 2 and 3 are modified and the syndrome is s = (0 1 1), 

• if Y3 and Y6 are false, expression 1 is equal to '1', expression 2 remains at '0' 
(because two modifications are neutralized in a XOR function), and expression 3 
is equal to '1'; hence s = (1 0 1). 

Erroneous bit 1 2 3 4 5 6 7 

syndrome sI 0 0 0 1 1 1 1 

s2 0 1 1 0 0 1 1 
s3 1 0 1 0 1 0 1 

Table E.18. Syndrome values 

All multiple errors with rank higher than 2 cannot be detected. For example, if 
YI, Y2 and Y3 are false, the resulting syndrome is equal to '0', hence this tripie 
error is not detected. If only single errors occur, they are detected. Moreover, a 
non-null decimal value of the syndrome indicates the position of the erroneous 
bit, as shown in Table E.18: this property justifies the chosen relation order. 

2. Any 'double' error is confused with a 'single' error when considering the value 
taken by the syndrome. For example, we have shown that the double error 
altering Y3 and Y6 produces the syndrome value s = (1 0 1): this error has the same 
effect than a single error altering Ys. 

3. This code is very close to the one presented in Example 15-4. Indeed, it 
corresponds to a simple re-organization of the coding relations. Consequently, 
both codes have the same detecting and correcting capability. The interest ofthe 
version of this exercise is only to facilitate the identification of the erroneous bit. 

4. In order to allow the detection of single and double errors, and to allow the 
correction of single errors, we add a height redundant bit obtained by the E9 of all 
the bits. This redundant bit add a fourth control relation: 

YI E9 Y2 E9 Y3E9 Y4 E9 Y5 E9 Y6E9 Y7E9 Y8= 0 (4) 

This relation produces the fourth bit of the syndrome, s4. Thanks to this fourth 
relation, we can distinguish between any single error, which lead to s4 = 1, and 
any double error, which maintains s4 = o. This new code is called the modified 
Hamming code C(8, 4). 
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Exercise 15.3. Linear code 

1. Matrices G and H are deduced from the coding and control relations: 

G_[~~1001~~~1 
- 0101010' 

1101001 

[
0001111] 

H= 0110011. 

1010101 

We verify thatH.GT = 0: 0110011 . [
0001111] 

1 1 0 1 

1 0 1 1 

1 0 0 0 = 0000 . [
0000] 

1010101 o 1 1 1 0000 
o 1 0 0 

o 0 1 0 

o 0 01 

2. Coding: Y = U.G, i.e. [yj, Y2, Y3, Y4, Ys, Y6, Y7] = [uj, U2, U3, U4] . G. 

For example, if U = [11 0 1], then Y = [1 0 1 0 1 0 1]. 

wl 
w2 

3. Detection and eorrection, S = H. W. i.e. H. :; = [:~] = S 

w6 

w7 

585 

If we analyze Ibe eodeword W = [1 0 1 0 1 0 11. we ean verify !hat H. W = m. 
1 

o 

Ifbit 3 i, erroneou, in Ibi, eodeword. H. ~ = m identifi., Ibe faulty bit. 

o 
1 
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Exercise 15.4. Eneoding of a eyeUe eode 

The first phase of the coding process uses 4 dock pulses and deli vers at the output Y 
the higher bits of the codeword, i.e. the bits of the word to be coded u in the 
decreasing order: 1, 1, 0 and 0 (see Figure E.36). 

InputU 

OutputY 
UJ.-I _. Uo PM-I •• Po 

Figure E.36. Encoding circuit 

Clock pulse FFI FF2 FF3 
1 1 1 0 
2 1 0 1 

3 1 0 0 
4 0 1 0 

Table E.19. State evolution 

During this phase, the state of the 3 D-Flip-F1ops, initially at '0', evolves as shown 
in Table E.19. Then, the content of the register is shifted to the output Y. Hence, the 
codeword is y = (0100011) corresponding to the polynomial: y(x) = x + x5 + x6. 
Now, let us calculate the codeword by a direct division of i n-k) u(x) by g(x), which 
gives x(n-k) u(x) + r(x) : 

0+ x5 +x4 + x3 

X5 +X3 +X2 

r(x) = x 

g(x) = x3 + X + 1 

x3 + x2 + X = quotient 

We obtain the same codeword y(x) = x(n-k) u(x) + r(x) = x + x5 + x6. 

[

1101000] 
. . . . . . 0110100 

The generator matrIX assocIated wlth thlS cychc code IS: G = . 
1110010 

1010001 
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[

1 101000 

. 0110100 
We venfy that [0 1 000 1 1] = [00 1 1]. 

1110010 

1010001 

Exercise 15.5. Single parity bidimensional code 

This code uses redundancy at two levels: Longitudinal Redundancy Checking bits 
(noted LRC) are added to each word, and Vertical Redundancy Check words are 
added to the block (VRC). Each row and each column of the coded matrix belongs 
to an error detecting and correcting code. 

Table E.20. Bidimensional code with single parity 

1. One parity bit is added to each word (LRC) , and a word (VRC) is added to the 
block. Table E.20 gives an example of coding with p = 5, k = 4. After treatment 
(e.g. a memory storage), a parity check is applied to each word, and a parity 
check is made between all words. Any erroneous row or column is recorded. 

2. Any single or multiple error is detectable if at least one error occurs on a row or 
a column. It is obviously the case for any odd multiple error. It is also the case 
for some even multiple errors; for example, a quadrupie error on a same word 
will be detected four times. 

3. To be undetectable, an error must have an even rank on each altered row and 
each altered column. For example, the quadrupie error altering the bits of rows 1 
and 3 and columns 2 and 4 cannot be detected, as no parity violation occurs. 

4. Any error detected on rows 4 and 5 and columns 2 and 3 is a double error. Two 
errors can produce this signature (Table E.21), but we cannot identify which one 
is present: 

column 2 column 3 column 2 column 3 

row4 error error 

row5 error error 

Table E.21. Errors detected on rows 4 and 5 and columns 2 and 3 

5. Two cIasses of errors can be corrected: 

• All single errors. The erroneous bit is identified by intersection between the 
detected row and column; then, the identified bit must be complemented. 
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• All odd errors on a same row or a same column. 

Note. The practical efficiency of such a code is strongly related to the technology 
used to store the data words. The error model considered here must be validated by a 
statistical fault analysis. 

Exercise 15.6. M-out-oJ-n code 

1. Let wl and w2 any two different words of the m-out-oJ-n code. Having both 
exactly m bits '1', they are different for at least 2 bits. If we compute the OR 
function of these two words, the number of '1' bits will be at least (m + 1) bits, 
and if we compute their AND function, the number of '1' bits will be at most 
(m - 1). Thus, in both cases the resulting combined word does not belong to the 
m-out-oJ-n code. For example, if wl = 1100101 and w2 = 1001110, then wl OR 
w2 = 110111, wl AND w2 = 1000100, both outside the code. 

2. The smallest distance between two words is 2, as seen in the previous question 
(e.g. 1100101 and 1101001). The greatest distance between two words is 2.m if 
n :2: 2.m, or 2.(n - m) if n < 2.m. Examples: 

• d (1100101,0011011) = 6 for a 4-out-oJ-7 code, 

• d (11001010, 00110101) = 8 for a 4-out-oJ-8 code. 

3. By definition, a unidirectional error modifies the number of bits' l' of the altered 
word; thus, this error is easily detectable by counting the number of bits' 1 '. 

4. It is necessary to count the number of bits '1' of the word after treatment, and to 
compare this number with m. This operation can be performed by a specific logic 
circuit or a software procedure written in assembly language, according to the 
speed requirement of the final application: a circuit is more expensive but faster 
than a software procedure. 

Exercise 15.7. Berger code 

1. If k = 4, we need r = 3 redundant bits to express the number of '0' contained in 
the data part. Thus, this code is not optimal (with r = 3 we could have k = 7). 
Table E.22 shows all the obtained codewords. 

X R X R 
abcd efg abcd efg 
0000 100 1000 01 1 

0001 01 1 1001 010 

0010 o 1 1 1 010 010 

001 1 010 1 0 1 1 001 

0100 o 1 1 1 100 010 

0101 010 1 1 0 1 001 

01 10 010 1 110 001 

o 1 1 1 001 1 111 000 

Table E.22. Berger code for k = 4 
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2. The Berger code is separable and can thus be structured into two fields (X, R), 
where X is the word before coding and R the redundant field. R is the binary 
number of '0' bits of X. Let us first consider a unidirectional fault that increases 
the number of '0' bits of the complete word. Three cases can be considered: 

• If the X field only is altered, the number of '0' of X is increased and becomes 
greater than the value in R: hence, this error is detected, as NbZero (X) > R, 

• If the R field only is altered, the value of R decreases whilst the real number of 
'0' bits of X is not modified: here also this error is detected, as R < NbZero (X), 

• If X and R are both altered, the value of R becomes again smaller than the 
number of '0' of X which has increased, so the error is detected. 

The reasoning is similar with a unidirectional error that reduces the number of 
'0' bits of the complete word. 

3. Now, R is the binary expression of the number of '1' in X. We follow the same 
reasoning as in the previous question with first an error that increases the number 
of '0' bits of the complete word: 

• If the X field only is altered, the number of '1' of X is decreased and becomes 
smaller than the value in R: hence, this error is detected, as NbOne (X) < R, 

• If the R field only is altered, the value of R decreases whilst the real number of 
'1' bits of X remains unchanged: here also this error is detected, as R < NbOne 
(X), 

• If X and R are both altered, the value of R decreases whilst the number of '1' bits 
of X also decreases: the error is not necessarily detected. 

Exercise 15.8. Unidirectional codes 

The comparison between the capabilities of these codes is presented in Appendix A. 

For n = 10: the 5-out-of-1O code gives 252 codewords, the double-raiI5/1O code has 
32 codewords, and the (m = 7, r = 3) code has 128 codewords. 

Exercise 15.9. Modulo 9 proof 

1. The c1ass of any integer A modulo 9 is the remainder of the division of A by 9. 

If A = AO + Al 101 + A2 102 + ... + An 10 n, its c1ass, noted CCA), is: 

CCA) = (AO + Al 101 + A2 102 + ... + An 10 n) / 9 [MOD 9], 

CCA) = AO + Al + ... + An [MOD 9], as any power of 10 gives 1 as remainder. 

This means that the research of the remainder of a division of an integer by 9 is 
equivalent to the determination of the remainder of the sum of the figures of this 
integer by 9. And this process is iterative. For example, if A = 591: 
CCA) = 5 + 9 + 1 [MOD 9] = 15 [MOD 9] = 1 + 5 [MOD 9] = 6 [MOD 9]. 
This procedure is very simple to implement as hardware or software module. 

2. Verification of the operation: 

189 = 1 + 8 + 9 [9] = 18 [9] = 9 [9] = 0 [9], 47 = 11 [9] = 2 [9]. 

• We perform the addition of the c1asses of the two considered numbers, 
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o + 2 = 2 [9], and we observe that the resulting dass belongs to the same dass as 
the expected final result: 236 = 2 + 3 + 6 [9] = 11 [9] = 2 [9]. 

• In order to verify the second operation, we multiply the two classes, 
o x 2 = 0 [9], value which is different from the dass of the expected final result: 
8867 = 8 + 8 + 6 + 7 [9] = 29 [9] = 11 [9] = 2 [9]. 

• The third operation is verified by subtracting the two dasses of the numbers, 
0- 2 = 7 [9], value which is different from the expected resuIt: 144 = 1 + 4 + 4 
[9] = 9 [9] = 0 [9]. 

Hence, we have detected an error on the operations 2 and 3. However, we cannot 
correct those errors, as this code is only an error detecting code. Moreover, all 
the faults are not detected, as shown by the fourth operation: 

• 189 - 47 [9] = 7, and 97 [9] = 7; however, the correct value is 198 - 47 = 142, 
which is different from the proposed result 97. This condusion is generalized by 
question 4. 

3. With the example 48 / 12 = 4, we obtain 48 = 3 [9], 12 = 3 [9], 3/3 = 1, value 
which is different from the dass of the correct result: 4. 

4. An error transforms a result N into another number N* = N + E (E is the error, 
either positive or negative). This error is not detectable if and only if N* = N [9], 
that is to say, if Eis a multiple value of9. 

Exercise 15.10. Binary residual code 

1. The binary number can be expressed as: N = No 16° + NI 161 + ... The remainder 
in the division by 15 = 24 - 1, is obtained as in the previous exercise, by an 
iterative process on the Ni elements. Practically speaking, we divide the binary 
numbers into 4-bit slices (as 16 = 24), starting from the LSB (the least significant 
bit), and going towards the MSB (most significant bit). If necessary, some '0' 
value bits can be added to the left of the number to complete the last slice. Then, 
these slices are added together modulo 15 = 1111. 

• N= 0010 111110111100 1101 
(two '0' bits have been added to the left of the number), 

• N = 0010 + 1111 + 1011 + 1100 + 1101 [15] = 11 0100 [15] = 0011 + 0101 [15] 

= 1000 [15] 
(this result can be obtained directly or, on the contrary, by progressively adding 
the slices two by two). 

2. Verification of the operation: 

0011 0010 + 0110 1110 = 1010 1100? In decimal, this gives: 50 + 110 = 172? 

Classes of the two operands and ofthe expected result: 0101 (5),0101 (5),0111 (7). 

We add the two dasses of the operands: 0101 + 0101 = 1010 (10). 
We do not find the dass of the expected result. Hence, the operation is false (this 
can easily be manually verified in decimal). 

Exercise 15.11. Checksum code 

1. These five words are added without carry. The resulting word is joined to the 
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others, hence constituting a block of six 4-bit words. Here also, this computation 
can be made, either globally, or in a cumulative way: 

• 1101 + 0011 = 0000 (the carry is ignored), 

• 0000+ 1110= 1110, 

• 1110 + 0110 = 0100, 

• 0100 + 0101 = 1001 which is then complemented to '2': 10000 - 1001 = 0111. 

This last word is then added to the block. 

2. The stored block contains 6 words: (1101, 0011, 1110, 0110, 0101, 0111); 
indeed, the addition of the 5 first words gives the previous 1001 value which is 
by construction the 2's complement of the fifth word 0111. Their addition 
modulo 24 gives 0000. 

3 - 4. This modulo 24 code detects any error that does not add or subtract to the 
correct result a value which is a multiple of 16. 

Exercise 15.12. GCR(4B - SB) code 

Obviously, this mapping is redundant: 5 bits are needed instead of 4. Its property is 
to ensure that at most two successive zeros occur: 

• in a word, as there are no more than 2 successive '0' bits, 

• in consecutive words in aserial transmission, as data combinations with more 
than one zero at the beginning and the end of any word are prohibited. 

This property is desirable in some applications (transmission, storage) to increase bit 
density (e.g. for data storage on a magnetic tape) and ease clock synchronization. 

Exercise 16.1. Test of a control system 

1. The test of regulators Rl and R2 is performed off-line, according to a cyclic 
mode. Areal-time clock periodically activates the test task. An efflcient testing 
procedure will require a proper access to the regulators in order to test their 
various regulation functions and process interfaces: amplifiers, sampie and hold 
modules, analog to digital and digital to analog converters, etc. The tester 
module can, for example, order the regulators to perform some pre-defined 
regulation treatments, then to compare the obtained results with correct values 
stored in memory. The periodicity of the test is here of 168H for Rl and 24H for 
R2. If we know the reliability of the equipment, we can deduce the probability of 
the occurrence of a fault between two consecutive tests: assuming simple 
exponential laws with constant failure rates, the fault probability during the test 
is approximated to the value: test-period x A.. 
Dealing with R3, an interrupt procedure is envisaged with a time slot of 10' 
every hour: hence, the test period is IH. We suppose that during this 10' test 
operation, R3 is totally checked. 

2 - 3. On the contrary, if the complete test of the regulator is longer than 10', it is 
necessary to split the testing task into several shorter test sequences, for example 
one 8' and one 7' sequences. Thus, the periodicity of the complete test is 
increased to 2 hours. 
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Exercise 16.2. Duplex technique 

1. Any multiple fault altering the functional module is detected as soon as it 
produces an output error (failure of this module). This also stands for any fault 
altering the duplicate module. 

Faults altering the comparison module are detected only if they lead to an 
incorrect error signal value. For example, the stuck-at 0 of this erroneous output 
cannot be detected if '0' is considered as the specification of a correct result. 
The undetectable faults in the functional modules are those that modify in the 
same way and at the same time both duplicated modules: they provoke the same 
failure. This is the reason why these duplicate modules must be realized with 
different methods and technologies. 

Note. When an error is detected, it is not possible to locate it. 

2. The number of faults of this product is about twice the number of faults of the 
basic module; hence, the fault probability of the product is twice the fault 
probability of one module. Consequently, the reliability of a duplex is lower than 
the reliability of a non-redundant product. This is the price to pay for an 
immediate detection (on-line testing technique) of the failures. 

Exercise 16.3. On-line testing of a half-adder 

1. Table E.23 provides again the truth table of the half-adder. We observe that, 
whatever its structural implementation, this half-adder possesses natural 
functional redundancy: the output vector (s c) = (l I) never occurs. An external 
observer can exploit this property in order to detect 'on-line' any fault producing 
a failure characterized by this forbidden vector (a simple AND gate is sufficient 
to detect this case). However, this on-line testing capacity is very limited and 
covers only a few real faults; in particular no stuck-at 0 fault can be detected on
line. 

ab scp 

00 000 

01 101 

10 101 

1 1 011 

Table E.23. Truth table 

2. Figure E.37 shows the modified gate circuit and the corresponding truth table 
when a parity output p is added to this half-adder. Error detection is performed 
by a 3-input XOR gate. 

In that case, aseparate structural redundant circuit has been added to the basic 
circuit. The on-line testing capability is better than in the previous technique. 
However, some faults are still not tested, such as the stuck-at '0' noted a on the 
figure: indeed, if a = 1 and b = 1, this fault produces the undetected failure 
(s c p) = (l 0 I) instead ofthe normal vector (Oll). 
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Figure E.37. Half-adder with a parity output 

3. In order to improve this situation, the previous circuit is modified by using three 
independent circuits (Figure E.38). Any fault altering only one of these three 
independent circuits is detected as soon as it provokes an error at one output 
only. Hence, this on-line detection capability concerns all faults belonging to the 
stuck-at fault model. However, the detection circuit is not concerned by the on
line testing property. Indeed, the stuck-at 0 of the output of this circuit is not 
detected! To remedy this problem, we can use a self-checking circuit, as shown 
in the right part of Figure E.38. The final error outputs fand g belong to the 1-
out-of-2 detecting code {1O, 01}. Hence, any single fault in the whole circuit is 
now detected. 

a -T""".......;>\""
)----1 

}-----I-r-- c 

p 

error 

self-checking 
cbccker 

~-k;llr 
p~g 

Figure E.38. Use of independent circuits and corresponding see 

a -r--i 
b -+~-; 

Figure E.39. Duplex approach 

r 
g 
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4. A Duplex structure is shown in Figure E.39. It uses two half-adder modules and 
a 2-bit double-rail see (this see is studied in the next exercise). We suppose 
that the two duplicated modules are not affected by the same faults 
simultaneously. The advantage of such approach is its simplicity. On the 
contrary, it is much more expensive in terms of gate number. 

Exercise 16.4. Double-rail self-checking checker 

1. If each input pair (aJ, az) and (bio bz) belongs to the set {OI, 1O}, 4 input vectors 
(22) can be applied to this see during a normal operation of the tested circuit. 
This circuit (see Figure E.40) uses 4 product terms: A = al. bz, B = az. bio 
C = al. bio and D = az· bz. 

Figure EAO. Double-RaH see 

It is easy to verify on the circuit that, in each case, only one AND gate (A, B, C, 
and D) is active, hence producing an output vector belonging to the set {OI, 1O}. 
All other input vectors (12 vectors) produce different output values: 

• if the number of inputs' l' is lower or equal to 2, no AND gate is active and the 
output vector is 00, 

• if the number of inputs '1' is greater than 2, at least one AND gate of each output 
is active, producing an output vector 11. 

This behavior is shown by Table E.24. We can deduce from this table that this 
circuit is code dis joint. 

Now, to prove that this circuit is a see for the 2-bit double-rail code, we must prove 
that it is selJ-testing for the normal input vectors. So, all its stuck-at faults must be 
tested during the normal operation, i.e. by application of the previous four 
codewords only! Obviously, the circuit presents symmetry property between the 
AND and the OR gates. We see in Table E.24 that each AND gate is activated once 
and is activated alone; hence, all stuck-at 0 are tested by producing an output vector 
00 which is outside the code {OI, 1O}. Let us consider the gate A; it receives the 
input vectors 01 (input codeword 0101) and 10 (input codeword 1010), and each 
time gate B is inactive: hence, all stuck-at 1 of gates A and E are tested by producing 
an output vector 11 outside the normal code. Symmetrical situations can be found 
for all other AND gates. 
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Inputs a1 a2 bl b2 cl c2 
0 I 0 I D 0 1 

2 / 4 codeword 0 1 1 0 B 1 0 
(4 vectors) I 0 0 I A I 0 

1 0 1 0 e 0 1 

wrong 2 / 4 words I 1 0 0 0 0 
(2 vectors) 0 0 1 1 0 0 

less than 2 bits' I' 0 0 0 0 0 0 
(5 vectors) ---- --

I 0 0 0 0 0 
more than 2 bits ' l' 0 I I I I I 

(5 vectors) - -- --
I I 1 1 I 1 

Table E.24. Truth table of the see 

2. Let us analyze the global circuit of Figure E.41 which combines 3 elementary 
checkers to check a 4-bit double-rail code. To prove that this circuit is a sec, it 
is sufficient to verify that each checker receives the four 2-bit double-rai! 
codewords defined in question I. 

Figure E.41. Association of three sees 

Test vectors Internal Outputs 
a b d e c f g 

01010101 01 01 01 
011001 10 1010 01 
10011010 10 01 10 
10101001 01 10 10 

Table E.25. Minimum test sequence 
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Table E.25 shows that the whole SCC is tested by a sub-set of only 4 input 
codewords: each checker receives a testing set of 4 input vectors. 

Exercise 16.5. Parity self-checking checker 

1. The circuit (Figure E.42) is a SCC converting a 4-bit odd-parity input code into a 
l-out-of-2 output code. We must verify that it is code disjoint and self-testing. 

abc d 

ilvJ,L.g 
l!J~f 

Figure E.42. Parity checker 

• The circuit is obviously 'code disjoint' . If an odd number of inputs (1 or 3) take 
the value '1' (8 cases), the outputs fand g belong to the code {O 1, 1O}. On the 
contrary, if an even number of inputs (0 or 2) take the value '1', the output 
signals take the values 00 or 11 . 

• We assume that the test of each XOR gate requires the application of all its input 
vectors (00, 01, 10 and 11). Any error is then propagated to the final output, as 
XOR gates propagate any input modification (the observability ofaXOR 
network is complete for single errors). 

Table E.26 shows an example of test sequence constituted of four input vectors 
belonging to the normal odd-parity input code. This 4-length sequence is 
minimal. So, the circuit is self-testing. It is a self-checking checker for an odd
parity code. 

Lines Outputs 
a b V c d f g 
0 0 0 0 1 0 1 

0 I I 0 0 1 0 
I 0 I I I 0 I 

I I 0 1 0 I 0 

TabLe E.26. Minimal test sequence 

2. We know from question 1 that a subset of only 4 input codewords is sufficient to 
ensure the self-testing property. However, not any subset guarantees this 
property: for example, the circuit is no longer self-testing if the circuit under on
line testing produces the first three codewords only. 

3. Consider the minimal test sequence given in question 1. If we operate a 
permutation of inputs band c, the resulting set of input vectors does not provide 
the self-testing property to the circuit. Indeed, the second XOR gate receives two 
input vectors only (00 and 01). 



Answer to the Exercises 597 

Exercise 16.6. Software funetional redundaney 

First of all, the used formal parameters and local variables represent temperatures 
lower than O°C, as the function is called only if the freezer is freezing. In the present 
case, the function calling with Min = +372 °C, or the return of a positive I value, will 
not be detected. To remedy this problem, we introduce a new type 
Freezing_Temperature: 

subtype Freezing_Temperature is integer range 

Minimal_Temperature .. 0; 

where Minimal_Temperature is an negative constant previously declared. 
Hence, Min, Max and I belong to this type. 

Moreover, this function implicitly assumes that the value of Min should be lower 
than the value of Max. However, no verification of this property is made. We 
propose to add to the program a pre-condition as the first statement of the body of 
the function: 

if Min > Max then raise Erroneous_Call; 

end if; 

Finally, the returned value must belong to the range [Min, Max] . Here also, this 
condition is implicitly expressed by the name of the function. However, the violation 
of this property due to a design fault is not detected. We propose to add just before 
the 'return' statement the post-condition: 

if not (Min<=I and I<=Max) then raise Erroneous_Design; 

end if; 

Exercise 17.1. Trame Light Controller 

Figure E.43 gives the coded state table and the symbolic Moore structure of the 
traffic light controller. 

J>resent state Next statc 
y 1234 y 1234 

I I 100 1010 

2 10 I 0 1001 

3 1001 011 0 

4 01 10 0 10 I 

5 0101 00 1 1 

6 00 II 110 0 Ok 

Figure E.43. Fail-Safe design of the controller 

1. The 2-out-of-4 code can represent N = (~) = 6 codewords, which is exactly the 

number of internat states of the state graph to be coded. 

2. Four synchronous D Flip-Flops are used to implement this circuit. The D-inputs 
(Di = yi) are logical functions of the outputs of these Flip-Flops (Q1 = Y 1): 
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DI = QI.Q2 + QI.Q3 + Q3.Q4 

D2 = QI.Q4 + Q2.Q3 + Q3.Q4 

D3 = QI.Q2 + QI.Q4 + Q2.Q4 

D4 = QI.Q3 + Q2.Q3 + Q2.Q4 

AppendixE 

They are realized by 4 independent AND/OR logical networks. The outputs are 
also realized by monotonic circuits (AND/OR gates only) of the outputs of the D 
flip-flops: 
RI = QI.Q2 + QI.Q3 + QI.Q4 + Q3.Q4, YI = Q2.Q4, GI = Q2.Q3 

R2 = QI.Q4 + Q2.Q3 + Q2.Q4 + Q3.Q4, Y2 = QI.Q3, G2=QI.Q2 

3. We will examine a few faults of the Di equations to show the principle of the on
line detection. Any stuck-at 0 altering an AND gate will be transformed into an 
error (1 -+ 0) when the present state of the FSM normally activates this gate; 
hence, the next state will have one bit '1" only. Consequently, all the AND gates 
will take an output value '0', and, at the next dock pulse, the FSM will reach a 
null state (0000). The convergence towards this null safe state is achieved in two 
dock pulses. Moreover, this is a stable trap state. A same reasoning applies to 
any stuck-at 0 fault of the OR gates. Now, let us consider a stuck-at 1 fault in a 
AND gate which provokes an error (0 -+ 1), for example gate QI.Q2 of DI. A 
necessary condition for this error to be propagated to D 1, is that the present state 
is different from (1100). Whatever the considered stuck-at 1 fault, there is a 
present state that leads the FSM to astate having 3 bits '1'. The structure of the 
Di expression is such that, in that case, the next state will be the stable trap safe 
sate (1111). Here also, the convergence is made in two dock pulses. 

To complete this study, we could ask the question: is any stuck-at fault detected 
during the normal functioning of this FSM? The answer is 'yes', if we assurne 
that the whole state graph is totally used (each state and each transition) during 
the normal life of the circuit. This is required to guarantee the implicit single 
fault assumption. If not, we could have double faults that inhibit the fail-safe 
property. 

4. Any fault affecting one flip-flop will provoke an evolution of the internal state of 
the circuit outside the 2 / 4 code, like in the previous question. If the Clock input 
is blocked (stuck-at 0 or 1), the whole state rnachine remains in the same correct 
state; hence, this fault is not safe. To remedy this problem, the specialists have 
proposed special duplicated dock systems. 

5. With a l-out-of-n coding of the internal states, we need 6 internal variables 
instead of 4. However, the logical expressions are very simple. 

Exercise 17.2. Mathematical function processing 

According to the first approach, if the treatment is stopped, no value is available for 
Y. On the contrary, after each iteration of the second approach, a value of Y is 
available and this value is doser and doser to the correct result. Consequently, an 
approximate value may be used if the deadline is reached before the end of the 
normal processing. 

So, this second solution is much preferable to implement a fail-safe pro gram. 
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Exercise 18.1. Reliability of the TMR 

1. There is no failure as long as 2 of the 3 modules function correctly. We suppose 
that the three modules have the same reliability, Ro(t) = e -Ä.t, and that the voter is 
faultless. The global reliability corresponds to all situations leading to no 
failures. We can deterrnine it by different methods. 

• We enumerate all these statistical situations: 2 modules are faultless and the third 
one is faulty (3 cases), and the three modules are faultless (1 case). 

Thus, we obtain: R = 3. Ro2.(1 - Ro) + Rl= 3. R02 - 2. R03. 

• We make a logical treatment based on the theorems of composed probabilities: 

R = P(AB OR AC OR BC) = P(AB OR (AC OR BC» = P(AB) + P(C.(A OR B» -
P(ABC), P being the probability and A, Band C being the 3 modules. 

Let us note that P(ABC) is subtracted as it is the only event counted twice in the 
two other terms. 

R = P(AB) + P(C). P(A OR B) - P(ABC), 

R = P(A).P(B) + P(C).(P(A) + P(B) - P(A).P(B» - P(A).P(B).P(C), 

R = P(A).P(B) + P(C).(P(A) + P(C).P(B) - 2. P(A).P(B).P(C), 

-+ R(t) = 3.Ro(t)2 - 2.Ro(t)3 = 3.e -2A! _ 2.e '3A!, 

as all modules have the same reliability. 
By mathematical integration of the previous function, we deduce the MTBF (or the 
MTTF): MTBF = 5/6 MTBFo, which is lower than the MTBF of one module. 

Note. In fact, the reliability curve of the TMR has a horizontal asymptote for t = 0; 
this reliability is greater than the reliability of the basic module when t is 'small' , but 
it becomes lower after a certain time (see Appendix B). 

2. According to the reliability diagram, the voter module is in 'series' with the three 
modules. Thus, its reliability must be multiplied by the reliability of the triplex: 

R(t) = (3.e -2A.I _ 2.e -3A.I).e -A.t1JO 

Exercise 18-2. Fault tolerance of the TMR 

In terms of reliability, we assume that the TMR system fails as soon as two modules 
fail. To simplify, we neglect the reliability of the Voter. Any functional or 
technological fault altering only one module is tolerated. In fact, such a redundant 
structure tolerates much more faults: any fault altering one or several modules is 
tolerated if and only if it does not modify the behavior of 2 or 3 modules in the same 
way and at the same time. For example, a fault producing the same simultaneous 
error at two module outputs induces a global failure of the system. Moreover, the 
latency phenomena slightly complicate this analysis. Indeed, we know that a fault is 
not necessarily activated as a failure as soon as it occurs. Thus, the tolerance is 
increased as the occurrence of a possible failure on 2 or 3 modules is delayed. 

Let us now examine the TRM structure with hardware fault hypotheses. In an 
electronic circuit made of a set of components, faults are supposed to be independent 
probabilistic events (and we use prob ability theorems with this assumption). The 
assumption of a fault altering one module only, generally used (see the reliability 
computation made in the previous exercise), is justified by the fact that the 
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probability of having a double fault affecting two modules is the product of the 
probabilities of having a fault in each module. With electronic components, the 
actual values of the 1.. are very small (e.g. 10-7) , hence, we neglect the product terms 
(10.14). This assumption cannot be made if strictly identical components are used in 
the TMR. Indeed, these components can have the same design faults or 
environmental weaknesses (e.g. sensitivity to temperature); thus, faults cannot be 
considered as independent phenomena and all reliability computations are false. 
Another criticism deals with other faults violating the independence assumption. 
They produce failures at the same time on non-identical components. For instance, 
this situation can result from external perturbations, such as an Electro-Magnetic 
parasite. 

Exercise 18.3. NMR 

1. Let us assume that each module has only one output. During anormal 
functioning, the output vector (z] , z2, z3) must take the values (000) or (1 1 1). 
Any other value is erroneous, hence the detection function is: 

error = (zl ' . z2'. z3' + zl. z2. z3)" 
where '+' , ' .', and '" represent the operators OR, AND, and NOT. 
This expression can directly be implemented by a very simple circuit (containing 
few MOS transistors). We will develop it further to make a transition with 
question 2. We obtain the expression given in Chapter 18: 

error = (zl$ z2) + (z] $ z3) + (z2 $ z3). 

The 2-input $ operation gives a '1' if and only if its inputs are different. 

2. First we create the three elementary comparison functions: 

ja = (z]$ z2),jb = (z] $ z3), andje = (z2 $ z3). 

If z] is erroneous,ja AND jb is equal to '1', 

If z2 is erroneous, ja AND je is equal to '1', 

If z3 is erroneous, jb AND je is equal to '1'. 

Hence: M] = ja AND jb, M2 = ja AND je, M3 = jb AND je. 

sI 

s2 

sI 

s3 

s2 

s3 

Figure E.44. DetectionlDiagnosis circuit 
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The corresponding circuit is shown in Figure E.44. The signals M1, M2 and M3 
identify the failing module (their value is a 1-out-o/-3 codeword in case of error), 
and allow its inhibition (thanks to apower switch-off, for example), and finally 
its replacement by a spare module. 

3. The voter must behave as the majority of its inputs: this function is the logic 
MAJORITY. For 3 inputs, we have: 

MAJ (zl, z2, z3) = zl.z2 + zl.z3 + z2.z3. 
The corresponding electronic CMOS component is simple. 

This function can easily be extended to 4 inputs: 

MAl (zl, z2, z3, z4) = zl.z2.z3 + zl.z2.z4 + zl.z3.z4 + z2.z3.z4. 
Note: The MAJORITY function is not associative (no possibility for combining 
smaller MAJORITY modules). 

Exercise 18.4. Study of the double duplex 

1. Reread Chapter 18, sub-section 7.2.2. 

2. The product functions correctly as long as one of the two couples (LI, 1.2) or 
(2.1, 2.2) functions correctly. The reliability of the product is then: 

R = P«1.l AND 1.2) OR (2.1 AND 2.2» = P(1.l AND 1.2) + P(2.1 AND 2.2)
P(1.l AND 1.2). P(2.1 AND 2.2), 

R = PO.1) . P (1.2) + P(2.1) . (2.2) - P(1.l). P (1.2). P(2.1). P (2.2), 

where + and - are the addition and subtraction operators. 

If the modules have the same reliability RO, we have: 

R = 2. RO 2 _ RO 4 = 2 e -2")..1 _ e -4")..1. 

Note. The reliability curves of this structure are given in Appendix B. 

Exercise 18.5. Study of self-purging technique 

1. The switch-off of a failing module is performed by each one of the modules of 
the structure. This approach is interesting because it eliminates a part of the 
centralized commutation unit which is always a delicate part of a fault-tolerant 
system (such a part is called the kernel of the system). This technique is a step 
towards a complete decentralization of the duplicate modules and of the decision 
function (thanks to a distributed voter). Such distributed structure can be 
encountered in the framework of distributed software tasks in a distributed 
multiprocessor system. 

2. When only 2 modules remain active, the product regresses to a simple Duplex. 
Thus, the next error occurrence will not be tolerated. The system operates 
according to a degraded mode until a maintenance operation restores the 
tolerance capacity of the product. 

Exercise 18.6. Example of a tolerant program based on retry mode 

The fault to be treated being associated with a provided data, the use of the retry 
mode is pertinent. Indeed, the Get procedure is not the cause of the problem. Fault 
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tolerance mechanism must detect an error if a non-integer data is provided from the 
keyboard. In this case, the data sampling must be reiterated (the Get function is 
executed again) after having restored the initial context. Let us consider the 
following solution: 

Procedure Safe_Get{I : out integer) is 

begin 

loop 

beg in 

Get{I); 

exit; 

exception when Data_Error => Skip_Line; 

end; 

end loop; 

end Safe_Get; 

As soon as an integer value is provided and acquired by the Get (I) function, the 
exi t statement allows to exit from the loop (loop), hence to finish the execution 
ofthe Safe_Get procedure. 

On the contrary, the reading by Get of an erroneous data value leads to the raising 
of an exception (Data_Error) and the branching to the associated exception 
handler. This treatment erases (thanks to the operation Skip_Line) the content of 
the buffer containing the keypressed characters; these characters have not yet been 
all extracted because of the partial execution of Get. For example, if the user has 
keypressed the 5-character sequence <17 A28>, and then 'Carriage Return', the 
execution of Get (I) can let characters '2' and '8' in the keyboard buffer, as the 
left to right analysis of the expected figures has been interrupted by the raising of the 
exception induced by the analysis of 'A'. As expected, the buffer reset action 
restores the system in a safe state. 

Exercise 18.7. Programming and evaluation of recovery bocks 

1. Programming. The two following program extracts illustrate the two 
approaches proposed in section 18-4. We assurne that the execution context is 
limited to the input/output parameter C. C_Prime is a data structure having the 
same type T as C.1t will store the safeguard copy (the duplicate). 

Procedure Recovery_Block_V1{C : in out T) is 

C_Prime: T; 

Error: Boolean; 

begin 

Save{C, c_Prime); 

Error := P{ C ); 

if Error then Restore (C_Prime, C); 

Q{ C ); 

end if; 

end RecoverY_Block_V1; 



Answer to the Exercises 603 

Where the procedures Save (X, Y) and Restore (X, Y) both makes a copy of X 
intoY. 

Procedure Recovery_Block_V2(C : in out T) is 

C_Prime : T; 

Error: Boolean; 

begin 

Save(C, C_Prime); 

Error := P( C_Prime ); 

if Error then Q( C ); 

else Restore(C_Prime, Cl; 

end if; 

end Recovery_Block_V2; 

2. Evaluation of the performance. The two previous programs allow the expected 
performance of the two proposed approaches to implement the recovery blocks 
to be evaluated. In both cases, the context is initially saved. But the rest of the 
bodies is different. 

• In the first case, a correct execution of P does not require any supplementary 
treatment; when an error is detected, arestore operation is performed before 
executing procedure Q. 

• In the second case, an opposite situation occurs, i.e. a correct execution implies a 
restore operation; on the contrary, in case of error detection such restore 
operation is not necessary before executing Q. 

To conclude, the first approach is more efficient when P is correctly executed, while 
the second approach is more efficient when the use of the redundant component Q is 
required. This last design approach can for example be chosen if we know that the 
execution of the redundant component requires a supplementary duration to which 
any further restoring duration must be added, due to real-time constraints. 

Exercise 18.8. EDC in a RAM 

1. Matrices G and H: 

G= 

111000000000 

100110000000 

010101000000 

110100100000 

110100101000 

010000010100 

110000010010 

000100010001 

Coding operation: 

[

101010101010] 
011001100110 

,H= 000111100001. 

000000011111 

[Yt. Y2, Y3, Y4, Ys, Y6' Y7, Ys, Y9, YIO, Ylt. Y12] = [u], U2, U3, U4, US, U6, U7, Us] . G. 
For example, if U = [00 1 1 101 1], then Y = [11 0 101 1 1 101 1]. 
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2. Error detection and correction. We suppose that bit w6 is erroneous, and we 
perform: 

[
101010101010j [0] 
011001100110 1 S=H.WT, .[110100111011] T= . 
000111100001 1 

000000011111 ° 
The decimal value of this syndrome vector indicates the erroneous bit: bit 6. The 
correction is then a simple binary complementation. 

3. Implementation ofthis code in the MMU. 

l t ControIIIua 

I=t:~ 
4bils 4 bils 

1krMry Decodi~ ....... syndrolM 

~ 8 hits CorrectIon 
..... Error .. 

8 bits 

f 8 bits 
Adress Bus .. 

Data Bus .. 
Figure E.45. Detection and correction circuit 

Figure E.45 shows the structure of the EDC circuitry for this code. The 'check 
bit generation' module implements in hardware the XOR expressions to generate 
the 4 redundant bits. The 'decoding and correction' module implements the 
matrix product S = H. WT . This module uses the result S to correct the erroneous 
bit, and it communicates with the external system (e.g. a CPU) for error logging. 

4. Scrubbing operation 

As said in Chapter 18, the scrubbing is an off-li ne operation which write 
corrected erroneous word, and read them again, in order to check if the faults are 
hard or soft. If they are soft, the word has been cleaned up. On the contrary, the 
fault is hard and cannot be cleaned. 
The previous structure is entirely compatible with such useful function. 



Glossary 

1. ACRONYMS 

ABS Antiloek Braking System 

ATE Automatie Test Equipment 

ATPG Automatie Test Pattern Generation 

BCH Bose Chauduri Hoequenghem 

BIST Built-In Self-Test 

BIT Built-In Test 

BITE Built-In Test Equipment 

BNF Baekus-Naur Form 

C/DC ConditioniDecision Coverage 

CAM Computer Aided Maintenanee 

CAN Control Area Network 

CIRC Cross-Interleaved Reed-Solomon Code 

CMOS Complementary MOS 

COTS Components Off The Shelf I Commercial Off-The-Shelf 

CRC Cyclie Redundaney Cheek 

DAT Digital Audio Tape 

DFG/PFG/SFG Deterministie I Probabilistie I Statistieal Fault Grading 

DFT Design For Testability 

DRC Design Rule Cheeking 

DUT Deviee Under Test 
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ECC Elliptic Curve Cryptography 

EDC I ECC Error Detecting Codes I Error Correcting Codes 

EMC Electro-Magnetic Compatibility 

ESF Extended Super Frame 

FMEA Failure Modes and Effects Analysis 

FMECA Failure Modes and Effects and Criticality Analysis 

FPGA Field Programmable Gate Array 

FRC Functional Redundancy Checking 

FSM Finite State Machine 

FTM Fault Tree Method 

GSM Global System for Mobile communication 

HDB High Density Bipolar (signal coding) 

HDL Hardware Description Language 

IC Integrated Circuit 

JTAG Joint Test Action Group 

LFSR Linear Feedback Shift Register 

LRC I VRC Longitudinal I Vertical Redundancy Check 

LSB/MSB Least/Most Significant Bit 

LSSD Level Sensitive Scan Design 

MCIDC Modified ConditionlDecision Coverage 

MDT Mean Down Time 

MOS Metal Oxide Semiconductor 

MTBF Mean Time Between Failures 

MTTF Mean Time To Failure 

MTTFF Mean Time To First Failure 

MTTR Mean Time To Repair 

MUT Mean UpTime 

NMR N-Modular Redundancy 

NRZ Non-Return to Zero 

PCB Printed Circuit Board 

PLA Programmable Logic Array 

PLC Programmable Logic Controller 

PLD Programmable Logic Device 

PSA Parallel Signal Analyzer 

RAID Redundant Array of Independent Disks 
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RAM Random Access Memory 

ROM Read Only Memory 

RSA Rivest Shamir Adleman 

SCC Self-Checking Checker 

SOC System On Chip 

STG State Transformation Graph 

STIL Standard Tester Interface Language 

TAP (Boundary Scan) Test Access Port 

TMR Tripie Modular Redundancy 

VAN VehicJe Area Network 

VHDL VHSIC Hardware Description Language 

VHSIC Very High Speed Integrated Circuit 

VXI VME eXtensions for Instrumentation 

2. KEYWORDS 

Word 
"', Meanmg 0~~ r:I .if.i eH fit 7 

acceptability Curve expressing the acceptable risk rate of failures from their 17.1 
curve seriousness 

acceptable A product whose failures have acceptable risk rates 17.1 
product 

acceptable risk See risk: acceptable rate 
rate 

acceptance test See test: acceptance 

activation: The OCCUITence of a first eITor provoked by a fault. 4.1 
initial This eITor is called primitive error or immediate error 13.2 

See also fault activation 

active fault Seefault tolerance: active 
tolerance 

Ad Hoc See DFT: ad hoc approach 
approach 

adaptive See sequence: adaptive 
sequence 

adaptive vote See vote: adaptive 

aggression Seefault: external 



608 Glossary 

alias An alias oeeurs when a faulty cireuit test output response gives a 14.5 
signature whieh is identieal to the fault-free signature (used in 
BIST techniques by LFSR signature analysis) 

alpha test See test: alpha 

alternate Redundant module (version) having the same specifieation (or a 18.4 
degraded form) and, often, a different implementation than the 
original funetional module 

ambiguity An element whieh leads to several meanings 9.3 

analysis: See criticality analysis 
eritieality 

analysis: See dynamic & static analysis 
dynarniclstatie 

assertion Funetional redundaney uSed for software verifieation. It tests the 10.5 
validity of a property eaeh time a given cireumstanee eould violate 16.3 
it. It ean be used: during the ereation stages for fault removal (Ch. 
10), or during the operation stage for fault detection by on-line 
testing (Ch. 16) 

ATE Automatie Test Equipment 12.1 

ATPG Automatie Test Pattern Generation: automatie generation of lists 12.3 
of test inputs and expeeted outputs to perform produet testing 

attributes of Criteria enabling the system dependability to be assessed. The 1.4 
dependability most used attributes are: reliability, availability, maintainability, 7 

testability, safety and security 

attributes of The behavior of a module is eharaeterized by a set of attributes 2.3 
module whose values define the states of the module 

availability It is the probability that the system is operational at the time t, 7.5 
knowing that it funetions eorrectly at time 0 

availability: Value ofthe availability at a given time t: A(t) 7.5 
instant 

availability: In permanent stage, availability value of A(t) when t -+ 00 7.5 
permanent 

baekward fault Step of struetural fault eoverage method whieh deterrnines the 13.3 
analysis faults deteeted by a given test veetor by a baekward proeess (from 

the outputs towards the inputs) 

baekward See propagation: backward 
propagation or 
tracing 

baekward Fault-tolerance technique whieh eonsists in bringing the system 18.3 
recovery baek in astate previously reaehed before the system exeeution 

resumption. This teehnique makes often use of eontext saving and 
restoring meehanisrns (sueh as the recovery cache). The exeeution 
of M is resumed at a recovery point 
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bathtub curve Reliability model which represents the evolution with time of 7.2 
failure rate of electronic components. Typically, it shows 3 parts: 
infant mortality where the failure rate decreases, usefullife where 
the failure rate is constant, and wearout where the failure rate 
increases. 

behavior Reaction of a system mainly described as changes of states in this 2.3 
book 

behavioral A design step/model of the system specifying its behavior 2.2 
level/model 2.3 

benign Seefailure: benign 

beta test See test: beta 

BIST Built-In Self-Test. Group of Design For Testability methods which 14.5 
incorporate the test functions into the circuit 

BIST: signature Group of BIST techniques using a test sequence generator (usually 14.5 
a LFSR), a compactionfunction (usually a PSA), and a signature 
analysis function 

BIT Built-In Test. Group of Design For Testability methods which 14.4 
incorporate test facilities and offer a test interface 

bit stuffing Fault detection technique applied to data. After a number of bits 18.7 
with the same polarity, an additional bit is introduced with an 
opposite polarity. Used for instance in the CAN Bus 

BITE Built-In Test Equipment. All maintenance functions of a system 14.4 

boundary scan Scan technique belonging to the BIT design for testability. 14.4 
Normalized as the IEEE Standard 1149.1 

branch test See test: branch 

bridging fault A particular case of short electronic fault 5.2 

See also fault: short-circuit 

BSDL Boundary Scan Description Language 14.4 

bug See fault: structural (for software technology) 3.2 

bum-in test See test: bum-in 

CIDC See test: ConditionlDecision 

CAM Computer Aided Maintenance 12.1 

CANBus Control Area Network bus. Initially created for automotive 18.7 
industry. Normalized under ISO 11898 

catastrophic See failure: catastrophic 

checker Module used in self-testing systems to detect the occurrence of 16.3 
errors from the observation for instance of some EDC code 
variables 

See also self-checking checker 

checkerboard See test: memory 
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checksum See code: checksum 

clarity The text or the model describing a system is easy to read 9.3 

client Entity or person expressing requirements or specifications to ask 2.2 
for an expected product 

code Set of the codewords in an EDCC 15.1 

code preserving See Totally Self-Checking System 

code: Unidirectional code such that each codeword has exactIy m bit '1' 15.4 
m-out-of-n and (n-m) bits '0' 

code: Special case of m-out-of-n code such that the codeword is obtained 15.4 
two-rail by adding to the word to be coded its complemented copy 

Also caIIed double-rail 

code: Category of codes dealing with detection and correction of errors 15.5 
arithmetic in arithmetic systems 

code: Berger One of the codes dedicated to unidirectional errors. The redundant 15.4 
part expresses in binary the number of bits '0' in the word to be 
coded 

code: Code applied to blocks of words 15.3 
bidimensional Also caIIed product code 

<> unidimensional 

code: capacity Number of codewords that can be made with a given code 15.2 

Also caIIed power 0/ expression or cardinality 

code: See code: capacity 
cardinality 

code: Bidimensional arithmetic code based on the sum without 15.5 
checksum remainder of the words of a block 

code: CIRC Cross-Interleaved Reed-Solomon Code 15.3 

code: cost Number of bits (n) of the codewords 15.2 

code: coverage Ratio of the number of errors detected andlor corrected by the code 15.2 
rate and the number of errors belonging to the considered error model 

code: CRC Cyclic Redundancy Check code are cyclic EDCC codes 15.3 

code: cyclic Family of linear EDCC codes. Modeled with polynomials 15.3 

code: density Ratio of the capacity of a redundant n-bit code and the theoretical 15.2 

number of words that can be made (2n) 

code: disjoint See self-checking checker 

code: ECC EIIiptic Curve Cryptography codes based on eIIiptic curves 15.1 

code: EDCC Error Detecting and Correcting Code. Redundant coding of 15.1 
information used to detect andlor correct errors 

code: error See code: EDCC 
corrector 
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code: error See code: EDCC 
detector 

code: fault See totally self-checking system 
secure 

code: Fire Cyclic code addressing burst multiple errors 15.3 

code: linear EDCC using multiple parity. Modeled with matrices 15.3 

code: low- High Density Binary. Signal level coding 15.1 
level: HDB 

code: low- Signal level coding 15.1 
level: 
Manchester 

code: low- Non-Return to Zero. Signal level coding 15.1 
level: NRZ 

code: modulo 9 An example of arithmetic code 15.5 
proof 

code: multiple Code using several redundant bits which are obtained by XOR 15.3 
parity combinations of some bits of the word to be coded 

code: power of See code: capacity 
expression 

code: product See code: bidimensional 

code: Ratio of the number of added bits ('redundant bits') and the 15.2 
redundancy number of bits of the word to be coded (calIed 'useful bits') 
rate 

code: residual Category of codes intended to detect errors in arithmetic circuits 15.5 

code: RSA Ri vest Sharnir Adleman codes based on the factorization of large 15.1 
numbers 

code: self- See self-checking checker 
checking 

code: separable Properties of redundant codes 15.2 
/ non-separable separable code: the information to be coded is explicitly included 

in the codeword (the codeword is made by adding redundant bits to 
the information data) 

code: single Code using one redundant bit which is the XOR of allother bits of 15.3 
parity the word to be coded 

code: syndrome See syndrome 

code: totally See totally self-checking system 
self-checking 

code: two-rail Particular case of m-out-of-n code 15.3 

Also called double-rail 
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code: Code applied to individual words 15.3 
unidimensional <> bidimensional 

code: Category of codes intended to detect unidirectional errors, Le. 15.4 
unidirectional multiple errors that modi fies the altered bits in the same way 

(all '0' to '1', or all '1' to '0') 

codeword Coded element of information 15.2 

cold standby See redundancy: cold standby 
redundancy 

compaction See test: compaction 

compaction See BIST: signature 
function 

compatibility The service delivered by the product is greater than the one 4.2 
ofa product expected from the specifications 

<> incompatibility 

compensation Fault tolerance technique using passive redundancy such as the 6.4 
technique TMR. Does not require error detection 18.2 

See also error masking 

complete See complete distinguishing sequence 
diagnosts 
sequence 

complete Diagnosis sequence which split the fault model into classes of 12.2 
distinguishing system equivalent faults 13.4 
sequence 

completeness All possible cases are handled 9.3 

compliance test See test: compliance 

component Structural entity of a system 2.3 

Also called module or sub-system 

composition Relationships composing sub-systems to express the structural 2.2 
relationships model of a system 

compositional See hierarchy: composition 
hierarchy 

comprehension The understanding of the semantics of a text or a model describing 9.3 
a system or other pieces of information 

computer aided CAM. Tools which assist the maintenance team 12.1 
maintenance 

concision The text or the model describing a system does not contain useless 9.3 
verbiage 

condition Boolean expression which does not contain any Boolean operator 13.6 
(AND, OR, NOT) 

See also decision 
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conditionl See test: conditionldecision 
decision test 

conditional See maintenance: preventive 
maintenance 

confidentiality Non occurrence of unauthorized disclosure of information 7.7 

confinement See error confinement 

consequences External effects of faults or failures on the product' s mission. 4.2 

of These effects are generally classed into groups according to their 17.1 
faults/failures seriousness: minor or benign (seefailure: minor), signijicant (see 

failure: signijicant), serious (seefailure: serious), catastrophic or 
disastrous (seefailure: catastrophic), 

consistency No conflicts exist between definitions of the elements of a system 9.3 
or ofa text 

consistency (or justijication) One of the four basic steps of path sensitizing test 13.2 
operation generation method which verifies that the loeal constraints can be 

satisfied in the whole circuit 

contamination See error propagation 

continuity of See reliability 
service 

continuity test See test: continuity 

continuous on- See on-line testing 
line testing 

contract Document produced during the specification phase, which 2.2 
formalizes the mission of the product (funetion and duration), non-
functional constraints on the environment, and the dependability 
attributes 

control flow Finite State model derived from a program, expressing the 13.6 
sequencing of the statement block and taking the input events and 
the internal decisions into account 

control path Path of a control flow 13.6 

controllability Ease of reaching a given state of a system behavior by exercising 6.3 
its inputs 14.1 

corrective Action taken to eliminate the causes of an existing nonconformity, 2.2 
action defect (fault) or other undesirable situation in order to prevent 

recurrence 

corrective See maintenance: corrective 
maintenance 

coverage See fault coverage and code: coverage rate 

coverage table See fault table 

CRC See code: CRC 
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creation See development process 
process 

criticality Methods used to estimate the risks of the failures of a product 17.1 
analysis 

criticality level Measurement or classification based on acceptable rate risk 17.1 
Also see consequences of faultslfailures 

curative See maintenance: corrective 
maintenance 

dangerous See failure: serious 

debugging The process of detecting, locating, and correcting faults and errors. 12.1 
Belongs to fault removal 

decision Combination of conditions or decisions using Boolean operators 13.6 
(AND, OR, NOT) 

decreasing See reliability: decreasing 
reliability 

defect See fault: structural (for hardware technology) 3.2 

degradation Degradation of the service delivered by a product affected by faults 18.5 

delivered See service delivered 
service 

dependabi lity The dependability of a system is that property of the system such 1.2 
that reliance can justifiably be placed on the service it deli vers 

dependability Techniques to measure or estimate the dependability, thanks to 7.1 
assessment attributes: reliability, availability, maintainability, testability, 

safety, security 

These attributes are evaluated at three levels in the life cycle: 
specification andforecast assessment during the creation stages, 
and exploitation assessment during the exploitation stage 

There are two groups of techniques: quantitative approach and 
qualitative approach 

dependability Set of actions justifying the reliance placed in a given product 6.5 
assurance 

design Step of the life cycle wh ich transforms specifications into a system 2.2 

design for SeeDFT 
testability 

design guide Fault prevention techniques, relative to the design process, 10.3 
advising the design process choices 

design level Design is traditionally classified into three modeling steps: 2.2 
behavioral, structural, and technological 

design rule DRC. Example: ensure all geometric features laid out on each 11 
checking mask meet size, spacing, and overlap mies 14.4 

design test See test: design 
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design: Fault removal technique: verification with the specifications, by 10.4 
extraction reverse transformation, e.g. identification of the electronic 

structure from the layout 

design: proof Fault removal: formal verification technique with the 10.6 
specifications, by reverse transformation, or demonstration of a 
property of the system behavior 

designer The entity or person which creates a system or a product from 2.2 
requirements or specifications 

destructive test See test: destructive 

detection test See test: detection 

Deterministic See fault grading: deterministic 
Fault Grading 

development The process that leads from the specification to the product. In this 2.2 
process book, it groups together specification, design and production 

Also called creation process 

device under SeeDUT 
test 

DFf Design For Testability. Set of design techniques increasing the 14.1 
controllability and observability ofthe product. Used for off-li ne 
testing. There are four DFf main approaches: Ad Hoc techniques, 
specific design for testability, Built-In Test (BIT), and Built-In Self 
Test (BIST) 

DFf: adhoc Guidelines used during or after the design to facilitate the test 14.2 
approach 

DFf: specific Group of Design For Testability methods which provide products 14.3 
design naturally easy to test 

diagnosis Process of identifying the fault, if one exists 6.3 

See also test: diagnosis, fault: localization 10.5 
12 

13.4 

diagnosis Definition of modeling tools used to express the pieces of 12.1 
algorithm information handled during the diagnosis (such as fault tree), and 13.7 

the tasks and steps to be done to diagnose the faults 

Also called diagnosis process 

diagnosis fault Technique which successively split the set of the fault3 of a fault 12.2 
tree technique model into fault classes in order to diagnose the causes of a failure 

diagnosis See diagnosis algorithm 
process 

diagnosis test See test: diagnosis 

diagnosis Diagnosis testing using an adaptive sequence 12.2 
testing: 
adaptive 
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diagnosis Diagnosis testing using a fixed sequence 12.2 
testing: fixed 

diagnosis tree Graphie tool allowing to determine which fault (or faults) is (are) 12.2 
present, from the output values produced by a system submitted to l3.3 
a test sequence 

diagnosis: See diagnosis: model based approach 
based on deep 
knowledge 

diagnosis: See diagnosis: model based approach 
based on 
structure and 
function 

diagnosis: See diagnosis: experimental approach 
empirical 
associations 

diagnosis: Diagnosis methods based on knowledge of relationships between 12.1 
experimental possible faults or errors and the related failures 
approach Also called empirical associations, or surface or shallow 

reasoning, or reasoning by associations 

diagnosis: Diagnosis methods which do not use fault or error models. The 12-1 
model-based failures are diagnosed thanks to the system model 
approach Also called diagnosis based on deep knowledge, or diagnosis 

based on structure and function 

diagnosis: See diagnosis: experimental approach 
reasoning by 
associations 

diagnosis: See diagnosis: experimental approach 
shallow 
rasoning 

diagnosis: See diagnosis: experimental approach 
surface 
reasoning 

disastrous Seefai/ure: catastrophic 

discontinuous See on-Une testing 
on-line testing 

disruption Modification of the correct state which cause an error 15.1 

Also called error in error detecting and correcting code theory 

See also fai/ure: disruptive 

disruption Operator combining a correct state and a disruption to express an 15.1 
operator error 

distance: Fundamental notion similar to the Hamming distance, used to 15.5 
arithmetic study arithmetic codes 
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distance: See Hamming distance 
Hamming 

distinguishing Test sequence able to decide which fault of a given fault model is 12.2 
sequence present in a circuit. Used for diagnosis 13.4 

disturbance See fault: external 

domain: See safety: dangerous domain 
dangerous 

domain: See functional domain 
functional 

domain: safe See safety: dangerous domain 

domino effect Cascade phenomenon occurring during the restoration of the 18.3 
context of a multiple task system, when using a recovery point 
fault tolerant technique 

double-duplex Fault tolerance technique using active redundancy 18.7 

dreaded event Impairments of dependability (faults, errors, failures) studied by 7.1 
qualitative dependability assessment techniques. Often limited to 
dangerous events 

duplex Self-testing technique based on structural redundancy. The main 16.3 
module is functionally duplicated, the outputs of the two duplicates 
being compared by achecker 

duplicate Duplicates redundant modules are Versions having the same 18.2 
implementation (used in fault-tolerance techniques) 

Also called replica 

duration of the Objectives of the product in terms of operationallife 2.1 
mission 

DUT Device Under Test. Product connected to a tester 12.1 

dynamic Group of techniques relevant to fault removal carried out by 6.3 
analysis executing products or models 

Also called test 

ECC See code: ECC 

EDC I ECC Error Detecting Codes I Error Correcting Codes 15.1 

See code: EDCC 

embedded core See IEEE P 1500 

emergence Operator determining the behavioral part of a component which 8.2 
effectively intervenes in the global behavior of a system 

emergent The functional part of the product which is really used in the 4.2 
functionality context of the mission 

empirical See diagnosis: experimental approach 
associations 
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environment funetional: see user 2.1 

non-funetional: entities external to the eouple Produet-User and 
having an influence on the delivered service 

equivalence: A mutated program is equivalent to the initial program ifthe 13.8 
mutated mutation does not modi fies the behavior 
program 

equivalent fault See pattern equivalent fault and system equivalent fault 

error An error occurs in a module (or component) when its aetual state 4.1 
deviates from its desired or intended state 

error Methods and techniques used to limit the error propagation to a 6.4 
confinement certain subset of the system 18.6 

See also fault: eontention 

error See error propagation 
contamination 

error detecting Redundant coding to detect and/or eorreet errors 6.4 
and eorrecting 15.1 
codes 

error detection Group of teehniques of fault tolerance 6.4 
and correction 

error diffusion See error propagation 

error logging See log file 

error masking Group of techniques of fault tolerance which does not require error 6.4 
detection, as the faults effects are rnasked 18.2 
See eompensation teehniques 

error model See model: error 

error Mechanism which transforms an error oceurring in a product into 4.1 
propagation one or several other errors or failures 15.6 

The propagation is condueted through one or several error 
propagation paths 
Also called error diffusion or eontamination 

error typology See model: error 

error: Asymmetrie error has a different probability to produce a '1' value 5.2 
asymmetrie and a '0' value 

error: burst l-order multiple error model such as all the errors affect a sequence 15.1 
of l consecutive bits 

error: dynamic Adynamie error provokes transient undesirable states (e.g. a 4.1 
transient oscillation on a line) 
Also called transient error 

error: generic Error associated with a modeling tool 6.3 

<> error: speeijie 

error: hard See error: permanent (for electronic eomponents) 5.2 
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error: See aetivation: initial 
immediate 

error: logical Logieal error is characterized by transformations of logical values: 5.2 
'0' becomes 'I' and vice versa. 15.1 
Non-logical errar provokes alterations of the logic levels outside 
the specification domains 

error: multiple Multiple errar disturbs the functioning of several elements (e.g. a 5.2 
problem in the electrical supplying affects all the components) 

error: order Order of multiplicity. The number of elements altered by a 5.2 
multiple error 15.1 

error: packet Multiple error where all modified bits are grouped within a certain 15.1 
distance 

error: A permanent errar affect a module for a long duration (e.g. the 4.1 
permanent output of a module is stuck-at '0') 

<> error: temporary 

error: primitive See aetivation: initial 

error: single Single error affects one element (for instance a transistor) of the 5.2 
structure of the system 15.1 

error: soft Temporary error induced by transient faults in electronic 5.2 
components 

error: specific Error associated with a particular system 6.3 

<> error: generie 

error: static A static error provokes a stable undesirable state (e.g. a false signal 4.1 
'1' instead of the right one '0') 

error: Symmetrie errar provokes with the same probability, astate 5.2 
symmetric changing (for instance, '0' to '1') and conversely 

error: A temporary errar has limited operation duration 4.1 
temporary <> error: permanent 5.2 

error: transient See error: dynamie 

error: Gate level: multiple logical error such as all altered lines are stuck 5.2 
unidirectional at the same value 

Code theory: multiple error which modifies several bits of a word 
15.4 in the same sense: 0 to I, or 1 to 0 

event tree Tree connecting correct (states) or incorrect (faults, error, failures) 7.11 
events with logical operators (AND, OR). Used for deductive 
approach in qualitative dependability assessment 

See Fault Tree Methad 

evolutive See maintenanee: preventive 
maintenance 
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exception Software on-line error detectionlhandlinglpropagation mechanism 14.2 
mechanism 17.2 

execution path A control path which can be run when the program is executed 13.6 

exploitation See operation 

exploitation See dependability assessment 
value 

exponentiallaw The simplest reliability model used for electronic components 7.2 

extraction Electronic extraction of an JC. Analysis which gives a transistor- 10.4 
level description from a mask-Ievellayout description 

extremely See risk 
improbable 

extremely rare See risk 

fabrication See production 

fail-fast system Afail-fast system is afail-safe system which integrates a maximal 17.2 
duration to reach the safe sate in their specifications 

fail-safe system System integrating techniques to reduce or avoid the occurrence of 6.4 
failures considered as catastrophic or dangerous 17.1 

fail-silent Fail-safe technique: when an error or a failure occurs, the system 17.2 
system turns itself into a safe 'off or 'passive' mode which does not act 

on the environment 

Also calledfail passive 

failure A failure occurs when the delivered service no longer complies 3.1 
with the specifications 
Taking the mission notion into account, a failure is the non-
performance or inability of the system or component to perform its 
intended function for a specified time under specified 
environmental conditions 

failure mode Abstract viewpoint about failures, independently of the particular 3.1 
system functions and failures. Often defined by three parameters 
(value/timing, persistentltemporary, consistentlinconsistent) 
completed by the seriousness and risk 

failure rate ().) Mathematical estimator of reliability which expresses a failure 7.2 
occurrence probability per hour, e.g. 10.6 faultlH (non MKSA 
unit) 

failure: benign Failure which has no serious consequences on the mission which 4.2 
carries on normally. Failure leading to upset of the users, and/or a 17.1 
partial reduction of the functionality of the product 

Also called minor 

failure: Seefai/ure: inconsistent 3.1 
Byzantine 
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failure: Failure leading to human loss, destruction of the product or the 4.2 
catastrophic environment, including the controlled process 17.1 

Also called disastrous 

failure: Failure perceived similarly by all users 3.1 
consistent 

failure: crash Persistent omission failure 3.1 

failure: See failure: serious 
dangerous 

failure: Seefailure: catastrophic 
disastrous 

failure: A failure caused by a technological fault 3.2 
disruptive Also called disruption 

failure: The temporal characteristics of the product behavior are not in 3.1 
dynamic accordance with the specifications: e.g. response time incorrect, 

too fast or too slow 

Also called timing failure 

failure: See risk 
extremely 
improbable 

failure: See risk 
extremely rare 

failure: See risk: impossible 
impossible 

failure: The users do not perceive in the same way the failure occurrence. 3.1 
inconsistent Also called Byzantine failure 

failure: major See failure: significant 

failure: minor See failure: benign 

failure: A specific stopping failure when no values are delivered 3.1 
omission 

failure: The provided service is not in accordance with the specification, 3.1 
persistent during a long period in regards with the mission duration 

failure: See risk 
probable 

failure: rare See risk 

failure: serious Failure whose negative effects on the user or the environment are 4.2 
quite important, the security margins being dangerously reduced. 17.1 
Leads to a small number of casualties and/or serious injuries of the 
users, andlor a serious reduction of the functionality of the product 

Also called dangerous 
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failure: Set of failures having the same seriousness 17.1 
seriousness 
class 

failure: severity Measurement of the consequences of a failure on the system, user, 4.2 
or seriousness and environment 17.1 

failure: Seriousness of a failure: the mission is disturbed and the efficiency 4.2 
significant ofthe delivered service is reduced. Leads to injuries ofthe users, 17.1 

andlor a partial reduction of the functionality of the product 

Also called major 

failure: static A product has a static failure when, at a given time, its actual 3.1 
perception via its inputs, or its actual reaction are not in accordance 
with its specifications 

Also called value failure 

failure: When the product's activity no longer evolves, a constant value 3.1 
stopping being delivered to the user. 

failure: A failure caused by a functional fault. 3.2 
systemic 

failure: The provided service is not in accordance with the specifications at 3.1 
temporary a given time and for a short duration 

failure: timing See failure: dynamic 

failure: value See failure: static 

false alarm Generally associated with built-in test. It is an indication of a 16.3 
failure in a system where no failure exists. 

fault Adjudged or hypothesized cause of a failure. Also seefault: 3.2 
structural 
Also called defect (hardware) or bug (software) 

fault activation Raising of an error from a fault 4.1 
In particular, it is the first step of path sensitizing test generation 13.2 
methods which transforms a fault into a primitive error to be 
propagated to the primary outputs of the system under test 

fault avoidance Fault prevention + fault removal 6.1 

fault collapsing Technique to reduce the ron time of fault simulation by identifying 12.3 
equivalent faults and simulating only one fault for each class 

fault contention Technique to prevent errors due to faults in a module to reach other 6.4 
modules of the system 
See also error confinement 

fault correction Operation which suppress present faults 6.3 

fault coverage Percentage of potential faults of a given fault model that are 12.2 
detected during a test 13 

fault detection Operation which highlight the presence of faults 6.3 
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fault diagnosis Operation which identifies the faults altering a product 6.3 

Also called fault localization or fault isolation 12.2 
13.4 

fault dictionary List of faults, their activation, and their effects (as errors or 12.3 
failures), which can aid in the determination of probable causes 
during failure analysis of defective devices 

fault Estimation of the presence of faults (number and seriousness) 1.3 
forecasting Developed in Chapter 7 

fault grading Measure of how effective a set of test vectors is at detecting 12.3 
potential faults. Finding of the coverage of a given test sequence 

Also called test validation 

fault grading: The DFG is a simulation method which compares the results of a 12.3 
deterministic faulty design (fault injected) with the outputs coming from the 

design. It includes various simulation algorithms, such as grouping 
of equivalent faults, also known asfault collapsing, and making 
use of customized hardware platforms (accelerators) 

fault grading: There are three approaches to fault grading, based onfault 12.3 
fault simulation simulation techniques: probabilistic (PFG), deterministic (DFG), 

and statistical (SFG) 

fault grading: The PFG is a simulation method which provides an estimation of 12.3 
probabilistic the fault coverage rather than an exact determination. The principle 

is based on an analysis ofthe node activity in terms of 
controllability and observability 

fault grading: The SFG reduces the cost of DFG by applying deterministic fault 12.3 
statistical simulation to a sub-sets of the potential faults of the given fault 

model. It provides a close approximation ofthe DFG results, while 
requiring only a small fraction of the run time 

fault grading: Method evaluating the fault coverage of a test sequence by 13.3 
structural structural analysis of the producl. It consists in: forward 
approach simulation, and backward fault analysis 

fault injection Technique consisting in adding faults to a system in order to 7.9 
analyze its behavior. Used for fault grading or to assess fault 12.3 
tolerance mechanisms 

fault logging Recording of errors occurring in a product during operation in 16.3 
order to facilitate ulterior maintenance 

See also instrumentation and logfile 

fault masking Fault belonging to a passive redundant element that cannot be 13.3 
detected from the outside of the producl. Use of compensation 
mechanisms 

fault model See model: fault 

fault prevention Aims at reducing the creation or occurrence of faults during the 1.3 
system life cycle 6.2 
Developed in Chapters 9, 10, and 11 
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fault removal Aims at detecting and eliminating existing faults, or to show the l.3 
absence of faults 6.3 
Developed in Chapters 12, 13, and 14 

fault secure See totally self-checking system 

fault simulation Technique used for dependability assessment. 7.9 

Fault grading technique which provides a list of faults detected by 12.3 
a given test sequence (hence, thefault coverage) by means of a 
simulation program with fault injection 

There are four main approaches: serial, parallel, deductive, and 
concurrent 

fault table Table showing the faults covered by each vector of a test sequence 12.2 

Also called coverage table 

fault tolerance Aims at guaranteeing the service provided by the product despite l.3 
the presence or appearance of faults 6.4 
Developed in Chapters 16, 17, and 18 

fault tolerance: Approach that makes use of error detection and handling 18.5 
active 

fault tolerance: See compensation technique 
compensation 

fault tolerance: Approach that does not make use of error detection 18.5 
passive 

fault tree SeeFTM 
method 

fault tree: See diagnosis fault tree 
diagnosis 

fault: Fault which is not intentionally created 3.2 
accidental <> intentional 

fault: acti ve A fault becomes active when it provokes an error during the 4.1 
operation of the product 

<> passive 

fault: bridge See bridging fault 

fault: common Fault caused by the same circumstances, and thus provoking the 18.2 
mode same errors/failures, of several redundant modules in a fault-

tolerant system 

fault: Fault associated with a component. 3.3 
component Also called module fault 

fault: See fault: functional 
conceptual 

fault: creation Fault occurring during specification, design and/or production 3.2 
phases (excluding the operation phase) 
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fault: delay For electronic models. A delay fault, occurs when a signal 5.2 
propagating through a circuit is slower than it really should be 

fault: dormant See fault: passive 

fault: dynamic See fault: temporary 

fault: external Failure eause attributed to the user or the environment. 3.2 

Also ealled perturbation or aggression or disturbance 

fault: Fault due to human activities during the product life phases. The 3.2 
functional origin is the designer during the creation steps and the user during 

the operational step. Also called conceptual fault or human-made 
fault 

fault: hard Permanent fault oeeurring in memory circuits 11.3 

<> fault: soft 

fault: hardware See fault: physical 

fault: human- See fault: functional 
made 

fault: initial See activation: initial 
aetivation 

fault: Fault created deliberately 3.2 
intentional <> fault: accidental 

fault: Fault coming from the interactions of several components 3.3 
interaction 

fault: Temporary fault due to intemal causes 3.2 
intermittent 

fault: internal Failure cause occurring in the product or system 3.2 

fault: isolation See fault: localization 

fault: Identifieation of the faults of an erroneous system 6.3 
localization Also called fault isolation or fault diagnosis 

fault: masked A faultf1 is masked by a fault 12 according to a given input 13.5 
sequence, if the oecurrence of f1 does not provoke a failure, due to 
the presence of 12 

fault: module See fault: component 

fault: MOS on Fault model at MOS level: a MOS is always eonducting 5.2 

See also fault: short-circuit 

fault: MOS Fault model at MOS level: a MOS is always blocked 5.2 
open/off 

fault: Ability to detect the presence of a fault through a failure 4.1 
observation oecurrence 

fault: Fault oecurring during the operational stage of the life eycle 3.3 
operational 
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fault: passive The fault does not raise error; hence, it does not disturb the 4.1 
product' s functioning. Also called dormant 

<> active 

fault: Fault that persists once it has occurred (e.g. design fault) 3.2 
permanent Also called static fault 

fault: physical Technological fault concerning hardware technology 3.2 
Also called hardware fault 

fault: short- Fault model at electronic level. Particular case: bridging fault 5.2 
circuit which provokes wired logic (OR or AND) 

fault: soft Non-permanent faults in RAM: random, non-recurring single-bit 11.3 
fault 18.7 

fault: static See fault: permanent 

fault: structural When the internal functional faults are concerned, a fault consists 4.1 
in a non-adequate structure alteration 

Also called defect (hardware) or bug (software) 

fault: stuck-at See stuck-at fault 
011 

fault: Fault of the technological means (hardware I software) used to 3.2 
technological implement the product 

Also called hardware or physical fault for hardware technology 

fault: temporal Electronic fault due to incorrect response time of components 3.2 

fault: Fault the presence of which is time bounded. The duration range is 3.2 
temporary generally assumed as short 5.2 

Also called dynamic fault 

fault: transient Temporary fault due to external causes 3.2 

fault: No input test sequence can reveal the fault at the output of the 8.3 
undetectable system. This corresponds to passive redundancy 13.2 

fault-secure Fundamental property of a self-testing system which guarantees 16.3 
that no failure can occurs which is not immediately detected 

feature Element of a modeling tool or language 2.2 
6.3 

feature Prevention techniques for software which consist in avoiding 11.2 
restrictions features which increase the fault risk (shared variables, goto, etc.) 

final test See test: final 

Fire code See code: Fire 

FITPLA BIT technique used to improve the testability of PLA 14.4 

fixed sequence See sequence: fixed 
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FMEA Failure Modes and Effects Analysis: normalized technique 7.10 
dedicated to qualitative analysis of reliability and safety 17.1 

FMECA Failure Modes and Effects and Criticality Analysis is a variant of 
FMEA that associates a probability with the failure of the 
components and with their effects 

forecasting See dependability assessment 
value 

formal See test: identification 
identification 

formal proof See design: proof 

formal proof: Formal proof approach which demonstrates properties, starting 10.6 
deductive from the conclusions 
approach 

formal proof: Formal proof approach which demonstrates properties, starting 10.6 
inductive from the hypotheses 
approach 

formal proof: A technique to implement inductive approach of formal proof by 10.6 
symbolic handling symbols instead of values 
execution 

forward See propagation: forward 
propagation 

forward Fault tolerance techniques resuming the system execution after an 18.4 
recovery error detection in a new state (not previously reached) 

forward Structural (e.g. gate level) simulation executing the model in the 13.3 
simulation direct way; used for instance in path sensitizing test methods 

<> backward propagation 

frequent See risk: frequent 

FfM Fault Tree Method. Deductive approach for qualitative 7.11 
dependability assessment 10.6 
See also event tree 

FfM: basic Leaves of a Fault tree 7.11 
event 

full scan See scan: Jull 

function The Junetion defines what the product is intended for and justifies 2.1 
its existence. An element of the mission 

functional See mission 
characteristics 

functional Set of possible input and/or output sequences of values as defined 8.2 
domain: by the product specifications 
dynarnic 
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functional Static input domain: set of input values which can be applied to the 8.2 
domain: static product as defined by the product specifications 

Static output domain: set of output values which can be given by 
the product as defined by the specifications 

functional See user 
environment 

functional See redundancy: functional 
redundancy 

functional test See test: functional 

fusion Operator combining the behaviors of several modules, taking theirs 8.2 
correlations into account 

galloping See test: memory 

Galois Field Mathematical structure which has fundamental applications to 15.3 
Cyclic Error Detecting and Correcting Codes 

guidelines Best practices to reach an objective, for example testability 10.3 
improvement, fault prevention, etc. 14.2 

Hamrning Fundamental property of redundant codes which allows the 15.2 
distance detection and/or correction of errors 

Number of bits that differ between two binary words 

hard fault See fault: hard 

HDB See code: low-levelHDB 

HDL Hardware Description Language. Language which describes 2.2 
circuits in textual code. The two most widely accepted HDLs are 
VHDL and Verilog 

hierarchy: Expression of a system as the composition of sub-systems or 2.3 
composition components which are again broken down into sub-systems 

hierarchy: use Defines a system, highlighting the services used (or called) by a 2.3 
component and offered by others 

hot standby See redundancy: hot standby 
redundancy 

hot swap Components (CPUlMemory, 1/0 boards, power/cooling modules) 18.5 
hardware that can be changed or serviced while the system remains on-line 

IDDQ testing Method for enhancing the quality of IC tests by measuring the 12.1 
power supply current of a CMOS circuit during quiescent states 

Detects the physical defects that creates conduction paths between 
the power supply and the ground lines (e.g. stuck-on faults) 

IEEE P1450 Standard Tester Interface Language (STIL). Language describing 12.1 
test pattern and application protocols in standard neutral form 

IEEE P1500 Embedded Core Test. Application of tests to embedded cores: test- 12.1 
description language, test-control mechanisms and peripheral 
access mechanisms 
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IEEE Std. IEEE standard describing the Test Access Port and Boundary Scan 14.4 
1149.1.1990 Architecture 

IEEE Std. 1155 See VXI 

impairment Opposed to dependability (degradation mechanism): fault - error- 1.4 
failure. Deve10ped in Chapters 4 and 5 

implementation See production (for software technology) 2.2 

implementation Fault prevention techniques defining implementation restriction, 11.3 
constraints used for software 

impossible See risk: impossible 

incompatibility The service delivered by the product is different than the one 4.2 
(of a product) expected from the specifications 

incompleteness The service delivered by the product is less than the one expected 4.2 
(of a product) from the specifications 

incompleteness Definition or properties of an object having potentially multiple 3.3 
(specification) meanings. Fuzziness of its semantics. Absence of pieces of 

infiormation 

inconsistency Contradictory definitions or properties of one object or of several 3.3 
objects 

increasing See reliability: increasing 
reliability 

inertia (of the Mean time between the occurrence of a failure and the beginning 4.2 
environment) of its external consequences on the mission 

inputsequence See sequence: input 

inspection A formal review technique based on ni ne steps 9.4 

instrumentation Adding of mechanisms to detect errors and record data during the 14.2 
operation of the product. Used to make test detection and diagnosis 16.3 
easier 

integration test See test: integration 

integrity Non occurrence of improper alterations of information 7.7 

intrinsic safety See safety: intrinsic 

irredundant An element of a system is irredundant if its removal causes the 8.3 
element system to be functionally different 

JTAG The Joint Test Action Group. This group created the foundation for 14.4 
the IEEE 1149.1 

language See modeling tool (generally considered as defined formally) 2.3 

latency Latency is the mean time between the occurrence of a fault and its 4.1 
initial activation as an error at the level of a given module 

Byextension: meantime between the occurrence of a fault/error in 
a given module and the raising of an error in another given module 
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level: See behaviorallevel 
behavioral 

level: logical See logicallevel 

level: physical See physicallevel 

level: structural See structurallevel 

level: symbolic See symbolic level 

level: See technologicallevel 
technological 

LFSR Linear Feedback Shift Register. Synchronous sequential circuit 14.5 
using Flip-Flops and XOR gates, which generates a pseudo-
random pattern of Os and I s. Used for signature analysis in BIST 
techniques 

life cycle Succession of the stages of a product' s life: specification, design, 2.2 
production, operation 

likelihood test Verification of a property based on functional redundancy 16.3 

link: logical Elements interconnecting modules in a system 2.3 

localization test See test: localization 

log file A file storing activities maintained to facilitate auditing and 16.3 
recovery (in particular fault detection) 18.7 

Also called error logging 

logicallevel One of the steps of the development process of a product 2.2 

logicallinks Define the relationships between the components of a system 2.3 

logical test See test: logical 

LSSD Level Sensitive Scan Design. Scan design technique proposed by 14.4 
IBM in the 60's 

maintainability Attribute of dependability with regard to the easiness in 7.4 
performing the maintenance actions 

In a quantified way, it is the measure of the interruption duration of 
the service if a failure appears. A useful estimator associated with 
this measure is the MTTR (Mean Time To Repair). 

The term serviceability is also used by numerous electronic or 
computer manufacturers 

maintenance Actions processed on the product structure during its usefullife. 2.2 
Contains preventive, corrective maintenance, and adaptive 7.4 
maintenance 

maintenance See test: maintenance 
testing 

maintenance: Actions applied to a product after it failed in order to restore its 2.2 
corrective service 7.4 

Also called curative 12.2 
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maintenance: Actions applied to a product in order to improve or modify its 2.2 
evolutive functionality 7.4 

12.2 

maintenance: in Facilities integrated in the product site in order to facilitate the 14.6 
situ maintenance operation in situ 

maintenance: Actions applied to a product prior to failures in order to detect the 2.2 
preventive presence of faults and to correct them: 7.4 

• systematic (or scheduled) preventive maintenance (e.g. every 12.2 
1000 hours of service) 

• conditional preventive maintenance (e.g. the maintenance is 
decided if the temperature is excessive) 

maintenance: Test facilities to detect and diagnose a product from a remote 14.6 
remote specialized center 
facilities 

maintenance: Set of actions aimed at maintaining or restoring a product in a 7.4 
troubleshooting specified state 
and repair 

major Seefailure: major 

Manchester See code: low-level Manchester 

manufacturing See production for hardware products 

marching See test: memory 

Markov model Non deterministic state graph model used for quantitative analysis 7.9 
of dependability 

MC/DC Modified ConditioniDecision Coverage. 

See test: MCIDC 

MDT Mean Down Time: mean time during which the product does not 7.5 
deli ver a service 

means for To provide a product having the required dependability level, that 1.4 
dependability is, the ability to deli ver a service and to reach confidence in this 

ability 

method A detailed approach to the achieving of prescribed goals 10.3 

minor See failure: minor 

mission The mission specifies the product' s objective in terms of the 2.1 
function to perform and its duration. Also calledfunctional 
characteristics of a product 

model One instantiation of a modeling tool to express a specific system 2.3 

model based See diagnosis: model based approach 
approach 

model: design Classical modeling level used in hardware design: behavioral, 2.2 
level structural, technological 
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model: error An error model defines a set of faults characterized as errors by a 5.1 
property on desired or intended behavior 15.1 
Also called error typology 

model: fault Afault model defines a set of faults characterized by 5.1 
physicaVstructural properties on the desired model structure 

modeling tool Generic means (language or notation) to express the system. The 2.3 
expression of a specific system is called a model 

modified See test: MCIDC 
conditionl 
decision 

module See component 

module: A module containing the basic functional elements 8.3 
functional <> module: redundant 

module: A module containing redundant elements 8.3 
redundant <> module: functional 

Monte Carlo Quantitative dependability evaluation method based on simulation 7.9 
simulation and fault injection 

MTBF Mean Time Between Failures. Maintenance indicator. The time 7.2 
between two failures on a piece of equipment (calculated) 

MTIF Mean Time To Failure 7.2 

MTIFF Mean Time To First Failure. It is the same as MTIF 7.2 

MTIR Mean Time To Repair 7.4 

Mean time between the instant of failure occurrence and the return 
of the product to full functional operation 

MUT Mean Up Time: mean time during which the product deli vers its 7.5 
service 

mutant A system, such as a program, modified by a mutation 13.8 

mutation Modification of the structure of a system (generally by a fault) 13.8 

See test: mutation 

need Expectations ofthe product's users, that is to say knowing why 2.2 
he/she has to use a product. 

netlist Basic structural model of electronic circuits, at gate or MOS level 2.2 

NMR N-Modular Redundancy. Fault tolerant technique derived from the 18.5 
TMR technique, using active redundancy 

non-ambiguity An element which has only one interpretation 9.3 

non-destructi ve See test: destructive 
test 

non-functional Part of the product specifications dealing with constraints on the 2.2 
characteristics non-functional environment and with dependability requirements 
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non-functional See environment 
environment 

non-regression See test: non-regression 
test 

non-repairable Product whose faults cannot be removed 6.3 
product 

notation See modeling tool (generally considered as having informal 2.3 
semantics) 

NRZ See code: low-level NRZ 

N-self checking Fault tolerant technique derived from the N-versions technique 18.7 

N-versions Fault tolerance technique, based on several duplicates of a same 18.2 
module, whose outputs are treated by a voter to produce the final 
result. TMR is a 3-Versions 

observability Ease of determining, from the outputs of a product, the current 6.3 
state of its behavior by exercising its inputs 14.1 
Complementary of controllability for testability 

off-chip test Test resources are external to the device under test 12.1 
Apply to off-line classical testing methods 14.5 

off-line testing Group of techniques to test a product (or a module), suspending its 6.3 
operationallife 12.1 

on-chip test Test resources are integrated to the device under test 12.1 
Apply to BIST techniques 14.5 

on-line testing Group of techniques to test a product (or a module) in its operation 6.3 

OLT context 12.1 
Discontinuous OLT: test functions are applied at predefined 

16.1 
instants in the life time of the product 

Continuous OLT (or self-testing): faults are detected as soon as 16.3 

they produce errors/failures 

open Seefault: MOS open/off 

operation Step of the life cycle which integrates the product in a given 2.2 
environment in order to deli ver a service 

Also called exploitation, usefullife, or utilization 

operational See duration of the mission 
lifetime 

optimal test See test: optimal sequence 
sequence 

output See sequence: output 
sequence 

parametric test See test: parametric 

partial scan See scan: partial 



634 Glossary 

passi ve fault See fault tolerance: passive 
tolerance 

path sensitizing See test: path sensitizing 

path test See test: path 

path: control See control path 

pattern See test sequence 12.2 

pattern Group of faults of a fault model whose effects on the outputs of the 12.2 
equivalent product cannot be distinguished by the input sequence application 
faults 

perturbation See fault: external 

phase Defined segment of work. Also called stage or step. A set of 2.2 
phases constitutes a process 

physical Technological level/model implementing the features of the 2.2 
level/model symbolic model 

ping-pong See test: memory 

post-condition Functional redundancy used for on-line testing of software. It 10.5 
analyzes the correctness of an operation at the end of the treatment 16.3 

pre-condition Functional redundancy used for on-line testing of software. It 10.5 
verifies that the use context of an operation is correct 16.3 

prevention Seefault prevention 

preventive See maintenance: preventive 
maintenance 

prime element An element (e.g. agate) is said to be prime if none of its inputs can 8.3 
be removed without causing a functional change of the system 
behavior 

Probabilistic See fault grading: probabilistic 
Fault Grading 

probable See risk 

process A set of phases. Example: development process 2.2 

process control Techniques which apply test to the manufacturing equipment. 11.2 
Extended to the evaluation of any productlsystem development 
process 

process: See development process 
creation 

process: See development process 
development 

product Physical entity destined to satisfy needs of one or several users 2.1 

product code See code: bidimensional 

product: See acceptable product 
acceptable 
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product: See referent product 
referent 

product: See referent product 
standard 

production Stage of the life cycle which transforrns a system into the final 2.2 
product by hardware andlor software technological means 

Also called manufacturing or implementation 

production See test: production 
testing 

program See test: mutation 
mutation 

propagation Trace of errors in the structure of the system during an error 4.1 
path propagation 

propagation: Backward simulation of the functioning of a system from 13.2 
backward predefined output or internal values or symbols, to find the input 

vectors which provoke them. Used in path sensitizing structural 
test methods 

Also called backward tracing 

propagation: Simulation of the functioning of a system with values or symbols, 13.2 
forward to find constraints on the propagation of a predefined error. Used 

in path sensitizing structural test methods 

property: Expression of an intended property on the behavior of a system, 5.1 
behavioral whose violation defines an error 

property: Property associated with a modeling tool and not with a particular 5.1 
generic modeled system 

property: Expression of an intended property on the structure of a system, 5.1 
physicaV whose violation defines a fault 
structural 

prototyping In this book, technique which derives a basic tool from a model, to 9.3 
detect faults in the understanding of the model 

PSA Parallel Signal Analyzer. Circuit based on LFSR structure used for 14.5 
compaction testing in BIST techniques 

qualitative Deduction of failures from faults or errors (dreaded events) 7.1 
assessment: 
deductive 
approach 

qualitative Deduction of events (faults or errors) from potential failures 7.1 
assessment: 
inductive 
approach 

quality (ISO Totality of characteristics of an entity that bear on its ability to 1.1 
8402) satisfy stated and implied needs 

Entity: item which can be individually described and considered 
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quality Procedures, techniques and tools applied by professionals to ensure 11.2 
assurance that a product meets or exceeds prescribed standards during a 

product's development cycle 

quality QA tests for electronic components: Iife, mechanical, thermal, lead 11.2 
assurance test fatigue, solderability, etc. 

quality control Analysis of sampies of the production in order to deterrnine the 6.2 
quality of the produced components 11.2 

RAID Redundant Array of Independent Disks. Fault tolerance technique 18.7 
for mass storage units using structural redundancy 

rare See risk 

reasonably See risk: reasonably probable 
probable 

reasoning by See diagnosis: experimental approach 
associations 

reconfiguration The process for a product to automatically use alternative 6.4 
resources, so as to not interrupt or to resurne its operation 18.5 

reconvergent Structural property of a gate circuit allowing one signal to 13.3 
fan-out propagate through several paths before converging towards a same 

component 

recovery Technique used in fault tolerance approaches consisting in 18.3 
reaching a correct state after an error detection 18.4 

See also backward recovery,forward recovery 

recovery block One of the forward recovery techniques of fault -tolerance 18.4 

recovery cache Backward recovery requires the implementation of execution 18.3 
context saving and restoring mechanisms. One of the most popular 
technique is named recovery cache 

recovery point State of the system in which the system processing is resumed 18.3 
during a backward recovery technique 
Also called retry point and rollback point 

recovery: See backward recovery andforward recovery 
backwardl 
forward 

redundancy Presence of elements of a system which are not necessary to satisfy 8.1 
the normal input/output relationships (in absence of fault) 

redundancy Functional redundancy rate = (size (Uni verse) - size (Domain»/ 8.2 
rate size (Uni verse) 

For a EDC code, see code: redundancy rate 

redundancy: The structural redundancy of a system is active if the design is not 8.3 
active optimal without any possibility to directIy remove any element 

<> redundancy: passive 
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redundancy: Separable redundant modules which are in a passive state (off- 8.3, 
cold standby line), waiting to be activated 18.5 

redundancy: A dynamic functional domain of a product is redundant if it is 8.2 
dynarnic strictly included in the dynarnic functional uni verse of this product 
functional 
domain 

redundancy: Certain theoretical input values are not applicable to the product by 8.2 
functional the functional environment as defined by the specifications. 16.3 

Extended to the outputs and inputs/outputs values 

redundancy: Separable redundant modules which are in an active state (on-Une) 8.3 
hot standby in parallel with the functional module 18.5 

redundancy: See redundancy: cold standby 
off-line 
separable 

redundancy: See redundancy: hot standby 
on-line 
separable 

redundancy: The structural redundancy of a system is passive if some elements 8.3 
passive can be removed without changing the produced behavior 

<> redundancy: active 

redundancy: Presence of elements of sentences in a text whose meaning can be 8.1 
semantic deduced from others sentences of the text 

redundancy: The structural redundancy of a system is separable if the redundant 8.3 
separable elements and the non-redundant elements are located in different 

modules. Thus, the system possesses afunctional module and 
several redundant modules (versions, replicates, duplicas) 

redundancy: A system has a structural redundancy if its structure possesses 8.3 
structural some elements not necessary to produce a behavior conform to the 16.3 

specifications, assurning that all the structure elements provide a 
18.1 correct functioning 

redundancy: Presence of lexicographical or syntactical elements which are not 8.1 
syntactic necessary to understand the sentence's meaning 

redundant A functional static/dynarnic domain of a product is redundant if it 8.2 
functional is strictly included in the static/dynarnic functional uni verse of this 
dornain product 

Reed-Muller Gate structure based on Galois's field to design circuits having 14.3 
structure short test sequences 

reference list Recorded test sequence 12.2 

referent Product considered as faultless, used in a test, in parallel with the 12.2 
product tested product. Its outputs are compared with the outputs produced 

by the tested product 

Also called standard product 
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relationship: See composition relationship 
composition 

relationship: See service relationship 
service 

reliability Attribute of dependability with regard to the continuity of the 7.2 
service 

The aptitude of a product to accomplish a required function in 
given conditions, and for a given interval of time 

In a quantified way, reliability is a function of time which 
expresses the conditional probability that the system has survived 
in a specified environment till the time t, given that it was 
operational at time 0 

reliability Techniques used during the manufacturing process to guaranty 11.2 
assurance test reliability level of the produced components 

reliability block Model used for quantitative analysis of reliability 7.9 
diagram 

reliability Tests applied to sampies of the produced circuits in order to 7.2 
evaluation measure or estimate the reliability parameters of this population 11.2 

reliability Mathematical function of time expressing the evolution of the 7.2 
model reliability of a population of components 

reliability tests Experiments applied to sampies of the manufactured population: 7.2 
curtailed, censured, progressive, progressive curtailed, with 
progressive constraints 

repair Actions of the fault removal which restore the functioning of a 6.3 
product. Applied to reparable products 

repair rate (~) Mathematical estimator of maintenance which expresses arepair 7.4 
probability per hour 

repairable Product to which fault removal actions can lead to the restoration 2.2 
product of its functionality 6.3 

<> non-repairable 

replica See duplicate 

requirements Expression of the needs which justify the creation and the use of a 2.2 
product 9.2 

retry mode Fault tolerance technique consisting in executing again an 18.3 
erroneous component 

See also backward recovery 

retry point See recovery point 

reuse Use of a component previously developed for another product 4.2 

review Technique used to remove faults by human analysis 9.4 
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risk Occurrence probability of a failure, assessed by measurements. For 17.1 
example, an event is said: 

• probable if its occurrence probability is > 10.5 

• rare if its occurrence probability E (10-7, 10-5) 

• extremely rare if its occurrence probability E (10-9, 10-7) 

• extremely improbable if its occurrence probability is < 10-9 

risk Part of the safety space (seriousness of failure, occurrence 17.1 
acceptability probability) in which a system is said to be acceptable in terms of 

safety 

risk: acceptable Maximum probability accepted for the occurrence of a failure. 17.1 
rate Often defined for all the failures of a seriousness dass 

Also called tolerable probability 

risk: frequent A subdivision of the risk class probable. Probability > 10-3 17.1 

risk: impossible Event having a very small probability of occurrence « 1 0-9) 17.1 

Also called extremely improbable 

risk: reasonably A subdivision of the risk class probable. Probability E (10-5, 10-3) 17.1 
probable 

RM structure See Reed-Muller structure 

robustness Property of a system which defines its capability to provide a 4.2 
function which is acceptable by the user according to given 
perturbations. Frequently defined as the characteristic of a system 
which guarantees that its functionality is maintained even if 
specified operational and utilization requirements are violated 

rollback point See recovery point 

RSA See code: RSA 

safety Attribute of dependability with regard to the non-occurrence of 7.6 
failures of given criticality level (generally catastrophic) 17.1 
Safety is measured as the probability that the product will not have 
failures belonging to unacceptable seriousness classes, between the 
initial time and a given time t 

safety class Class of safety defined in the space: seriousness of failure x 17.1 
acceptable risk rate 

safety: Notion associated with fail-safe systems. The behavioral uni verse 17.2 
dangerous is split into: 
domain • the dangerous domain grouping catastrophic andlor dangerous 

failures whose occurrence is unacceptable, 

• the safe domain grouping the normal functioning and the failures 
whose occurrence is acceptable 

safety: intrinsic Group of techniques constraining the development process with 17.2 
technological solutions which are known to be safe. These 
solutions essentially exploit physical properties 
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safety: safe See safety: dangerous domain 
domain 

safety: Structural redundancy is used in order to reduce the occurrence 17.2 
structural probability of failures belonging to dangerous safety c1asses 
redundancy 

scan design BIT Technique (DFf) which led to LSSD, and the boundary scan 14.4 
IEEE 1149.1 standard 

scan domain Part of a circuit which implement aseparate scan design 14.4 

scan: fuH Scan technique applied to the whole product 14.4 

scan: partial Technique which implements scan design in a part of the product 14.4 

SCC See self-checking checker 

scenario Input/Output sequences which simulates the interactions of a 9.3 
system with its environment 

scheduled See maintenance: preventive 
maintenance 

schmoo plots Measure of the influence of parameters (supply voltage, current, 12.1 
frequency) on test results. Used to help the IC designer to 
characterize the operational regions of a device 

scrubbing Technique used to correct soft errors in dynarnic RAMs 18.7 

security Attribute of dependability with regard to the prevention of 7.7 
unauthorized access andlor handling information 
Covers two parameters: confidentiality and integrity 

self-checking Achecker is said to be self-checking with respect to a defined fault 16.3 
checker model F if it is code-dis joint and self-testing 

• Code-dis joint: a module transforrning inputs belonging to an 
EDC code to an output EDC code is code-disjoint if any 
codeword at the inputs gives an output codeword and conversely 
if any non-codeword inputs gives a non-codeword outputs 

• Self-testing: expresses that every fault of F is detectable on the 
tested output by at least one functional input vector 

self-purging Fault tolerance technique derived from the N-Versions with 18.5 
adaptive voter 

self-testing Continuous on-line testing to detect faults as soon as they produce 6.4 
errors 

Also for Self-Checking Checker: property of a checker such that 
16.3 

each fault is detected at its output by application of the normal 
input codewords 

See self-checking checker 

separable See code: separable 

sequence Number of vectors of the test sequence 12.3 
length 
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sequence: Test sequence whose input and output values are dynamically 12.2 
adaptive defined, taking the previous results of the test application into 

account 

<> sequence: fu:ed 

sequence: fixed Test sequence whose input and output values are defined prior to 12.2 
the test processing 

<> sequence: adaptive 

sequence: input List of the inputs of a test sequence 12.2 

sequence: List of the outputs of a test sequence 12.2 
output 

serious See failure: serious 

seriousness Seefailure: severity or seriousness 

service See degradation 
degradation 

service The delivered service is the product's real behavior when placed in 2.1 
delivered its applicative environment 

service Relationships between sub-systems expressing that one uses 2.2 
relationships services provided by others 

serviceability Measure of the ease with which a system functioning is restored to 7.4 
a specified state after the system is repaired. Used to express the 
maintainability 

See maintainability 

severity Seefailure: severity or seriousness 

shallow See diagnosis: experimental approach 
reasoning 

short-circuit Seefault: short-circuit 

signature See test: signature analysis 

signature Technique used in compaction test technique. The signature 12.2 
analysis synthesizes the output values as the result of a likelihood property 

LFSR signature analysis: used for BIST off-line techniques 14.5 

signature See BIST: signature 
analysis 
function 

significant Seefailure: signijicant 

simplicity The concepts manipulated by a text (or a model) describing a 9.3 
system are simple. In particular, the number of these concepts is 
limited and they are loosely coupled 

simulation: See fault simulation 
fault 

simulation: See Monte Carlo simulation 
Monte Carlo 
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snapshot Image of the system execution context at a given time. It is used 18.3 
for example for backward recovery technique implementation 

soft fault See fault: soft 

software See instrumentation 
instrumentation 

software: Fault removal techniques based on the program control flow: 13.2 
structural • statement test 
testing • branch and path test 

• condition and decision test (see C/De and MC/DC) 

spare module Redundant off-line module 8.3 

specification Stage of the life cyde which defines the characteristics of the 2.2 
product to be created. The result of this operation is a document 9.3 
called specifications or contract (see contract) 

specification See dependability assessment 
assessment 
value 

stable See reliability: stable 
reliability 

stage See phase 

standard See referent product 
product 

standby: hot I See redundancy: hot standby I cold standby 
cold 

state Set of the values taken by the attributes of a module 2.3 

Internal property of a module 4.1 

statement test See test: statement 

statie analysis Groups of techniques of the fault removal which are made without 6.3 
exeeution of the analyzed models or products 

Statistical Fault See fault grading: statistical 
Grading 

step See phase 

STIL See IEEE PI450 

stoehastie Petri Non-deterrninistie parallel state graph model whose ares are 7.9 
net labeled by probabilistie values; used for dependability assessment 

strobing Term used for test: number of times a test equipment looks at the 12.2 
output data of a DUT during aperiod 

structural Fault grading methods which study the faultless system and 12.3 
analysis deduce all the faults (of a model) that ean produce failures 

structural A design step/model of the system expressing it as a struetured 2.2 
level/model system (composed of sub-systems or components or modules) 
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structural See redundancy: structural 
redundancy 

structural See test: structural 
testing 

structure Oefines a system as linked components 2.3 

structured- Oefines a system by its structure and the behavior of its 2.3 
functional components 
model 

stuck-at fault Fault/error model at gate level: fault that keep a circuit node (input 5.2 
or output) at a logicallevel one or zero 

stuck-OFF Fault/error models at MOS level 5.2 

stuck-ON Stuck-On: the transistor is always conducting 

Stuck-Open: the transistor is blocked in the OFF state 

stuffing See bit stuffing 

style guide See guidelines 

sub-system See component 

surface See diagnosis: experimental approach 
reasoning 

symbolic The system is executed with symbols instead of values. The results 10.6 
execution are symbolic expressions 

symbolic TechnologicalleveUmodel taking an abstract view of the execution 2.2 
leveUmodel means 

syndrome Vector resulting from a mathematical treatment (check relations) 15.3 
of a codeword which allows to detect and/or correct an error from 
of a given codeword. This vector is equal to zero is no errors 
occurred 

system Set of linked components that act together as a whole to achieve a 2.3 
given mission, that is a function during a certain period oftime 

system Group of faults of a fault model whose effects on the outputs of the 12.2 
equivalent product cannot be distinguished, whatever input sequence is 
faults applied 

Also called absolute equivalent faults 

systematic See maintenance: preventive 
maintenance 

TAP The Boundary Scan Test Access Port. It is formed by the TDI, 14.4 
TOO, TCK, TMS and the optional TRST pin 

T AP controller A sixteen state FSM that controls the Boundary Scan logic on the 14.4 
JC 

technological A design step/model conceming the implementation of design 2.2 
leveUmodel models using hardware/software technologies. Composed of 

symbolic leveUmodel and physicalleveUmodel 



644 Glossary 

termination One of the forward recovery techniques of fault to1erance, which 18.4 
mode consists in completing the task started by a module P by using a 

redundant module Q, after the detection of an error in P 

test Dynamic techniques relevant to fault removal. It is an experiment 6.3 
(input sequences) applied to an executable product or model by a 
tester which compares the given results with expected values 

The process of exercising or evaluating a system or system 
component by manual or automated means to verify that it satisfies 
specified requirements, or to identify differences between expected 
and actual results (IEEE Std 729.1983) 

Also called dynamic analysis 

test application Test processing performed by the tester which applies the test 12.3 
sequence to the product 

test equipment See tester 

test evaluation See fault grading 

test generation See test pattern generation 

test pattern See test sequence 

test pattern Technique to determine the test sequence for a given product 12.3 
generation 
(TPG) 

test sequence List of test vectors used by a tester to detect andlor diagnose faults 10.4 
in a product. This term is often restricted to the sequence of input 12.2 
vectors 

Also called test pattern 

test sequence See BIST: signature 
generator 

test sequence: Two main parameters are used to evaluate the quality of a test 12.2 
quality sequence: the length (number of test vectors) and thefault 

coverage (percentage of the faults of a fault model which are 
detected) 

test vector Element of a test sequence: couple (input vector, output vector) 12.2 

test withl Test method based on the detection of faults belonging to a pre- 12.2 
without fault defined fault modell without precise hypotheses about the faults 
model 

test: Test experiment with stress constraints: elevated power supply 7.2 
accelerated andlor temperature 11.2 

test: acceptance Another name for final test for final checking of the product 14.2 
See test: final, test: compliance, test: conformity 

Also used to name on-line checking used in fault tolerance 18.3 
mechanism to detect errors 

test: A specific ATPG handling each fault of a fault model 12.3 
algorithmic 
approach 
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test: alpha & Test performed by selected groups of users 12.1 
beta 

test: branch Software structural testing technique which takes the control flow 13.6 
branches as elements to define the test sequence coverage 

test: burn-in Production test carried out with environmental constraints such as 12.1 
the temperature or the electric supply. It is a non-destructive 
accelerated test used to detect and eliminate any defects which 
might appear in a product during its early life 

test: eIDe See test: conditionldecision 

test: eensured Test used to evaluate the reliability of a population of components 7.2 
which stops when a given number offaults is reaehed 

test: Test teehnique which reduces the data coming from the DUT by a 12.2 
eompaetion mathematical treatment. Used in signature testing 14.5 

test: Test to ensure the adequaey of the produet with its specifieations 12.1 
eomplianee 

test: conditionl Structural testing methods used for software program, which 13.6 
decision require that 1) eaeh decision must take the values True and False at 

least onee, 2) eaeh eondition must take the value True and False at 
least onee, 3) eaeh input and output point of the eomponents 
(subprograms, ete.) must be exeeuted at least onee. The coverage 
rate is noted eiDe (ConditioniDecision Coverage) 

test: eonformity Aeeeptanee test performed by the dient or an external organization 12.1 

test: eontinuity Teehniques whieh verifies that the connections between 12.1 
eomponents are without defects: printed circuit boards, cables, 
eonneetors, ete. 

test: curtailed Test used to evaluate the reliability of a population of components 7.2 
whose duration is fixed apriori 

test: design Fault removal teehniques based on funetional test, used during 6.3 
design stage 10.5 

test: destrueti ve A test is destrueti ve if the tested product can be destroyed during 11.2 
I non- the test proeess. Destruetive test are employed for quality eontrol 12.1 
destrueti ve and reliability evaluation 

test: deteetion Test teehniques answering the question: 12.1 
does the product function correctly? 12.2 

test: diagnosis Test teehniques answering the question: whichfaults affect the 12.1 
product? 12.2 

There are two main categories of diagnosis teehniques: fixed 
diagnosis which uses a fixed test sequence, or adaptive diagnosis 
for which the next test veetor depends on the responses given by 
the product to the preceding test vectors 

test: exhausti ve Test teehnique using all input vectors to test a eombinational 12.3 
cireuit 
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test: final Test applied to a complete system or product before it is delivered 14.2 
to the dient 

Also called acceptance test 

See also test: unit and test: integration 

test: functional Functional verification methods based on a functional model of the 10.5 
system to test (e.g. Finite State Machines) 12.3 
<> test: structural 

test: functional Type of diagnosis techniques which aims at locating faults at 10.5 
diagnosis functional level, without precise fault model 

test: GO- See test: production 
NOGO 

test: Formal methods for test pattern generation of sequential systems 12.3 
identification without fault model 

test: in situ Test is applied to the product in its normal environment 14.6 

test: integration Test applied to sub-systems integrating elementary modules or 14.2 
others sub-systems 

test: likelihood See likelihood test 

test: See test: diagnosis 
localization 

test: logical Test applied to a system modeled at logicallevel 12.1 

test: Test applied during the maintenance operations 6.3 
maintenance 12.1 

12.2 

test: MC/DC Structural software testing which adds the foIIowing requirement 13.6 
to the ConditionlDecision testing method (see test: condition/ 
decision): each condition in adecision must be shown to 
independently affect the result of the decision 

test: memory Specific testing techniques taking into account technological faults 12.3 
ofRAM circuits: checkerboard, marching, walking, galloping or 
ping-pong 

test: modified See test: MC/De 
conditionl 
decision 

test: mutation Test validation technique which consists in injecting modifications 13.8 
in a system in order to check whether a given test sequence detects 
the faults or not 

test: mutation: The weak mutation testing requires that the test sequence activates 13.8 
weak the fault introduced by the mutation, but it does not require that 

this sequence propagates the initial error to the outputs (as failure) 

test: non- Test performed after the repair of a faulty product in order to 12.2 
regression assure that no fault has been introduced by the repair operation or 

other chan ging 
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test: off-chip See off-chip test 

test: off-line / See off-line testing and on-line testing 
on-line 

test: on-chip See on-chip test 

test: on-line See on-line testing 

test: optimal Test sequence having a minimal Iength (in terms of number of test 12.3 
sequence vectors) 

test: parametric Test performed on the devices to check AC and DC parameters 12.1 

test: path Software structural test technique which takes the program control 13.6 
flow paths as elements to define the test coverage 

test: path Test pattern generation method for structural testing 13.2 
sensitizing 

test: path See test: path sensitizing 
tracing 

test: Technique to test each individual copy ofthe manufactured 6.3 
productionl product to insure it was produced without defects 11.2 
manufacturing 12.1 

12.2 

test: Test used to evaluate the reliability of a population of components, 7.2 
progressive whose decision to stop depends on the resuIts already obtained 

test: Test used to evaluate the reliability of a population of components 7.2 
progressive which is identical to the progressive test with a maximum duration 
curtailed constraint 

test: random Logical testing technique based on random generation of the input 12.3 
test vectors 

test: reference Conventional algorithmic test procedure based on the comparison 12.2 
list between the results produced by a tested product and a predefined 

list of known values stored in the tester 

test: screening Test techniques used to remove weak products according to 11.2 
reliability 

test: signature Test method using a property on the output values of the tested 12.2 
analysis product in order to evaluate its correctness 

test: standard/ Test method using a faultless referent product. The outputs given 12.2 
referent by the tested product and the referent product are compared 

test: statement Software structural testing technique which takes the program 13.6 
statements as structural elements to define the test coverage 

test: step stress Test used to evaluate the reliability of a population of components 7.2 
which provokes a progressi ve acceleration of the degradation 
mechanisms, in general by increasing the temperature (permitting 
an accelerated test) 
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test: structural Structural test methods are based on a structural model (e.g. gate 12.3 
structure) and generally use fault model (e.g. 'stuck-at') 
See also software: structural testing 

<> test: functional 

test: toggle See toggle test 

test: unit Test applied to elementary modules 14.2 

test: validation Validation of a test sequence, frequently by a fault grading 12.3 

See also test: evaluation andfault grading 

testability Attribute of dependability which measures the easiness with wh ich 7.3 
a product can be tested, Le. the easiness to obtain test sequences, 14.1 
and the easiness to apply these sequences 

Closely linked to the test sequence properties: 

• the length, Le. the number of input vectors 

• the coverage or test efficiency, Le. the ratio of the tested fault 
and the total number of faults according to a given fault model 

Testability can be evaluated on the product, by controllability and 
observability parameters 

Testability measurement: methods that analyze a design and 
estimate the difficulty of test pattern generation as a measure of 
testability 

testability: There are two are groups: 14 
techniques • Ad hoc techniques: design rules listing the structures that cause 

testing problems and techniques for avoiding these problems 

• Design For testability (DF7): design techniques to increase 
testability 

tester Any means (human or physical) involved in fault detection and 12.1 
diagnosis of a product by a test. Also known as test equipment 

TMR Tripie Modular Redundancy. Basic N-version fault tolerant 18.2 
technique based on passive redundancy. Three copies (duplicate 
modules) of the main module are used and a voter elaborates the 
final output. A 3-version also called trip lex 

toggle test Test sequence which assures that each line of the tested component 12.3 
is switched to '0' and '1' 

tolerable See risk: acceptable rate 
probability 

tolerance See fault tolerance 
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totally self- Property of continuous on-line testing systems. 16.3 
checking A system is said to be totally self-checking, if it is code-preserving, 
system self-testing and fault-secure with regard to a given fault model F 

• Code-preserving expresses that the fault free module preserves 
the output code on the observed output variables 

• Self-testing expresses that every fault of F is detectable on the 
tested output by at least one functional input vector 

• Fault-secure guarantees that no incorrect functional output can 
occur which is not immediately detectable 

traceability Existing relationships between the elements used in a step and the 9.3 
elements produced by this step 

triplex See TMR 

trouble See maintenance: troubleshooting and repair 
shooting 

unit test See test: unit 

universe: Set of aB theoretically possible sequences of input andlor output 8.2 
dynamic values of a product 

universe: static Set of all theoretically possible 110 values of a product 8.2 

usefullife See operation 

user Entities (physical or human) interacting functionally with the 2.1 
product 

Also calledfunctional environment 

utilization See operation 

validation Assessment of the method used in a creation phase 6.3 
9.1 

10.1 

VANBus Vehicle Area Network: example of industrial Bus using on-line 18.7 
detection 

vector: input Value received or acquired by a product 8.2 

vector: output Value produced by a product 8.2 

verification Evaluation of the result of a creation phase, in order to check that it 6.3 
is in accordance with the requirements 9.1 

10.1 

version Versions are duplicate modules that have the same specification 18.2 
than the original functional module. They are called duplicate if 
they have the same implementation 

VHDL SeeHDL 

vote: adaptive Particular N-Versions technique whose erroneous versions are 18.5 
eliminated from the decision 

voter Module of a N-Version fault-tolerant structure which elaborates 18.2 
the final outputs from the outputs provided by the versions 
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VXI VME eXtensions for Instrumentation. IEEE Std 1155.1992 12.1 

Industry standard for test and measurement market 

walking See test: memory 

walkthrough An informal review technique based on a presentation by the 9.4 
author and discussions between the author and the reviewer 

watchdog Mechanism to detect errors associated with deadlines which are 16.3 
not reached at run-time 

Weibull The Weibull reliability model is an interesting reliability model, 7.2 
reliability because of its flexibility in describing a number of failure patterns 
model 

yield Percentage of good dice (the electrical portion of the wafer that 12.2 
contains the electronic functions) compared to the total number of 
dice on the wafer. It is a statistical parameter. Yield is refined into 
four major yield groups: wafer processing yield, wafer probe yield, 
assembly yield, final test yield 
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